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Abstract

The paper investigates whether liquidity constraints affect firm size and growth dy-
namics using a large longitudinal sample of Italian manufacturing firms. We run
standard panel-data Gibrat regressions, suitably expanded to take into account liq-
uidity constraints (proxied by cash flow scaled by firm sales). Moreover, we char-
acterize the statistical properties of firms size, growth, age, and (scaled) cash flow
distributions. Pooled data show that: (i) liquidity constraints engender a negative,
statistically significant, effect on growth once one controls for size; (ii) smaller firms
grow more (and experience more volatile growth patterns) after controlling for liquid-
ity constraints; (iii) the stronger liquidity constraints, the more size negatively affects
firm growth. We find that pooled size distributions depart from log-normality and
growth rates are well approximated by fat-tailed, tent-shaped (Laplace) densities.
We also study the evolution of growth-size distributions over time. Our exercises
suggest that the strong negative impact of liquidity constraints on firm growth which
was present in the pooled sample becomes ambiguous when one disaggregates across
years. Finally, firms who were young and strongly liquidity-constrained at the be-
ginning of the sample period grew persistently more than those who were old and
weakly liquidity-constrained.
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1 Introduction

This paper investigates whether liquidity constraints faced by business firms affect the

dynamics of firm size and growth. Since the seminal work of Gibrat (1931), the “Law of

Proportionate Effects” (LPE) has become the empirical benchmark for the study of the

evolution of firm size over time. In one of its most widely accepted interpretations, the

LPE states that the growth rate of any firm is independent of its size at the beginning

of the period examined1. In turn, the underlying “random walk” description of firm (logs

of) size dynamics entailed by the LPE implies, under quite general assumptions, a skewed

lognormal limit distribution for firm size2.

In the last decades, a rather large body of empirical literature has been trying to test the

LPE “null hypothesis” and its further implications upon industrial organization3. Yet, the

evidence provided by these contributions is rather mixed, if not contradicting. For example,

panel data analyses suggest that LPE should only hold for large manufacturing firms.

Moreover, there seem to be many indications supporting the idea that, when only surviving

firms are considered, average growth rates — as well as their variance — are decreasing with

both size and age. However, despite their statistically significance, estimated growth-size

correlations appear to be rather weak, especially once sample selection biases are taken

into account.

More recently, the robustness of the existing evidence in favor of (or rejecting) a LPE-

type of dynamics has been questioned by (at least) two streams of research4. First, as

noticed in Bottazzi and Secchi (2004), investigations of firm growth and size dynamics are

typically carried out using aggregated data (over different sectors). This might lead to

the emergence of statistical regularities — as the LPE — which could only be the result of

aggregation of persistently heterogeneous firm dynamics.

Second, and more important to our discussion here, the traditional approach has

stressed the investigation of growth-size relationships without extensively addressing a de-

1The LPE, also known as Gibrat’s Law (GL), can be stated in terms of expected values as well. As
Sutton (1997) puts it: the “expected value of the increment firm’s size in each period is proportional to
the current size of the firm”. See also Mansfield (1962).

2Notice that the LPE might also form the core of a simple, stochastic, model of firm dynamics. See
e.g. Simon and Bonini (1958), Ijiri and Simon (1977) and Geroski (2000). For a more general discussion
cf. Steindl (1965), Sutton (1997, 1998), Cabral (1995), and Mitzenmacher (2002).

3An exhaustive survey of the LPE literature is of course beyond the scope of this paper. The interested
reader may refer to Geroski (2000) and Lotti, Santarelli, and Vivarelli (2003) (and references therein) for
quite complete overviews.

4The LPE can be violated not only because a statistically significant correlation between average growth
and size is present, but also because: (i) higher moments of the growth rates distribution (e.g. variance)
show some size-dependence (Bottazzi, Cefis, and Dosi, 2002); (ii) the (limit) size distribution departs from
log-normality (Bottazzi, Dosi, Lippi, Pammolli, and Riccaboni, 2001); (iii) growth rate distributions are
not normally distributed (Bottazzi and Secchi, 2003).
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tailed analysis of other determinants of firm growth (Becchetti and Trovato, 2002). More

specifically, the majority of contributions has focused on panel data regressions including

as explanatory variables only size- and age-related measures, as well as non-linear effects,

time and industry dummies, etc. . Very little attention has been paid to other determinants

of firm growth and size dynamics, such as financial factors.

In the last years, however, a growing number of contributions has provided robust

empirical evidence showing that financial factors (e.g. liquidity constraints, availability of

external finance, access to foreign markets, etc.) can have a significant impact on firms

investment decisions5. For example, liquidity constraints — measured by scaled measures of

cash flow — have been shown to negatively affect firm’s investment (Bond, Elston, Mairesse,

and Mulkay, 2003) and to increase the likelihood of failure (Holtz-Eakin, Joulfaian, and

Harvey, 1994). Moreover, small and young firms seem to invest more, but their investment

is highly sensible to liquidity constraints (Fazzari, Hubbard, and Petersen, 1988a; Gilchrist

and Himmelberg, 1995).

If financial factors significantly impact on firms’ investment decisions, then they are

likely to affect firm size and growth dynamics as well. For instance, highly liquidity-

constrained firms might face difficulties in financing their investments and thus suffer from

lower growth rates in the future (Fazzari, Hubbard, and Petersen, 1988a; Devereaux and

Schiantarelli, 1989). At the same time, size and age may affect the ability of the firm to

weaken its liquidity constraints and to gain access to external financing6. Notice that while

the causal relationship going from liquidity constraints to size — through investment and

growth — should typically occur at a higher frequency, one expects size and age to affect

liquidity constraints over a longer time-scale. Larger and older firms might indeed face

difficulties in financing their investment with internal sources — e.g. because of low cash

flow — but, at the same time, easily access to external financing because e.g. they belong

to well-established socio-economic networks built over the years.

In this paper, we explore whether the emergence of any LPE-type of dynamics — or

violations thereof — might be influenced by taking directly into account financial factors

(i.e. liquidity constraints) in studying the patterns of firm size and growth. Following

Elston (2002), we argue that controlling for liquidity constraints may help in discriminating

between “financial-related” and “sheer” size-effects. While the first type of size-effect

should account for higher growth rates due to better access to external capital and/or

5Space constraints prevent us to discuss here this rather large literature. See, among others, Fazzari and
Athey (1987); Hoshi, Kayshap, and Scharfstein (1991); Hall (1992); Bond and Meghir (1994); Schiantarelli
(1996); Fazzari, Hubbard, and Petersen (1996); Kaplan and Zingales (1997); Hu and Schiantarelli (1997);
Hubbard (1998); Mairesse, Hall, and Mulkay (1999).

6Harhoff, Stahl, and Woywode (1998) find that limited-liability firms experience significantly higher
growth than unlimited-liability ones. Moreover, Lang, Ofek, and Stulz (1996) provide evidence in favor of
a negative correlation between leverage and future firms’ growth.

3



higher cash flow, the latter might explain higher growth rates in terms of economies of

scale and scope only. Since existing contributions investigating the LPE did not introduce

any controls for financial constraints7, their estimates of the impact of firm size on future

firm growth might have been the result of a composition of “sheer” and “financial-related”

effects.

