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ABSTRACT: We demonstrate a simple method for trans-
ferring large areas (up to A4-size sheets) of CVD graphene
from copper foils onto a target substrate using a commercially
available polyvinyl alcohol polymer foil as a carrier substrate
and commercial hot-roll office laminator. Through the use of
terahertz time-domain spectroscopy and Raman spectroscopy,
large-area quantitative optical contrast mapping, and the
fabrication and electrical characterization of ∼50 individual
centimeter-scale van der Pauw field effect devices, we show a
nondestructive technique to transfer large-area graphene with
low residual doping that is scalable, economical, reproducible,
and easy to use and that results in less doping and transfer-
induced damage than etching or electrochemical delamination
transfers. We show that the copper substrate can be used multiple times with minimal loss of material and no observable
reduction in graphene quality. We have additionally demonstrated the transfer of multilayer hexagonal boron nitride from
copper and iron foils. Finally, we note that this approach allows graphene to be supplied on stand-alone polymer supports by
CVD graphene manufacturers to end users, with the only equipment and consumables required to transfer graphene onto target
substrates being a commercial office laminator and water.

■ INTRODUCTION

Chemical vapor deposition (CVD) of graphene on commercial
copper foils provides a scalable route toward producing
continuous sheets of high-quality monolayer graphene that is
being rapidly scaled toward industrial production.1 For most
applications, graphene needs to be transferred from the growth
substrate to a target substrate. This is typically done by
applying a supporting polymer layer and then either chemically
etching away the copper to release the graphene film2−5 or
electrochemically delaminating the graphene film from the
copper substrate.6,7 Chemical etching provides a reliable
method of transfer, but is relatively costly because the catalyst
accounts for a significant portion of the graphene production
costs and can result in undesirable residual contamination
because of the wet etching process.1 Electrochemical

delamination is a popular alternative which allows for reuse
of the catalyst; however, this method has inherent throughput
limitations because the transfer speed is limited by the area of
the electrodes, which determines the areal rate at which the
graphene is delaminated. The delamination speed must also be
low to prevent excessive bubbling, which can damage the
graphene film because of surface tension forces.8 Furthermore,
although both methods have been shown to be scalable, a high
level of skill and expertise is still needed to perform such
transfers manually, which often translates into higher complex-
ity and cost in terms of achieving a viable production scenario.
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This requirement also means that the transfer process must be
carried out by the graphene supplier rather than the end-user,
necessitating repeated shipment of an application-specific
substrate to and from the graphene supplier. Therefore, it is
advantageous for graphene manufacturers to supply CVD
graphene on a generic support layer that allows easy, robust,
and high-coverage transfer of the graphene onto target
substrates by end-users without requiring a high level of
expertise.
Recent years have shown progress in the development of

convenient transfer processes with reduced contamination and
the possibility of reusing the catalyst.9,10 These include
methods where the underlying copper is oxidized in water,
allowing the graphene to be subsequently peeled from the
surface using a polymer support layer.10−12 This process takes
place by intercalation of water in between the graphene and
copper, after which the galvanic coupling between the more
noble graphene film and copper surface leads to accelerated
oxidation and corrosion of said surface13−15 and subsequent
decoupling of graphene from the copper. This method is
particularly attractive for scale-up because it uses only water
and allows for parallelization of transfer by simultaneously
oxidizing batches of graphene-coated catalyst in the water.
While a number of support polymers such as polycarbonate
and polymethyl methacrylate (PMMA) have been used for
mechanically delaminating graphene from copper foils,12 these
typically require removal in volatile toxic solvents such as
chloroform and acetone, which necessitates special handling
and disposal precautions. In this regard, polyvinyl alcohol
(PVA) is an attractive alternative because it is water-soluble,
allowing the entire transfer process to be done using safe and
environmentally friendly solvents.
Here, we present a method for transferring large-area

graphene using commercially available prefabricated PVA foils
used for hydrographics printing, a commercial tabletop hot-roll
office laminator, and water. This method provides a simple,
convenient, and reproducible transfer technique that can easily
be performed by end-users to transfer graphene onto a target
substrate with high uniformity and coverage and lower residual
doping than etching or electrochemical delamination transfers.
We further show that the method is also effective for
transferring other two-dimensional (2D) materials from
metallic substrates, such as hexagonal boron nitride (hBN)
from copper and iron foils.

■ EXPERIMENTAL METHODS

Graphene was synthesized on a 10 cm × 10 cm commercial copper
foil (127 μm thick, Alfa Aesar 13380) in a cold-wall CVD reactor
(Black Magic, AIXTRON). The copper foil was electropolished in a
phosphoric acid solution before CVD growth as described else-
where.16 Graphene was fabricated as follows: the copper foil was
annealed for 30 min at 1000 °C under 20 mbar and 700 sccm argon
flow, followed by 60 min of 0.1 sccm CH4, 50 sccm H2, and 100 sccm
Ar for graphene growth. The sample was subsequently cooled down
to room temperature under 1000 sccm argon flow.
Graphene for repeated growth and transfer experiments was

synthesized on a 25 μm thick electropolished commercial copper foil
(Alfa Aesar, 13382). The mass of the foil was measured before and
after each growth step using a microbalance and divided by the
product of the area of the copper foil and the density of copper to
obtain the average thickness lost during each growth and transfer step.
The foil was cleaned in acetone and iso-propanol (IPA) and oxidized
on a hot plate at 220 °C for 5 min prior to each growth step.
Large-area, monolayer graphene for 25 cm × 30 cm transfers was

grown on 25 μm thick copper foils in a low pressure tube furnace

system. The copper foil was annealed at 1000 °C with 500 sccm H2

and 700 sccm argon flow, followed by 30 min of 100 sccm CH4, 500
sccm H2, and 700 sccm Ar for graphene growth. The sample was
subsequently cooled down to room temperature under argon flow.

Monocrystalline graphene on Cu(111) was used for comparing
etching, electrochemical delamination (“bubbling”), and PVA
lamination transfers. Single-crystal Cu(111) foil was made from
polycrystalline Cu foil (Nilaco CU-113253, 40 μm thick, 99.9%) by
contact-free annealing.17 The single-crystal monolayer graphene film
(2 cm × 3 cm) was grown on this single-crystal Cu(111) foil in a low
pressure tube furnace system. The Cu(111) foil was annealed to 1050
°C with 100 sccm H2 under 2.0 Torr in 1 h, followed by 30 min of
exposure to 1 sccm CH4 and 100 sccm H2 for graphene growth. The
sample was then cooled to room temperature under 2.0 Torr with 100
sccm H2 by “sliding the furnace over.” A detailed description of the
single-crystal graphene film grown on the home-made Cu(111) foil
will be published elsewhere.

Chemical etching and bubbling transfers of graphene on Cu(111)
were performed as follows. For chemical etching transfer, a 4% wt
PMMA solution was spin-coated onto copper at 1500 rpm for 1 min
and baked at 80 °C for 5 min. The foil was then floated on top of a
5% HCl/H2O2 etching solution overnight at room temperature to
remove the copper. The PMMA/graphene film was then “fished out”
and rinsed in deionized (DI) water, transferred onto a 90 nm SiO2/Si
substrate, baked at 80 °C for 5 min, and placed in acetone overnight
to remove PMMA. For bubbling transfer,18 a PMMA layer was spin-
coated onto the copper at 3000 rpm for 1 min. The PMMA/
graphene/Cu(111) foil stack was dipped into a 1 M NaOH aqueous
solution to act as the cathode in an electrolysis cell run at constant
current. The PMMA/graphene layer was delaminated from the
Cu(111) foil after tens of seconds as a result of the formation of H2

bubbles at the interface between the graphene and the Cu(111) foil.18

After cleaning with DI water, the floating PMMA/graphene layer was
“fished out” and transferred to the target substrate (90 nm SiO2/Si).
Finally, the sample was dried and PMMA removed with acetone.