We employ a database containing observations on 14277 (surviving) Italian manufactur-

ing firms of different sizes from 1995 to 2000. The sample was originated from the AIDA

database, covering 90% of all Italian firms with sales larger than 1M Euros. We firstly

perform standard (pooled) Gibrat’s type regressions to assess the impact of liquidity con-

straints on employees growth rates. We employ cash flow scaled by firm sales (SCF ) as a

proxy of liquidity constraints and we control for size and age, as well as their lagged values

and fixed time and sectoral effects8. We show that liquidity constraints engender a nega-

tive, statistically significant, effect on growth once one controls for sheer size. Moreover,

smaller firms grow more, even after controlling for liquidity constraints.

However, both the goodness-of-fit and the magnitude of estimated coefficients appear

to be very weak9. Therefore, as suggested in Bottazzi, Cefis, and Dosi (2002), we move

towards a more detailed exploration of the statistical properties of the joint distribution of

firms size and growth, conditioned on SCF and age.

First, we explore the properties of the joint, pooled, distribution of size, growth, and

SCF . We find that size distributions depart from log-normality, while growth rates are

well approximated by fat-tailed, tent-shaped (Laplace) densities. Moreover, firms facing

stronger liquidity constraints grow less and experience more volatile growth patterns. The

stronger liquidity constraints, the larger the absolute value of the observed size-growth

correlation. Growth rate distributions seem however to be quite robust to SCF , once one

controls for mean-variance time-shifts in their distributions.

Second, we investigate the evolution over time of the distributions of size and growth,

conditioning on liquidity constraints and/or age. Our exercises suggest that the absolute

value of the size-growth correlation has substantially decreased through time for any level

of SCF . In addition, liquidity constraints do not seem to engender a strongly negative

impact on firm growth in any given year. Thus, the negative impact of liquidity constraints

on firm growth, which was quite strong in our pooled sample, becomes ambiguous when

one disaggregates over time.

7With the exceptions of Becchetti and Trovato (2002) and Elston (2002). Cf. also Carpenter and
Petersen (2002).

8See Section 2 for a discussion of econometric and data-related issues involved in the exercises presented
in the paper.

9Significant but very small growth-size correlations are typically the case in the majority of empirical
studies which find a violation of the LPE, cf. Lotti, Santarelli, and Vivarelli (2003).
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We also find that firms who were young and strongly liquidity-constrained at the begin-

ning of the sample period experienced in the following years higher average growth rates

than those who were old and weakly liquidity-constrained. Furthermore, we show that

SCF , size, and growth rates are more variable among younger firms than among older

ones. Therefore, one is able to detect a shift to the right in size distributions for young

and strongly liquidity-constrained firms.

The paper is organized as follows. In Section 2 we describe the dataset that we employ

in our empirical analyses and we discuss some important measurement and data-related

issues. Section 3 presents the results of standard regression analyses. The properties of

(pooled) distributions are explored in Section 4. In Section 5 we study the evolution over

time of size and growth distributions, while the effects of age and size on firm growth

dynamics is briefly examined in Section 6. Finally, Section 7 concludes.

2 Data

Our empirical analysis is based on firm-level observations from the AIDA database, de-

veloped by Italian Chambers of Commerce and further elaborated by Bureau Van Dijk10.

The database contains longitudinal data from 1992 to 2000 about size, age, and financial

variables obtained by the balance sheets of 90% of all Italian firms (i.e. “lines of business”)

whose sales have exceeded 1M Euros for at least one year in the observed period11. We

begin by studying firms belonging to the manufacturing sector as a whole12.

In order to keep statistical consistency, we analyze data for the period 1995-2000. Fur-

thermore, we focus on unconsolidated budgets so as to avoid as much as possible effects on

growth and size due to mergers and acquisitions. Indeed, if one instead considers consoli-

dated budgets, mergers and acquisitions of lines of business belonging to any parent firm

may show up in the consolidated budget of the parent firm13.

Our balanced sample consists of N = 14277 observations (per year). We use annual

data on employees (EMP ) as our main proxy for firm size. Alternative measures of firm

size such as sales (SAL) and value-added (V A) — computed as after tax net operating

profits minus total cost of capital — are also considered in order to check the robustness of

our results.

10See http://www.bvdep.it/aida.htm for additional details.
11A company enters the database the year its sales exceed 1M Euros. Data for previous years are then

recovered. Notice that no lower bounds for employees are in principle present.
12According to the ATECO 2 classification, we study all firms whose principal activity ranges from code

15 to code 37. For the manufacturing sector, the ATECO 2 classification matches the ISIC one with some
minor exceptions.

13An alternative strategy allowing to wash-away mergers and acquisitions effects is to build “super-
firms” (Bottazzi, Dosi, Lippi, Pammolli, and Riccaboni, 2001; Bottazzi, Cefis, and Dosi, 2002).
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In line with existing literature, we employ cash flow, scaled by some measure of firm

size, as our proxy for firms’ liquidity constraints. More formally, we define the scaled cash

flow variable (or “cash flow ratio”):

SCFi,t =
CFi,t

SALi,t

, (1)

where i = 1, ..., N are firms’ labels, t = 1996, ..., 2000 and CFi,t is calculated as net firm

revenues plus total depreciation (credits depreciation included)14. We also employ firm

age (AGE) at the beginning of 1995 (the year of firm’s birth is directly available in the

database). Growth rates for each size variable X = EMP , SAL, V A are computed as:

X_GRi,t = ∆ log(Xi,t) = log(Xi,t)− log(Xi,t−1). (2)

As explained above, our goal is to study the extent to which liquidity constraints might

affect firm size-growth dynamics. To do so, we focus on single equation models, as well as on

statistical properties of joint distributions. Thus, we do not address here the investigation

of structural models of firms’ investment behavior and growth. Nonetheless, several data-

related issues require a more detailed discussion.

First, cash flow ratios are used as a proxy of liquidity constraints. The rationale is

that a low cash flow ratio (i.e. a small SCF ) may imply, especially for small firms, strong

liquidity constraints (Fazzari, Hubbard, and Petersen, 1988b). In fact, firms holding a large

cash flow ratio are likely to finance internally their investments. Furthermore, in presence

of imperfect capital markets, a high cash flow ratio might also function as a “screening

device” to gain a better access to external financing. In presence of credit rationing, larger

cash flow ratios might then be used to get additional external funding, especially when

firms have some convenience to “go external” for tax reasons15. Indeed, high cash flow

firms can always choose the right mix between internal and external financing if they have

this option (i.e. if the “signalling” effect is present)16.

Second, as noticed by Becchetti and Trovato (2002) and Elston (2002), cash flow can be

14Cf. e.g. Audretsch and Elston (2002), Kaplan and Zingales (1997) and Fazzari, Hubbard, and
Petersen (1996). All subsequent results do not dramatically change if alternative specifications for the
cash-flow ratio — e.g. log(CF )/ log(SAL) or log(CF/SAL) — are taken into account. We also repeated
all subsequent regression exercises and distribution analyses employing alternative scaling variables (e.g.
total assets, capital stock, etc.), but we did not observe any remarkable departure from our basic findings.

15See however Galeotti, Schiantarelli, and Jaramillo (1994), Goyal, Lehn, and Racic (2002) and Albu-
querque and Hopenhayn (2004) for alternative approaches employing debt-related variables as measures
of liquidity constraints. See also Section 7.

16Furthermore, cash flow is a relatively “fast” variable which can better account for the short-term
impact of liquidity constraints on investments and growth. Since we expect the feedback from size-age
to liquidity constraints to be slower (especially for smaller, young, firms) and we only have data about 6
years, scaled cash flow seems to have an additional justification from a “dynamic” perspective.
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highly correlated with other size measures such as sales or value-added. To minimize the

consequences of this problem, we scale CF with SAL and we always use employees (EMP )

as our size measure whenever liquidity constraints enter the picture. In addition, we check

the robustness of all exercises involving size-related measures only by using alternative size

measures such as sales (SAL) and value-added (V A).