PVA lamination transfer of graphene was performed according to
the procedure illustrated in Figure 1. Commercial water-soluble PVA
films of 30 μm thickness were purchased from Chengdu Han Shang
Water Transfer Printing Co., Ltd (HS Inkjet Printable Blank PVA
Water Transfer Printing Film). The films are transparent and come
supported on a white sheet of paper. They were initially rinsed in IPA
and dried under nitrogen flow. Copper foils with as-grown graphene

Figure 1. (a) Schematic illustration of the PVA lamination transfer
process: (1) copper foils with as-grown graphene are oxidized in DI
water at room temperature for more than 8 h (overnight); (2) the
oxidized foils are subsequently laminated with a commercially
available PVA film using a commercial hot-roll laminator. (3) After
a 30 s bake on a hot plate at 110 °C, the PVA film is mechanically
delaminated from the copper surface, taking the graphene film along
with it (4). (b,c) Graphene transferred from a 10 cm × 10 cm copper
foil; the dashed lines serve as a visual guide marking the edges of the
graphene sheet on the PVA film. (c) PVA−graphene film [from panel
(b)] compared with a 4″ SiO2 on Si wafer.
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were placed overnight in DI water at room temperature to oxidatively
decouple the graphene from the catalyst surface. After drying the
copper substrate, the IPA-rinsed PVA film was laminated on top of
the graphene-copper foil at 110 °C and a speed of 20 cm/min using a
commercial hot-roll office laminator (Akiles Pro-Lam photo 6). The
laminate was then baked on a hot plate at 110 °C for 30 s to improve
adhesion between the PVA and graphene. The PVA film was then
mechanically delaminated from the copper surface, lifting the
graphene along with it. The graphene layer is now available as a
transferrable layer on a mechanically stable and rigid polymer
substrate, ready to be transported and eventually deposited on an
arbitrary substrate. This was done by laminating the PVA−graphene
film onto a target substrate under the same lamination conditions,
baking it on a hot plate at 110 °C for 1 min, peeling off the paper
support while the sample is still on the hot plate and finally removing
the PVA in room temperature DI water overnight.
Transferred graphene layers were characterized by Raman spec-

troscopy, optical microscopy, terahertz time-domain spectroscopy
(THz-TDS), and four-point van der Pauw (vdP) electrical device
measurements. Raman spectroscopy was conducted in a Thermo
Fisher DXR microscope equipped with a 455 nm laser (5 mW, 3 × 10
s exposure time, 50× objective). Raman spectral maps for comparative
studies between etching, bubbling, and PVA lamination transfers were
collected over 969 spectra spread evenly across a 150 μm × 72 μm
area. Optical images were acquired using a Nikon Eclipse L200N
equipped with a programmable Prior Scientific XYZ stage. Optical
images were stitched to form optical and graphene coverage maps of
the samples. For the graphene coverage maps, each pixel in the optical
images is filtered according to the expected red, green, and blue
contrasts for graphene on a 90 nm SiO2/Si substrate. This makes it
possible to produce a coverage map highlighting regions of single-
layer graphene, bilayer graphene, SiO2 substrate, and “other” - pixels
here designated as “other” when they indicate more than two layers of
graphene or with contaminants from the growth and transfer
processes.19

THz-TDS measurements were conducted using a commercially
available fiber-coupled spectrometer.20 Spatial THz-TDS maps were
acquired by raster scanning the samples at normal incidence in the
focal plane of the THz beam using 400 μm step size for graphene on
oxidized silicon and 1 mm step size for graphene on PVA. The THz
spot size is ∼350 μm at 1 THz. The frequency-dependent sheet
conductivity of graphene was extracted from the ratio of THz
radiation passing through graphene-covered sample regions and a
substrate reference area with no graphene.20 The transient from the
directly transmitted pulse was used for graphene on 90 nm SiO2 on
high resistivity (HR) Si wafer,21 whereas for graphene on PVA, all
internally reflected echoes were taken into account as done in ref 22.
THz-TDS sheet conductivity maps show the spatially averaged sheet
conductivity in the 0.3−1.1 THz range. The DC conductivity σdc and
scattering time τ can be extracted from THz-TDS measurements of
graphene by fitting the frequency-dependent sheet conductivity of
graphene to the Drude-model (Figure S1), σs(ω) = σdc/(1-iωτ),
where σs is the frequency-dependent sheet conductivity.21,23−25 The
carrier density n and mobility μ of graphene can subsequently be
calculated as n = πℏ2σdc

2/(e4νF
2τ2) and μ = σdc/(en),

21,23,25 where νF
is the Fermi velocity set to 106 m/s.26

Devices for vdP measurements were fabricated according to the
steps illustrated in Figure 2. Cr/Au (5/45 nm) metal electrodes were
deposited through a shadow mask onto a 4″ silicon wafer with 90 nm
of thermally grown oxide on top27 (Figure 2a). An 80 mm × 80 mm
film of graphene was then transferred onto the wafer (Figure 2b)
using the methods described above. The definition of device shape
and graphene electrodes was carried out via laser ablation28 using a
1064 nm ps pulsed laser. The process yields 49 separate devices with
individual device areas of 5 mm × 5 mm (Figure 2c) in an hour of
total processing time.29 Prior to measurement, devices were annealed
at 225 °C in N2 for 30 min to remove surface adsorbents.30 VdP
measurements were performed by sequentially collecting electric field
effect results for two four-point electrical configurations RA and RC,
(Figure 2d) with the sheet resistance RS defined by:31

+ =
π π
e e 1

R R R R/ /A S C S (1)

and with the gate-dependent device uniformity parameter defined
as:32

β =
R

R

A

C (2)

■ RESULTS

Figure 3 shows optical and THz-TDS characterization of a
graphene film transferred onto a 4″ 90 nm SiO2 on HR-Si
wafer. The graphene transferred here was from the 100 mm ×

100 mm graphene on the PVA foil shown in Figure 1b. Optical
microscopy and THz-TDS measurements both confirm that a
continuous layer of electrically conductive graphene was
transferred over the entire sample area. The THz-TDS map
shows an average sheet conductivity of ∼0.5 mS and is
relatively homogeneous across the area. One can observe
regions with darker contrast near the center and edges of the
film in Figure 3b,c, which correspond to higher conductivity
areas in the THz-TDS map (Figure 3d)these are due to
adlayers that originate from the growth process itself, as
confirmed by scanning electron micrographs (SEM) of the
catalyst surface before transfer (Figure S2). A region in the
bottom right corner is visible in both the optical and THz-TDS
maps where the graphene was damaged during handling.
For field effect measurements, graphene was transferred

onto a 4″ 90 nm SiO2/Si wafer with 49 prefabricated device
contacts (Figure 2a,b) and laser-patterned to form defined
device geometries (Figure 2d). Back-gated electrical measure-
ments were conducted on 10 different 5 mm × 5 mm devices
with varying distance to the wafer center (Figure 2c). Typical
device characteristics are shown in Figure 4a. The charge
neutrality point for all devices lies between −3 and +1 V, which
corresponds to low residual doping levels below 8 × 1011 cm−2.

Figure 2. Overview of device processing steps and measurement
configurations. (a) Cr/Au electrodes are evaporated through a
shadow mask onto a 4″ silicon wafer with 90 nm of oxide on top.
(b) Graphene is transferred on top of the electrical contacts. (c)
Devices are defined and electrically separated using laser ablation to
remove unwanted graphene areas28 (scale: distance from device
center in mm). (d) Measurement configurations A and C, used in the
vdP measurements. (e) Photograph of 4″ 90 nm SiO2/Si wafer with
graphene devices fabricated as described.
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The field-effect mobility was calculated via μ = (L/
W)(CoxideVSD)

−1(dI/dVG)
33 and found to be in the range of

350−800 cm2 V−1·s−1. We found the vdP uniformity parameter
of the device to be β < 2 (shown in Figure 4a inset), which is
typical for high-quality large-scale CVD graphene devices that
have been uniformly transferred within the device areas.32

When n and μ are plotted as a function of position on the
wafer, we do not observe any systematic variation between the
wafer center and wafer edge, as shown in Figure 4b. All 49
devices were electrically conductive, indicating a 100% transfer
yield.
PVA lamination transfer was benchmarked against standard

chemical etching and bubbling transfer using Raman spectros-
copy and THz-TDS measurements. Here, we used high-quality
monocrystalline graphene on Cu(111) foils34,35 to mitigate the
effects of defects from growth from those introduced during
transfer. THz-TDS measurements were used as a noninvasive
tool to extract charge carrier density and mobility that avoids