Third, we only observe “surviving” firms in our sample. This can generate a survival

bias, as high-growth (small) firms may be over-represented in our data (Lotti, Santarelli,

and Vivarelli, 2003). Unfortunately, we do not have any direct empirical evidence which

might allow us to distinguish between missing values and entry-exit events. Hence, we

performed a preliminary descriptive analysis on size-growth distributions of firms that were

excluded from our database because some missing values did appear in their records. We

did not find any statistically significant distribution difference between “included” firms

and “excluded” ones. Therefore, we argue that survival biases should not dramatically

affect the results that follow.

Fourth, it must be noticed that firms in our database are defined in terms of “lines

of business”. This type of unit of analysis allows us to appreciate the effects of liquidity

constraints on growth in a consistent way (given that we choose to focus on unconsolidated

budgets so as to avoid mergers and acquisitions effects). In fact, if one had plant-level

data, cash flow ratios would have not been the right measure for liquidity constraints, as

each plant has typically access to credit in proportion to cash flow ratios of the parent firm.

Moreover, decisions affecting growth are not undertaken at the plant level, but more likely

at the parent-firm level.

Fifth, firms in our database can possibly belong to groups consisting of a “controller”

and many “controlled” firms. In all these cases (3.4% of all observations), the cash flow

ratio of a controlled firm might not be a good proxy for its actual liquidity constraints.

In order to avoid this problem, we considered information about parental affiliation. More

specifically, we defined the dummy variable Dsubs (to be employed in our regressions) which

is equal to one if the share of a firm’s ownership held by shareholders is greater than 50%

at the end of each year. On the contrary, as far as distribution analyses are concerned,

we simply dropped such observations from our sample (this procedure did not change our

results in any substantial way).

Table 1 reports summary statistics for firm size (EMP , V A, SAL) and their growth

rates (EMP_GR, V A_GR, SAL_GR), liquidity constraints (SCF ) and age (AGE). All

size distributions (as well as scaled cash flow) are extremely skewed to the right as expected,

while growth rates appear to be almost symmetric and quite concentrated around their

average values.

Correlation matrices for all key variables are reported in Tables 2 and 3. As expected,
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CF is highly (positively) correlated with V A both simultaneously and at one-year lags,

while smaller but still relevant correlations emerge with SAL and, in particular, with

EMP . On the contrary, CF/SAL is weakly correlated with all size measures. This seems

to be an additional justification for employing SCF as our proxy for liquidity constraints

and EMP as size-measure in our exercises.

Both average values and coefficients of variation present weak time-trends, suggesting

some non-stationarity of size and SCF distributions. However, once one defines size and

SCF variables in terms of their ‘normalized’ values with respect to year-averages:

eXi,t =
Xi,t

N−1
PN

j=1Xj,t

, (3)

all distributions become stationary over time. Indeed, as Fig. 1 shows for the log of

standardized EMP variable (ÊMP ), all first moments exhibit almost no variation over

time.

Similar results hold for all other size measures and for SCF . Thus, all our pooled distri-

bution analyses will be performed in terms of eXi,t variables17. As far as regression analyses

are concerned, we will begin by employing non-standardized values and we will introduce

year dummies to control for non stationarities. We will also check the robustness of our

results by using pooled distributions of standardized values eXi,t. In this case, growth rates

are accordingly computed as eX_GRi,t = ∆ log( eXi,t). Summary statistics and correlation

structure for pooled, standardized, distributions are reported in Tables 4 and 5.

3 Evidence from Panel-Data Regressions

In this section we present the results of regression analyses conducted on our pooled samples

of observations. We begin by a standard LPE estimation exercise where firm growth is

regressed against logs of firm size at the beginning of the period, firm age at the beginning

of the sample period, as well as non-linear size-age effects (e.g. size and age squared) and

lagged values of both firm growth and size (Evans, 1987; Hall, 1987). We then introduce

financial constraints by adding scaled cash flow (SCFi,t) to the regression (and lagged

values thereof).

We employ non-standardized, pooled, values while controlling for time fixed effects

(Dtime). We also control for industry effects (Dind), defined according to 14 Ateco macro-

classes, and for a “subsidiary” dummy (Dsubs) accounting for companies who are controlled

by more than 50%. This allows us to check whether affiliation to a large corporate relaxes

17For a more detailed discussion on this standardization procedure, see Kalecki (1945), Hart and Prais
(1956), and Bottazzi, Dosi, Lippi, Pammolli, and Riccaboni (2001).
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financial constraints.

Lagged values of both size and growth (as well as SCFi,t−k, k > 2, and interactive

terms such as AGE ∗ EMP ) never appear to be significant in our regressions. We then

start from the “saturated” model:

EMP_GRi,t = α1 log(EMPi,t−1) + α2SCFi,t−1 + α3 log(AGEi) +

+α4 log
2(EMPi,t−1) + α5 log

2(AGEi) + α6SCFi,t−2 + (4)

+α7Dtime + α8Dind + α9Dsubs + εi,t,

where εi,t is a white-noise term.

We rely on Likelihood Ratio Tests (LRTs) to drop in each step one (or more) covariate(s)

and eventually get to our preferred model. As shown in Table 6, this selection procedure

allows us to discard both log2(AGEi) and log(AGEi) at 5% significance level. We also

employ an alternative model selection procedure based on maximization of (pseudo) R2s

(see Table 7).

We begin by standard growth-size regressions and we compare models obtained by

adding covariates. Among all possible specifications, we show results of regressions that

reach the highest R2 values (which is always very low due to the large number of ob-

servations). This combined procedure suggests that, by omitting log(CFi,t−2) from the

“saturated” model, one gets the highest R2 levels. However, if one also drops log2(AGEi)

and log(AGEi) — as suggested by LRTs — the goodness of fit does not decrease very much.

Therefore, the two criteria taken together indicate the following “preferred” model:

EMP_GRi,t = β
1
log(EMPi,t−1) + β

2
SCFi,t−1 + β

3
log2(EMPi,t−1) (5)

+β
4
Dtime + β

5
Dind + β

6
Dsubs + εi,t.

Estimation of (5) shows that size effects are significant and negative (Lotti, Santarelli,

and Vivarelli, 2003). Our data therefore confirm a rejection of the LPE: smaller firms grow

more, even when one controls for financial constraints18. In addition, firms with higher

cash flow ratios enjoy higher growth rates, once one controls for sheer size. Notice that

a positive and significant non-linear size effect is present. Introducing log2(EMPi,t−1) in

the regression also implies a higher magnitude for the growth-size correlation. Finally, the

“subsidiary” dummy (as well as all other dummies) is significant in all model specifications,

suggesting that, given the same degree of liquidity constraints, firms who belong to a large

18Our results also suggest that younger firms grow more, as shown by a significant negative effect of
log(AGEi) in Table 7. Anyway, this effect does not seem to be pivotal in our model, as indicated by the
LR test procedure.
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company grow more than those who are “isolated”, possibly because of an easier access to

external financing.

The foregoing results seem to be robust vis-à-vis a number of different checks. First,

although lagged values of SCF should be in principle important to explain current growth,

our data suggest that SCFi,t−k, k ≥ 2, is hardly significant in the saturated model (see also

last column in Table 7) and that any statistical significance is only due to the large number

of observations we have in our dataset19. Second, if we only consider “financial-related”

size effects and we exclude sheer size effects — i.e. if we discard log(EMPi,t−1) — in our

regressions, scaled cash flow remains significant and negative. This seems to be a strong

indication in favor of the robustness of this measure as a proxy for firm financial constraints.

Third, both significance levels and signs of estimates do not change if one considers year-

standardized variables and omits fixed time effects in the regressions. Fourth, if one also

controls for EMP_GRi,t−1 in the preferred model, all estimates remain significant and

their signs do not change. The lagged growth term appears to be significant but in general

its magnitude turns out to be quite small. Fifth, although firms heterogeneity was taken

into account only through industry-specific effects, our main results do not change if one

estimates a first-difference version of our preferred model (without industry dummies) to

eliminate firms fixed effects. Indeed, due to the low time-series variability in our sample,

random effects turn out to be almost irrelevant.

Our findings are in line with previous ones obtained by Becchetti and Trovato (2002),

who show that small surviving Italian firms experience higher growth rates, but the latter

are negatively affected by the availability of external finance. Carpenter and Petersen

(2002) reach similar conclusions as far as small firms in the U.S. are concerned. On the

contrary, Audretsch and Elston (2002) show that medium sized German firms are more

liquidity constrained (in their investment behavior) than either the smallest or the largest

ones20.

Regression results seem to support the idea that firm growth is negatively affected by

both size and liquidity constraints. However, the goodness-of-fit of our preferred model is

not very encouraging. In presence of such low R2s (and quite small estimated coefficients),

one might also be tempted to conclude that, albeit significant, the effect of size and scaled

CF on average growth rates is irrelevant (at least as policy issues are concerned)21. In

order to further explore whether our data really exhibit departures from the LPE, we turn

19Although we decided to drop lagged SCF values here, an in-depth investigation of their effects — as
well as of those of cumulated SCF values — is certainly one of the main points in our agenda.

20Elston (2002) finds that cash flow (not scaled) — after controlling for size and age — positively affects
growth of German Neuer-Markt firms. We find similar results in our sample, too. However, this outcome
may be biased by the high and positive correlation between size (employees) and cash flow. See also Section
7.

21For a discussion on the interpretation of LPE empirical results see Sutton (1997) and Geroski (2000).
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now to a more detailed statistical analysis of pooled size and growth distributions. We shall

investigate in particular the properties of the joint growth-size distribution conditional on

scaled cash flow observations.

4 Statistical Properties of Pooled Size and Growth

Distributions

If the benchmark model of stochastic firm growth underlying the LPE holds true, then for

any measure of firms size St, the dynamics of St reads:

St = St−1Rt, (6)

where Rt is a random variable. If rt = logRt are i.i.d. random variables with finite

mean and variance, then St is well approximated, for sufficiently large t, by a log-normal

distribution. Moreover, growth rates gt = ∆ log(St) should be normally-distributed.

We then begin by checking whether our pooled (year-standardized) firm size distribu-

tions depart from log-normal ones. As size-rank plots suggest, the distributions of ÊMP ,

]SAL, and gV A can hardly be approximated by a log-normal (cf. Fig. 2 for the evidence

about employees), as the mass of these distributions seems to be shifted to the left. As

Fig. 2 shows, a similar finding holds for ]SCF as well22.

Furthermore, pooled standardized growth rates appear to follow a tent-shaped distribu-

tion, with tails fatter than those of a Gaussian one (cf. Fig. 3). Growth rate distributions

are indeed well described by a Laplace (symmetric exponential) functional form:

h(x; a, b) =
1

2a
e−

|x−b|
a , (7)

where a > 0. Tent-shaped distributions have been recently found to robustly characterize

growth rates both at an aggregated level (Stanley et al., 1996; Amaral et al., 1997) and

across different industrial sectors and countries (Bottazzi and Secchi, 2003, 2004).

The foregoing two pieces of evidence (i.e. departures from log-normality of size distribu-

tions and fatter tailed, tent-shaped, growth rate distributions) suggest that the underlying

growth-size dynamics is not well described by a simple Gibrat-type process with indepen-

dent increments. This conclusion is further reinforced by looking at how growth average

and standard deviation vary with average (within bins) firm sizes23. As already found in

22These results are also confirmed by non-parametric kernel estimates (performed using a normal kernel

with a 0.2 bandwidth) of size and ]SCF densities. Results are available from the Authors upon request.
23In this and all subsequent plots, we do not depict confidence intervals as they typically lie very close
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regression exercises, small firms seem to grow more on average, but their growth patterns

appear to be more volatile than those of larger firms. This holds true for all measures of

size (cf. Fig. 4 for the employees distribution). In fact, one typically observes a rapidly

declining pattern for both average and variance of growth rates as size increases, which

however stabilizes for larger firm size values24.

But how do liquidity constraints affect the joint size-growth distribution? To explore

this issue, we investigated how average and standard deviation of size (log ÊMP ) and

growth (ÊMP_GR) pooled distributions (as well as their correlation) change with respect

to (within-bins) averages of ]SCF 25.

Our exercises point out that — in line with regressions results — firms facing stronger

liquidity constraints are associated with lower average growth and smaller average size (cf.

Fig. 5). We also find that smaller cash flows imply more volatile growth patterns, while

no clear implications can be drawn as far as within-bins size variability is concerned (cf.

Fig. 6).

As a consequence, one observes statistically-detectable differences in both size and

growth distributions associated to strongly vs. weakly liquidity-constrained firms. As Fig.

7 (left) shows for the 1st and the 10th decile of ]SCF , less liquidity constrained firms exhibit

size distributions which are substantially shifted to the right. Once one controls for any

mean-variance shift and compares standardized size distributions (i.e. with zero-mean and

unitary variance), any statistically detectable difference disappears.

Accordingly, growth rate distributions maintain their characteristic tent-shaped pattern

but the estimated Laplace coefficient (i.e. the estimate for a in eq. 7) decreases with cash

flow: see Fig. 7 (right). Notice that a lower Laplace coefficient (i.e. a steeper Laplace fit)

might be interpreted as evidence in favor of fatter-tailed growth distributions, as long as

the variance of the distribution remains constant26. Again, a comparison of standardized

growth distributions (i.e. with zero-mean and unitary variance) associated to high vs. low

to the statistics values.
24A similar result is obtained if one splits the pooled sample of firms into “small” (e.g. those belonging

to the 1st quartile) vs. “large” ones (e.g. those belonging to the 4th quartile) and separately estimates our
preferred regression model on each sub-sample. Indeed, the LPE seems to hold for large firms but fails for
small ones. This conclusions is quite robust to alternative ways of splitting the pooled sample into large
vs. small firms.

25More formally: given the triple distribution (ÊMP_GRt, log ÊMP t−1, ]SCF t−1), we computed statis-

tics of (ÊMP_GRt, log ÊMP t−1) for each 5%-percentile of ]SCF t−1. The qualitative implications we
present in this Section are not dramatically altered if one employs non-standardized values. Notice also
that, in line with our analysis in Section 3, we do not consider further lags for our SCF variable. An interest-

ing extension would be to study the moments of the multivariate distribution (ÊMP_GRt, log ÊMP t−1,
]SCF t−1, ..., ]SCF t−d), where d ≥ 2.

26If b = 0 and X is distributed as a Laplace(a), then var(X)=2a2. Thus, smaller estimates for a imply
fatter tailed distributions only if one controls for their variance.
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cash flow levels no longer reveals statistically detectable differences: estimated Laplace

coefficients (cf. Fig. 8) are nearly constant with respect to cash flow. The same pattern

also emerges when one plots estimated Laplace coefficients against log of size (not shown).