defects and doping induced by device fabrication.30 Extracted
values for charge carrier density and mobility from THz-TDS
measurements and Raman spectral figures of merit are shown
in Figure 5. Graphene from PVA lamination transfer exhibits
lower charge carrier densities than either etching or bubbling
transfers (Figure 5a), which corroborates the low residual
doping seen from gated conductance measurements in Figure
4. This method also results in the lowest distribution in carrier
density, which suggests that what little doping is introduced by
transfer is more homogeneously distributed. Extracted mobility
values are also ∼2× higher for PVA lamination transfer as
compared to etching or bubbling transfers (Figure 5b). Raman
spectra of graphene from PVA lamination transfer have higher
average 2D/G (Figure 5c) and lower D/G ratios (Figure 5d)
and a lower 2D full-width at half maximum (FWHM) (Figure
5e) compared with the other two methods. In general, we
observe bubbling transfer to result in higher doping, lower
carrier mobility, and higher incidence of defects (as inferred
from Figure 5d and Raman D-peak intensity in Figure S3) than
the other two transfers. The results suggest that after
controlling for growth- or fabrication-induced defects and
doping, etching or bubbling transfer have a greater detrimental

Figure 3. (a) Photograph of a 4″ 90 nm SiO2 on HR-Si wafer with
graphene transferred on top. (b) Stitched optical microscopy map of
wafer from (a). (c) Coverage map from (b), where light gray
represents single-layer graphene, dark gray represents the bilayer
regions, white represents the substrate regions, and black represents
the “other” regions: regions with more than two graphene layers or
with contaminants from the growth and transfer processes. (d) THz-
TDS sheet conductivity map of the graphene film transferred onto a
90 nm SiO2/Si wafer. The average sheet conductivity in (c) is ∼0.5
mS.

Figure 4. Electrical measurements from wafer-scale transfer. (a)
Typical sheet conductivity (σs) measurements of a 5 mm × 5 mm
device. Inset: Device homogeneity (β in eq 2) as a function of gate
bias. (b) Residual doping (n) and carrier mobility (μ) as a function of
the distance from wafer center (as defined in Figure 2c).
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impact on graphene properties as compared to our PVA
lamination transfer.
To demonstrate the scalability of our transfer method, CVD

graphene grown on a 30 cm × 25 cm electropolished copper
foil was transferred onto a PVA support film, as shown in
Figure 6. The graphene film is visible by eye as a continuous
region of darker contrast on the PVA foil (Figure 6a). THz-
TDS mapping of the average sheet conductivity of graphene23

on the PVA foil shows a continuous conductive layer
transferred onto the PVA foil with an average sheet
conductivity of ∼1 mS. Streaking lines observed in the THz-
TDS conductivity map (Figure 6b) are areas where the
graphene was not properly transferred because the PVA foil
was not in close contact with the copper, which we attribute to
thermal and mechanical stresses in the PVA foil during the
lamination process.
Figure 7 shows results from repeated growth and transfer of

graphene from a single 25 μm electropolished copper foil as
characterized by optical and Raman spectroscopy. Continuous
sheets of graphene were transferred in all five trials, as seen in
the optical micrographs in Figure 7a−e. Tears, holes, and
polymer residues are occasionally observed in the optical
images. Raman characterization in Figure 7f corroborates these
observations by the presence of a small D-peak located at 1350
cm−1; the frequency and magnitude of these defects, however,
appear to be random across repeated trials and thus not
inherent to the transfer process itself. We found that a large
number of creases formed on the thin 25 μm foils when
mechanically delaminating the PVA film, which persisted and
adversely affected the quality of subsequent growth and
transfers, leading to many of the macroscopic tears seen in
transferred samples. Using a thicker foil (such as in Figure 3)
virtually eliminated these creases.

The amount of copper lost following each growth and
transfer cycle was recorded by measuring the mass of the foil
on a microbalance before and after each growth, and is
presented in Figure 7g. From these measurements, we observe

Figure 5. THz-TDS and Raman characterization of monocrystalline graphene on Cu(111) transferred by PVA lamination transfer (blue), etching
transfer (gray), and bubbling transfer (red). (a,b) Histograms of carrier density (a) and mobility (b) from THz-TDS measurements. Average values
of Gaussian fits to the histograms are (a) 2.42(14) × 1012 cm−2 (PVA), 3.58(78) × 1012 cm−2 (etching), 1.07(7) × 1013 cm−2 (bubbling), (b)
3707(310) cm2/V s (PVA), 1983(386) cm2/V s (etching), 1443(98) cm2/V s (bubbling). Raman (c) 2D/G and (d) D/G intensity ratios and (e)
FWHM of the 2D peak.