Our data suggest that liquidity constraints do not dramatically affect the fatness of

growth-rates tails. Less liquidity-constrained firms do not enjoy high-probability (absolute

values of) large growth shocks, as compared to more liquidity-constrained ones, after one

controls for existing mean-variance trends.

Finally, growth-size correlation27 is always negative for all cash flow levels: cf. Fig. 9.

Nevertheless, the stronger liquidity constraints, the stronger the effect of size on growth.

Note also that within-bins correlation magnitudes are always significantly larger than the

non-conditioned one (i.e. correlation computed across all SCF values).

5 Liquidity Constraints and the Evolution of Size-

Growth Distributions over Time

In the last Section, we characterized some statistical properties of pooled growth and size

distributions conditioning on cash flow. We employed pooled data since we observed that,

once one controls for year-averages, size and growth distributions are almost stationary

over time. Yet, size and growth distributions do exhibit some trends in their moments, as

Table 1 shows. In this Section, we start exploring in more detail the nature of the observed

shifts in non-standardized growth, size, and SCF distributions. Next, in Section 6, we shall

investigate the effect of age on growth-size dynamics. We shall compare, in particular, the

performance of firms who were more liquidity-constrained and younger at the beginning of

our sample period with that of firms who held larger SCF and were older.

Let us begin with unconditional size, growth, and scaled cash flow (non-standardized)

distributions. Kernel estimates and statistical tests all confirm that no dramatic shifts

over time are present in our data. All size year distributions (i.e. EMPt, SALt, and V At,

t = 1995, ..., 2000) exhibit some shift to the right due to an increasing mean (due e.g.

to overall economic growth) and become slightly more concentrated and less skewed to

the right (see Fig. 10). Cash flow ratios seem to be even more stationary (cf. bottom-

right panel). Any observed shift seem however to be entirely due to changes in mean and

variance over the years and disappear when one standardizes the variables.

Similar findings are obtained for growth rate distributions. Moments of EMP_GRt,

SAL_GRt, and V A_GRt (t = 1996, ..., 2000) are almost stable across years (if any,

27Growth-size correlations computed here are not partial ones. Hence, they cannot be compared to
regression results which include other explanatory variables.
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average growth is U-shaped and growth rate standard deviations seem to decline over

time). Tent-shaped distributions emerge in all years and estimated Laplace coefficients are

nearly stable. The unique exception concerns employee growth rate distributions, which

exhibit tails becoming fatter with time. However, when one controls for mean and variance,

estimated Laplace coefficients for EMP_GRt become almost stationary over time, cf. Fig.

11.

Consider now the evolution over time of size-growth distributions conditional on one-

year lagged cash flow ratios, e.g. (EMP_GRt, EMPt−1|SCFt−1)
28. We are interested in

asking whether the evidence about the relationship between liquidity constraints and mo-

ments of size-growth distributions (e.g. average and standard deviation) that we obtained

using pooled data (see Section 4) is robust to time-disaggregation.

Our results provide a mixed answer to this question. On the one hand, average size

tends to increase in all years with cash flow (Fig. 12, top-left, for the evidence about 1996

and 2000). On the other hand, average growth rates appear to be increasing with SCF

only in 1996: as one approaches the end of our sample period, average growth rates seem

to be constant with respect to liquidity constraints (Fig. 12, bottom-left). Nevertheless,

growth rates appear to be more volatile the smaller SCF (Fig. 12, bottom-right) in every

year taken in consideration. No clear indication however emerges as to whether strongly

liquidity-constrained firms enjoy less volatile size distributions (Fig. 12, top-right).

Thus, the negative impact of liquidity constraints on firm growth, which was quite

strong in our pooled sample, becomes more ambiguous when one disaggregates across

years. We argue that an explanation for this result can be rooted in the way firms perceive

liquidity constraints over the business cycle. If we do not wash away growth trends in

the whole manufacturing sector, our data may still embed the effects of firms expectations

about the impact of sheer size and liquidity on their future investments and growth. Since

these expectations typically depend on the business cycle, one might well observe in our

data different correlation patterns between financial constraints and growth across years.

Yet, notice that many other properties which we have found in our pooled sample ro-

bustly hold also for non-standardized data across time. For example, both size and growth

distributions (conditional on SCF ) are quite stable over time. As Fig. 13 shows, size

distributions for highly and weakly liquidity-constrained firms only shift to the right as we

move from 1995 to 2000, while estimated Laplace coefficients for growth rate distributions

do not exhibit any detectable time-difference when we compare high and low cash flow

firms (cf. Fig. 14) after having controlled for their variance. In addition, the correlation

between EMP_GRt and EMPt−1 remains always negative for each t and each cash flow

28We employ SCFt−1 only because the correlation with size and growth variables typically become
almost irrelevant for SCFt−k, k > 1.
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bin. The magnitude of the size-growth correlation turns out to be larger the stronger liq-

uidity constraints are and appears to have substantially decreased in the sample period

(see Fig. 15).

6 Size, Age, Liquidity Constraints, and Firm Growth

The evidence discussed at the end of the last Section indicates that our panel of firms has

somewhat shifted over time towards a Gibrat-like growth-size dynamics. The decrease of

growth-size correlation across years is probably due to the overall growth experienced by the

whole manufacturing sector in the sampled period (on average, all firms grew by 4.3287%

from 1995 to 2000). On the one hand, evidence on pooled data suggests that small, younger,

and weakly liquidity-constrained firms should have benefited from higher growth. On the

other hand, smaller firms are typically younger but more liquidity-constrained than larger

ones. In addition, we observed that the negative correlation between liquidity-constraints

and growth may be weakened by time-disaggregation.

Thus, an interesting issue concerns whether across-years performances of firms who were

young but strongly liquidity-constrained at the beginning of the period could be larger than

that experienced by firms who were older but held large cash flows. More generally, we

are interested here in assessing whether firm age might allow us to better understand how

liquidity constraints affect size-growth patterns. In order to answer these questions, we

start by analyzing how age affects cash flow ratios, size, and growth distributions over

time.

To begin with, firm age in our dataset is log-normally distributed, as confirmed by both

density estimates - see Fig.16 - and Kolmogorov-Smirnov tests. Controlling for age only, we

find that younger firms grow more, are smaller and more liquidity-constrained as expected

(Fazzari and Athey, 1987; Cabral and Mata, 2003). Furthermore, cash flow ratios, size,

and growth rates are more variable among younger firms than among older ones29.

Suppose now to simultaneously control for age and liquidity constraints. More specifi-

cally, let us define “young” (resp. “old”) those firms who belong to the first (resp. tenth)

decile of the logAGE distribution in 199530. Accordingly, let us call “strongly liquidity-

constrained” (SLC) and, respectively, “weakly liquidity-constrained” (WLC) firms who be-

long to the first and, respectively, tenth decile of the SCF distribution in 1995. Consider

now the sub-sample of “young” and SLC firms (YSLC) - and, accordingly, the sub-sample

29More precisely, binned average (resp. standard deviation) of log of employees and log of scaled cash
flow are increasing (resp. decreasing) with respect to (within-bins) averages of log of age. Conversely,
binned growth-rates average and standard deviation are both decreasing with (within-bins) averages of log
of age.

30Incidentally, “young” firms have less than 12 years, while “old” ones have more than 42 years.
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of “old” and WLC firms (OWLC) - and let us study size and growth distributions of YSLC

and OWLC firms over time.

As Fig. 17 shows, YSLC firms grew persistently more not only than OWLC ones, but

also than firms who were just “young” in 1995. Furthermore, YSLC firms who were “small”

in 1995 (i.e. who belonged, in addition, to the first decile of the 1995 employees distribution)

experienced from 1996 to 2000 better-than-average growth rates and outperformed YSLC

firms who were “large” in 1995 (i.e. who also belonged to the tenth decile of the 1995

employees distribution). This means that, by focusing on young, cash-constrained (and

possibly small) firms, we are eliciting a sub-sample of dynamic firms who, despite (or

even thanks to) low levels of cash flow ratios, are able to enjoy high growth rates in the

subsequent periods31.

These pieces of evidence indicate that some weak catching-up process has been occurring

during 1995-2000: see Fig. 18. Indeed, YSLC firm size distributions shift to the right, while

OWLC ones are almost unchanged.

Shifts in size distributions from 1995 to 2000 are however better detectable if one

controls for age only (as the number of observations increases). Fig. 19 shows that the

distribution of “old” firms in 1995 was to the right of “young” ones (and slightly more

concentrated). Between 1995 and 2000, “young” firms grew more than “old” ones: size

distributions in 2000 are closer than in 1995 (Figs. 20 and 21). To the contrary, “old”

firms enjoyed very weak growth, as their 1995 and 2000 size distributions almost coincide

(cf. Fig. 22). Similar results can be obtained by exploring how cash flow distributions

change over time for “young” and “old” firms.

Finally, log of size distributions all depart from normality but we do not find any

statistically detectable change in their shape. Contrary to Cabral and Mata (2003), who

report (for Portuguese firms) evidence about shifts towards less skewed size distributions

over time, Italian ones (conditional on age and/or cash flow) are always well approximated

by highly skewed densities across the entire period of observation.

7 Conclusions

In this paper, we have analyzed the relationships between liquidity constraints and firm

growth dynamics for Italian manufacturing firms. Our main goal was to assess whether any

detectable departure from the “Law of Proportionate Effects” might be better explained

by taking into account the link between financial factors and growth.

31Since we are only observing surviving firms, further analyses are required to take care of any selection
effects present in our data.
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Gibrat-type regression exercises on pooled data show that liquidity constraints (as prox-

ied by cash flow scaled by firm sales) engender a negative, statistically significant, effect

on growth once one controls for sheer size. Moreover, smaller firms grow more, even when

one controls for liquidity constraints.

This evidence against the LPE is further reinforced by a statistical analysis of pooled

distributions. We find that size distributions depart from log-normality, while growth rates

are well approximated by fat-tailed, tent-shaped (Laplace) densities. Moreover, firms facing

stronger liquidity constraints grow less and experience more volatile growth patterns. The

negative impact of size on growth seems to increase in magnitude as liquidity constraints

become more severe. Growth rate distributions seem however to be quite robust to cash

flow ratios, once one controls for mean-variance shifts.

We also studied the evolution of size, growth, and scaled cash flow distributions over

time. Our exercises suggest that the magnitude of the size-growth correlation has substan-

tially decreased through time for any level of cash flow. Moreover, the negative impact

of liquidity constraints on firm growth — which we found to be quite strong in our pooled

sample — becomes more ambiguous when one disaggregates across years.

We also find that firms who were young and strongly liquidity-constrained at the begin-

ning of the sample period grew persistently more than those who were just young, and than

those who were old and weakly liquidity-constrained. Those firms turn out to be typically

small and quite dynamic entities, which are capable of experiencing high performances

despite they were highly cash-constrained at the beginning of the sample period.

Shifts to the right in size distributions for young and strongly liquidity-constrained

firms can also be detected. However, in contrast to existing literature (Cabral and Mata,

2003), size distributions remain quite skewed in the entire period.

Many interesting issues remain to be explored.

First, alternative proxies of liquidity-constraints could be considered in order to test

the robustness of our results. For example, one might attempt to study what happens

by building liquidity-constraints proxies based on firms’ financial stock variables, such as

leverage measures (Becchetti and Trovato, 2002). As an exploratory study, we performed

regression exercises where we replaced cash-flow ratios with “gearing ratios” (G), measured

by the ratio between firm’s total long term debt and short term debt towards bank and net

total assets. We find that the “gearing ratio” is significant and negative, probably because

it accounts for a sort of “risk effect”. However, if we also add to the regression our original

scaled cash-flow measure, as well as a multiplicative regressor SCF ∗ G, the latter term

turns out to be significant and positive. This means that, given two firms with similar

cash flow ratios, the one with higher gearing ratio grows more. Our data seems to support

the idea that firms with higher access to external finance grow more. Moreover, a double
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signalling effect seems to be at work: firms with higher cash-flow ratios seem to be those

with higher access to external capital.

Second, a more thorough disaggregated sectoral analysis is needed in order to ascertain

the extent to which liquidity constraints affect in idiosyncratic ways the patterns of growth

of different industries (Bottazzi, Cefis, and Dosi, 2002). For example, an interesting exercise

might involve mapping technological specificities into different properties of growth-size-

SCF dynamics.

Finally, one could try to jointly estimate investment and growth equations (and include

as independent variables size, age, and proxies for liquidity constraints) in order to better

understand the causal relations going from financial factors to growth and back. Along

these lines, building upon recent contributions by Klette and Griliches (2000), Hall (2002),

and Bougheas, Holger, and Strobl (2003), one might study the effect of financial constraints

on R&D investment and growth.
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V ariable Y ear Mean StDev V arCoeff Median Kurtosis Skewness
1995 96.01 1026.27 10.69 35.00 6897.89 77.36
1996 98.60 705.22 7.15 38.00 6459.91 70.60

EMP 1997 100.95 683.15 6.77 40.00 5707.06 65.36
1998 101.30 650.69 6.42 40.00 5280.79 62.37
1999 100.14 572.44 5.72 40.00 4439.05 55.80
2000 101.58 400.63 3.94 41.00 806.09 23.67
1995 20145.52 194548.99 9.66 6669.00 8153.74 81.48
1996 20224.12 160180.08 7.92 6800.00 6155.25 67.89

SAL 1997 22420.34 196892.42 8.78 7123.00 5611.88 64.68
1998 22856.39 186945.17 8.18 7477.00 5721.81 65.10
1999 23719.82 193310.99 8.15 7516.00 5579.45 63.93
2000 25707.81 155260.23 6.04 8245.00 1107.74 28.96
1995 5055.55 45556.89 9.01 1676.00 7162.51 75.72
1996 4978.80 28630.23 5.75 1739.00 2393.64 40.68

V A 1997 5479.97 40985.14 7.48 1776.00 3592.83 52.64
1998 5527.24 33573.26 6.07 1840.00 1887.94 37.58
1999 5658.97 32799.82 5.80 1895.00 2031.77 38.27
2000 6011.42 36595.92 6.09 1987.00 3682.48 49.43
1995 1397.81 17971.56 12.86 323.00 5076.67 63.38
1996 1222.26 12462.08 10.20 317.00 4182.24 52.82

CF 1997 1473.15 30412.31 20.64 316.00 8549.94 82.34
1998 1445.30 20350.60 14.08 324.00 9696.49 89.39
1999 1600.97 26633.23 16.64 348.00 10924.46 98.24
2000 2140.89 45365.32 21.19 353.00 7524.51 81.42
1995 0.07 0.33 4.57 0.05 10603.81 96.88
1996 0.07 0.42 6.19 0.05 12628.96 109.56