Figure 6. (a) Photograph of a 25 × 30 cm2 sheet of monolayer
graphene transferred onto a PVA support film, with the dashed lines
denoting the edges of the graphene film. (b) THz-TDS sheet
conductivity map of the graphene on PVA foil in (a), showing an
average sheet conductivity of approximately 1 mS.
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that copper loss from the transfer process is minimal (within
an instrumental error of ±1.7 nm) and that most of the loss
occurs via evaporation during low pressure growth. Figure 7g
also shows that the copper lost during the first transfer (T1)
was more significant than in subsequent transfersthe copper
foil was oxidized in hot water after the first growth, forming
black cuprous oxides, which subsequently delaminated along
with the graphene during transfer.
The present process can also be used to transfer other 2D

materials from metal surfaces. Figure 8 shows the results of
transferring multilayer boron nitride sheets from copper and
iron foils onto 90 nm SiO2/Si substrates. Multilayer boron
nitride was grown using methods described in literature.36,37

Of particular note is the fact that the copper foils did not need
to be oxidized to peel off the boron nitride film. Water
oxidation led to more wrinkles in transferred hBN films

(Figure 8c) than when oxidation was omitted (Figure 8b).
Multilayer boron nitride films grown on iron foils37 had a
nonuniform thickness. The films were transferred onto 90 nm
SiO2/Si substrates without oxidizing the foils in water; the
transferred films were discontinuous with primarily multilayer
regions being transferred (Figure 8d). Water oxidation is not
suitable for iron foils because of excessive rust formation,
which is then transferred along with the films in subsequent
steps.

■ DISCUSSION

Our results demonstrate that PVA lamination transfer is a
commercially viable approach for transferring large-scale
graphene from the copper catalyst onto target substrates in a
convenient and reproducible manner. We show from THz-
TDS and Raman spectroscopy that graphene transferred via
PVA lamination has lower and more homogeneous residual
doping, higher charge carrier mobility, and fewer transfer-
induced defects as compared to standard chemical etching or
electrochemical delamination transfers. Through fabrication
and characterization of large-scale electrical devices, we show
that PVA lamination transfer provides high device yields with
wafer-scale transport consistency. We further demonstrate,
through the use of large-area THz-TDS characterization, that
electrically continuous graphene films can be easily transferred
over arbitrary length scales in a roll-to-roll fashion that is
limited only by the dimensions of the catalyst. Finally, we show
that other 2D materials can also be transferred from various
substrates by this approach, as long as the material can be
sufficiently decoupled from the substrate.
While PVA lamination transfer provides a high yield of

devices with minimal residual doping, we nonetheless observe
a small asymmetry in the conductivity of holes and electrons
and a slight n-doping in gated conductance measurements in
Figure 4a, which we attribute to PVA residues.38 We also note
that the carrier mobility values in these large-scale devices are
lower than those reported in the literature for other transfer
methods for micrometer-scale devices;6,7,9,39 the devices

Figure 7. (a−e) Optical micrographs of repeated growth and transfer of graphene onto 90 nm SiO2/Si substrates, where the sequential transfer
index is indicated in the top right corner (scale bar 20 μm). (f) Corresponding Raman spectra of the samples in (a−e). (g) Plot of the average
thickness of copper lost during each process step, where “G” refers to the growth step and “T” refers to the transfer step; the numbers at the top axis
indicate the average thickness of copper lost during each step, where a negative sign indicates a net loss in mass and a positive value indicates a gain
in mass. The mass here was measured on a microbalance before and after each growth step. The instrumental precision of the microbalance, when
converted to corresponding units of thickness, is ±1.7 nm.

Figure 8. (a,b) Multilayer boron nitride (30 nm thick) transferred
onto 90 nm SiO2/Si substrates from copper foils without a prior wet
oxidation step. (c) Multilayer boron nitride transferred in the same
manner as (a,b), but with a prior wet oxidation step. (c) Multilayer
boron nitride transferred from an iron foil onto 90 nm SiO2/Si
substrate without prior wet oxidation.
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presented here have an area 5 orders of magnitude larger than
a typical 10 μm × 10 μm sized device. As the device area
increases, large-scale inhomogeneities from growth, transfer,
wafer variation, inconsistent polymer residues and so forth,
which are less pronounced in individual small-scale devices,
can play a significant role and lead to a lower measured
mobility.32,40 Furthermore, doping and damage induced during
growth and/or device fabrication30 can often mask or
exacerbate the effects of transfer, making comparisons between
different transfer methods difficult without accounting for
these effects.
For more accurate comparisons between transfer methods,