CF/SAL 1997 0.06 0.13 2.05 0.05 5490.84 62.15
1998 0.06 0.08 1.33 0.05 3606.24 18.02
1999 0.07 0.08 1.21 0.05 4494.65 14.82
2000 0.05 0.43 9.09 0.04 2844.92 17.77
1996 0.12 0.30 0.41 0.09 84.90 3.15
1997 0.03 0.24 0.14 0.02 70.32 1.20

EMP_GR 1998 0.00 0.29 0.01 0.00 56.54 −3.39
1999 −0.06 0.48 −0.12 0.00 19.87 −1.95
2000 0.04 0.68 0.05 0.04 13.89 −1.07
1996 0.03 0.32 0.11 0.02 82.76 3.59
1997 0.04 0.26 0.17 0.04 122.06 4.08

SAL_GR 1998 0.04 0.23 0.18 0.04 44.81 0.43
1999 0.01 0.24 0.04 0.01 47.59 0.23
2000 0.07 0.32 0.22 0.09 68.86 −4.22
1996 0.05 0.35 7.32 0.04 38.08 1.63
1997 0.03 0.30 9.11 0.03 63.11 1.26

V A_GR 1998 0.03 0.29 9.08 0.04 32.14 -0.67
1999 0.03 0.31 11.64 0.03 36.93 0.02
2000 0.03 0.39 13.25 0.05 41.41 -2.76

AGE 1995 27.93 83.83 0.33 21.00 533.58 22.81

Table 1: Summary Statistics for Non-Standardized Data. EMP = Employees. SAL =
Sales. VA = Value-Added. CF = Cash Flow. GR = Growth Rate. N = 14277 Firms
observed.
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2000 SAL V A CF CF/SAL
EMP 0.7716 0.7270 0.4071 0.0152
SAL ∗ 0.7104 0.4905 0.0140
V A ∗ ∗ 0.8171 0.0314
CF ∗ ∗ ∗ 0.0444

1999 SAL V A CF CF/SAL
EMP 0.8921 0.8418 0.2626 0.0333
SAL ∗ 0.7689 0.2716 0.0171
V A ∗ ∗ 0.6983 0.1025
CF ∗ ∗ ∗ 0.1488

1998 SAL V A CF CF/SAL
EMP 0.9135 0.8503 0.2603 0.0328
SAL ∗ 0.8489 0.3968 0.0126
V A ∗ ∗ 0.6691 0.0490
CF ∗ ∗ ∗ 0.1457

1997 SAL V A CF CF/SAL
EMP 0.8957 0.8848 0.3426 0.0211
SAL ∗ 0.9121 0.5444 0.0126
V A ∗ ∗ 0.7065 0.0381
CF ∗ ∗ ∗ 0.0689

1996 SAL V A CF CF/SAL
EMP 0.9234 0.9316 0.3990 0.0153
SAL ∗ 0.8892 0.4541 0.0004
V A ∗ ∗ 0.4557 −0.0120
CF ∗ ∗ ∗ 0.7136

1995 SAL V A CF CF/SAL
EMP 0.8273 0.8455 0.7443 0.0122
SAL ∗ 0.9544 0.8524 0.0013
V A ∗ ∗ 0.8813 −0.0066
CF ∗ ∗ ∗ 0.3591

Table 2: Correlation Structure. Contemporaneous Distributions of Size Measures and Cash
Flow.
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2000-1999 EMP SAL VA CF CF/SAL
EMP * 0.7340 0.8351 0.2934 0.0541
SAL 0.7670 * 0.7825 0.3645 0.0360
VA 0.6321 0.5748 * 0.8232 0.1238
CF 0.4778 0.4999 0.7727 * 0.1126

CF/SAL 0.0126 0.0109 0.0290 0.0293 *

1999-1998 EMP SAL VA CF CF/SAL
EMP * 0.9092 0.8598 0.2747 0.0362
SAL 0.8951 * 0.7669 0.2631 0.0638
VA 0.8304 0.8273 * 0.6897 0.0729
CF 0.2574 0.3767 0.6550 * 0.0798

CF/SAL 0.0313 0.0298 0.0950 0.1350 *

1998-1997 EMP SAL VA CF CF/SAL
EMP * 0.8939 0.8889 0.3463 0.0214
SAL 0.9120 * 0.9050 0.4993 0.0133
VA 0.8358 0.8373 * 0.6364 0.0437
CF 0.2476 0.4225 0.6441 * 0.0609

CF/SAL 0.0344 0.0217 0.0544 0.0689 *

1997-1996 EMP SAL VA CF CF/SAL
EMP * 0.9190 0.9372 0.4610 0.0786
SAL 0.8799 * 0.8315 0.6252 0.2490
VA 0.8453 0.8230 * 0.7791 0.4807
CF 0.2855 0.3202 0.2238 * 0.8524

CF/SAL 0.0186 0.0070 0.0330 0.0597 *

1996-1995 EMP SAL VA CF CF/SAL
EMP * 0.9057 0.9506 0.8183 0.0160
SAL 0.8062 * 0.9413 0.8267 0.0032
VA 0.7335 0.8281 * 0.7433 -0.0072
CF 0.3442 0.4511 0.4746 * 0.6858

CF/SAL 0.0113 0.0012 -0.0096 0.3661 *

Table 3: One-Year Lagged Correlations

Obs Mean Std.Dev. Skewness Kurtosis
EMP_GR 71380 0.0394 0.2221 0.8963 26.3321
Log(EMP ) 71382 0.0346 1.2921 −0.7437 2.7124
SAL_GR 71385 0.0387 0.3270 0.7696 65.8774
Log(SAL) 71385 −0.9723 1.0460 1.0193 5.5047
V A_GR 70767 0.0461 0.3192 0.1655 45.6623
Log(V A) 71091 −0.9778 1.1791 0.7668 5.8549
Log(CF ) 71385 −1.1187 1.6984 0.7474 4.8691
CF/SAL 71215 0.8956 3.4897 154.0042 28210.68

Table 4: Summary Statistics for Year-Standardized Pooled Variables

Corr EMP_GR Log(EMP ) SAL_GR Log(SAL) V A_GR Log(V A) Log(CF )
Log(EMP ) −0.1150 1.0000 ∗ ∗ ∗ ∗ ∗

SAL_GR 0.2674 −0.0182 1.0000 ∗ ∗ ∗ ∗

Log(SAL) 0.0029 0.7604 −0.0942 1.0000 ∗ ∗ ∗

V A_GR 0.2498 −0.0349 0.5409 −0.0575 1.0000 ∗ ∗

Log(V A) −0.0077 0.9016 −0.0465 0.8647 −0.1293 1.0000 ∗

Log(CF ) 0.0263 0.6778 −0.0295 0.7543 −0.0481 0.8240 1.0000
CF/SAL 0.0276 0.1143 0.1247 0.0197 0.0430 0.1837 0.4111

Table 5: Correlation Matrix for Year-Standardized Pooled Variables
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Regressors 1st step 2nd step
Dropped LR test R2 LR test R2

log(EMPi,t−1) 750.84** 0.0095 830.73** 0.0070
(0.0000) (0.0000)

CFi,t−1/SALi,t−1 9.21** 0.0226 9.52** 0.0214
(0.0024) ( 0.0020)

log(AGEi) 2.19 0.0225 Dropped in 1st step
(0.1388)

log2(EMPi,t−1) 533.76** 0.0132 573.90** 0.0115
(0.0000) (0.0000)

log2(AGEi) 0.32 0.0226 Dropped in 1st step
( 0.5689)

CFi,t−2/SALi,t−2 8.62** 0.0224 9.26** 0.0214
(0.0033) ( 0.0023)