we used high-quality monocrystalline graphene on Cu(111)
foils to decouple defects introduced during growth from
transfer and THz-TDS and Raman measurements as non-
invasive, noncontact tools to characterize the electrical and
structural quality of the graphene immediately after transfer
and prior to any processing. In doing so, we were able to see
clear differences in the graphene quality obtained between the
three transfer methods.
Transfer of multilayer hBN showed some important

differences from graphene transfer. In particular, water
oxidation was not necessary for transfer and in fact led to
more wrinkles in the hBN film. A possible mechanism for this
wrinkling is weak binding with the growth substrate after water
oxidation, combined with different rates of thermal expansion
during hot lamination. The wrinkles are also large because of a
lower ability of thicker hBN to conform to the target substrate
as compared to monolayer graphene. Direct delamination of
hBN was also possible from iron foils; however, the transferred
films were discontinuous. This may be a product of the
nonuniform thickness of the grown film and stronger adhesion
of boron nitride to iron as compared with copper,41 where the
transfer mechanism at work resembles mechanical exfoliation
of bulk h-BN rather than oxidative decoupling.
In general, we find that the quality and surface roughness of

as-grown graphene on copper and contact between the PVA
foil and substrate surface play an important role in the amount
of defects (such as tears and holes) that is introduced during
transfer. Microscopic tears appear to originate from poorly
stitched graphene grain boundaries or tears and wrinkles
already present in the as-grown graphene on copper.
Macroscopic tears are seen in areas where the PVA foil is
unable to make a close physical contact with the surface, such
as rolling lines, creases, or mechanical deformations in the
catalyst foil. Finally, holes are typically seen in regions with
trapped air bubbles from lamination.
We envision a number of routes for increasing the

throughput and quality of the present method for industrial
scale-up. Although long processing times are used here to
ensure complete decoupling of graphene from the catalyst
surface during water oxidation and removal of PVA, hot water
can oxidize copper and decouple graphene in less than an
hour,11 and thinner PVA foils can be used to permit faster
dissolution. Throughput can be increased further by perform-
ing these steps in large batches. Finally, roll-to-roll processing
under tension, vacuum lamination, and thick Cu foils (>50
μm) can be employed to reduce trapped bubbles, tearing, and
other possible issues when scaling up this technology.
PVA lamination transfer provides a unique solution for

industrial-scale graphene transfer: prefabricated PVA foils are
inexpensive and readily available in industrial quantities and
provide a mechanically robust support on which graphene can

be supplied, while the simplicity of this lamination technique
lowers the entry barrier for graphene transfer onto arbitrary
substrates. As a result, instead of having to develop the
expertise and provide graphene already transferred to
application-specific substrates, graphene manufacturers can
now provide high-quality CVD graphene on standalone, ready-
to-transfer foils that can be cut, shaped, and transferred as
needed onto application-specific target substrates by the end-
users using off-the-shelf office tools and water. Not only does
this reduce production costs on the side of the manufacturer
by allowing reuse of the copper catalyst, but it also makes CVD
graphene available to a much larger base of potential users
not just the expertsand enables do-it-yourself application of
graphene films onto various target substrates by end-users with
minimal investment of time and money.

■ CONCLUSION

We have demonstrated how commercially available PVA films
widely used for the hydrographic transfer of printed images can
be employed to mechanically transfer graphene from growth
substrates to target substrates using a low-cost office laminator.
The PVA foils act not only as a robust backing during handling
but are also a convenient means to store or transport ready-to-
apply graphene to end-users, without previous experience with
graphene transfer, who simply need to use their own low-cost
laminator to apply the graphene on-site to any substrate of
interest. By avoiding resist spinning or other complex
processing, the need for catalyst etching and recovery and
the use of organic solvents; and using only nontoxic and
biodegradable materials, we have demonstrated a process
which is greener, of lower cost, highly scalable, and more
convenient for graphene growers and end-users than existing
techniques and has considerable potential for further develop-
ment and use in research and industry.
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