Dsubs Yes** Yes**
Dind Yes** Yes**
Dtime Yes** Yes**

Table 6: Model Selection. Results of the Likelihood Ratio Test Procedure. Each row
reports the results of the LR test for the null hypothesis: “Drop from the saturated model
(i.e. the model containing all regressors not previously dropped) the regressor indicated in
the first column”. A double (single) asterisk associated to the LR test value indicates that
the regressor must NOT be dropped at 5% (10%).
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Regressors Dependent Variable: EMP_GR

log(EMPi,t−1) -0.0302** -0.0306** -0.0278** -0.1413** -0.1361** -0.1349** -0.1175**
(0.0009) (0.0009) (0.0009) (0.0036) (0.0037) (0.0037) (0.0043)

CFi,t−1/SALi,t−1 - 0.0358** 0.0348** 0.0336** 0.0329** 0.0327** 0.0186**
(0.0040) (0.0040) (0.0040) (0.0020) (0.0040) (0.0061)

log(AGEi) - - -0.0242** - -0.0190** -0.0722** -0.0276
(0.0020) (0.0020) (0.0164) (0.0186)

log2(EMPi,t−1) - - - 0.0141** 0.0137** 0.0136** 0.0120**
(0.0004) (0.0004) (0.0004) (0.0005)

log2(AGEi) - - - - - 0.0086** 0.0017
(0.0026) (0.0030)

CFi,t−2/SALi,t−2 - - - - - - 0.0146**
(0.0050)

Dsubs Yes** Yes** Yes** Yes** Yes** Yes** Yes*
Dind Yes** Yes** Yes** Yes** Yes** Yes** Yes*
Dtime Yes** Yes** Yes** Yes** Yes** Yes** Yes*

Obs 71380 71380 71380 71380 71380 71380 57105
R2 0.0183 0.0195 0.0214 0.0335 0.0346 0.0347 0.0226

F-test 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table 7: Model Selection. Results of the R2 Procedure. Standard Errors in parentheses.
In boldface our preferred model. A double (single) asterisk indicates significance at 5%
(10%).
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Figure 1: Moments of log(EMPi,t/EMP i,t) distribution against time.
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Figure 2: Pooled (Year-Standardized) Employees (Left) and CF/Sales (Right) Distribu-
tions. Log Rank vs. Log Size Plots.
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Figure 4: Mean and Standard Deviation
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erage log(Size). Bins computed as 5-
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Figure 5: Mean of Pooled (Year-Std) Size (Left) and Growth Rates (Right) Distributions
as a Function of (Within-Bins) Average CF/Sales. Bins computed as 5-percentiles.

28



0.98

1.00

1.02

1.04

1.06

1.08

1.10

1.12

1.14

1.16

1.18

0.00 0.50 1.00 1.50 2.00

Mean of CF/Sales

S
td

. 
D

ev
. 
of

 L
og

(E
m

p
lo

y
ee

s)

0.15

0.17

0.19

0.21

0.23

0.25

0.27

0.29

0.31

0.33

0.35

0.00 0.50 1.00 1.50 2.00

Mean of CF/Sales

S
td

. 
D

ev
. 
o
f 
E

m
p
lo

y
ee

s 
G

R

Figure 6: Standard Deviation of Pooled (Year-Std) Size (Left) and Growth Rates (Right)
Distributions as a Function of (Within-Bins) Average CF/Sales. Bins computed as 5-
percentiles.
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Figure 7: Pooled Log of Employees (Left) and Employees Growth Rate (Right) distribu-
tions conditional to CF/Sales. Strong Liquidity Constraints (LC) means CF/Sales in the
1st Decile. Weak Liquidity Constraints (LC) means CF/Sales in the 10th Decile.
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Figure 8: Estimated Laplace Coeffi-
cients for Laplace Fit of Employees
Growth Rates (Zero-Mean, Unitary Vari-
ance) Conditional on (Within-Bins) Aver-
ages of CF/Sales. Bins computed as 5-
percentiles.
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Figure 9: Correlation between
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Averages of CF/Sales. Bins computed as
5-percentiles.
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Figure 10: Non Parametric Kernel Density Estimates of Non-Standardized Size and
CF/Sales Distributions. Top-Left: Employees. Top-Right: Sales. Bottom-Left: Value
Added. Bottom-Right: CF/Sales (Log Scale). Kernel Density Estimates are performed
employing a Normal Kernel and a 0.2 Bandwidth.
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Figure 12: Average and Standard Deviation of Employee Size and Growth Year Distri-
butions conditioned on (Within-Bins) Averages of (1-year Lagged) CF/Sales. Top-Left:
Average of Log of Employees. Top-Right: St.Dev. of Log of Employees. Bottom-Left:
Average of Employees GR. Bottom-Right: St.Dev. of Employees GR. Bins computed as
5-percentiles.
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Figure 13: Non Parametric Kernel Den-
sity Estimation of Log of Employees Year
Distributions conditional on CF/Sales.
Strong Liquidity Constraints (LC) means
CF/Sales in the 1st Decile. Weak Liquid-
ity Constraints (LC) means CF/Sales in
the 10th Decile. Kernel Density Estimates
are performed employing a Normal Kernel
and a 0.2 Bandwidth.
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Figure 14: Estimated Laplace Coef-
ficients for Laplace Fit of Employees
Growth Rates Distributions conditional
on CF/Sales.
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Figure 15: Correlation between Employees Growth Rate at time t and Size Distributions
at time t− 1, conditional on CF/Sales at time t− 1. Bins computed as 10-percentiles.
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Figure 16: Non Parametric Kernel Density Estimation of Log of Age Distribution. Normal
fit shown as dotted line. Kernel Density Estimates is performed employing a Normal Kernel
and a 0.2 Bandwidth.
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Figure 17: Average of Growth Rates Distributions Conditioned on Age, CF/Sales, and Size
in 1995. YSLC: Young Firms with Small CF/Sales (1st Decile). OWLC: Old Firms with
Large CF/Sales (10th Decile). Small (Large) Firms: Firms within the 1st (10th) Decile of
1995 Employees Distribution.
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Figure 18: Non Parametric Kernel Density Estimation of Log of Employees Distributions
over Time. Left: YSLC Firms. Right: OWLC Firms. YSLC: Young Firms (1st Decile)
with Small CF/Sales (1st Decile). OWLC: Old Firms (10th Decile) with Large CF/Sales
(10th Decile). Normal Kernel. Bandwith=0.2
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Figure 19: Non Parametric Kernel Den-
sity Estimation of Log of Employees Dis-
tribution. Young Firms vs. Old Firms
in 1995. Young Firms: Firms in the 1st
Decile. Old Firms: Firms in the 10th
Decile. Normal Kernel. Bandwith=0.2
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Figure 20: Non Parametric Kernel Den-
sity Estimation of Log of Employees Dis-
tribution. Young Firms vs. Old Firms
in 2000. Young Firms: Firms in the 1st
Decile. Old Firms: Firms in the 10th
Decile. Normal Kernel. Bandwith=0.2
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Figure 21: Non Parametric Kernel Den-
sity Estimation of Log of Employees Dis-
tribution. Young Firms in 1995 and 2000.
Young Firms: Firms in the 1st Decile. Old
Firms: Firms in the 10th Decile. Normal
Kernel. Bandwith=0.2
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Figure 22: Non Parametric Kernel Den-
sity Estimation of Log of Employees Dis-
tribution. Old Firms in 1995 and 2000.
Young Firms: Firms in the 1st Decile. Old
Firms: Firms in the 10th Decile. Normal
Kernel. Bandwith=0.2
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