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Do little interactions get lost in dark
random forests?
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Abstract

Background: Random forests have often been claimed to uncover interaction effects. However, if and how
interaction effects can be differentiated from marginal effects remains unclear. In extensive simulation studies, we
investigate whether random forest variable importance measures capture or detect gene-gene interactions. With
capturing interactions, we define the ability to identify a variable that acts through an interaction with another one,
while detection is the ability to identify an interaction effect as such.

Results: Of the single importance measures, the Gini importance captured interaction effects in most of the
simulated scenarios, however, they were masked by marginal effects in other variables. With the permutation
importance, the proportion of captured interactions was lower in all cases. Pairwise importance measures performed
about equal, with a slight advantage for the joint variable importance method. However, the overall fraction of
detected interactions was low. In almost all scenarios the detection fraction in a model with only marginal effects was
larger than in a model with an interaction effect only.

Conclusions: Random forests are generally capable of capturing gene-gene interactions, but current variable
importance measures are unable to detect them as interactions. In most of the cases, interactions are masked by
marginal effects and interactions cannot be differentiated from marginal effects. Consequently, caution is warranted
when claiming that random forests uncover interactions.
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Background
Random forests have often been claimed to uncover inter-
action effects [1–8]. This is deduced from the recur-
sive structure of trees, which generally enables them to
take dependencies into account in a hierarchical man-
ner. Specifically, a different behavior in the two branches
after a split indicates possible interactions between the
predictor variables [9]. However, some variable combi-
nations without clear marginal effects might make the
tree algorithm ineffective (see Fig. 1). In particular in
random forests, it is difficult to differentiate between a
real interaction effect, marginal effects and just random
variations.
To investigate how random forests deal with interaction

effects, we are interested in two aspects. For the first, we
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consider an example reported in the studies by Droździk
et al. [10] and Zschiedrich et al. [11] on a polymorphism
in theMDR1 gene as a susceptibility factor for Parkinson’s
disease. Only a very small marginal genetic effect was
shown, but there was a significant interaction between the
variant and pesticide exposure on disease risk. Hence, it is
of interest whether this genetic variant would nonetheless
be identified as a predictor in random forests. If a vari-
able is identified by the random forest that contributes to
the classification with an interaction effect, this interac-
tion effect is captured by the model. The second aspect is
whether random forests are able to identify the interaction
effect per se and the predictor variables interacting with
each other. We will use the term detect for this in the fol-
lowing. Many authors argue that random forests capture
interactions [1–5], while others even state that they iden-
tify, uncover or detect them [6–8]. However, empirical
studies are rare.
It has been shown that variable importance measures

are, in principle, suitable to capture interactions [12, 13].
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Fig. 1 Problematic splits for classification trees and random forests. In (a) no reasonable first split on the variables x1 or x2 can be made. However,
two subsequent splits on x1 and x2 split the data perfectly. In (b), again no reasonable first split is possible, even though the classes are linear
separable. Both the variables x1 or x2 have to be considered simultaneously and even with several subsequent splits on x1 and x2, no accurate
classification is possible

However, current methods seem to fail in high dimen-
sional data [14], and the effect of various different inter-
action models on importance measures has not been
investigated. To detect interactions, the standard variable
importance measures of random forests, Gini and permu-
tation importance, are by design not suitable. Therefore,
different methods specifically designed to detect effects
of pairs of variables in random forests were proposed
[15–17]. These methods measure a joint variable impor-
tance to rank variable pairs by their interaction effects.
The efficacy of these approaches has only been inves-
tigated in small simulations and without considering
marginal effects or different interaction scenarios.
In an extensive simulation study, we therefore investi-

gate whether random forests variable importance mea-
sures capture or detect interactions effects. In the first
part, the Gini and permutation variable importance mea-
sures are used to capture interaction effects between
single nucleotide polymorphisms (SNPs). Since these
methods cannot detect interaction effects, we consider
only the pairwise importancemeasures in the second part,
in which we focus on the detection of interacting SNPs.
In our simulation, we consider various interaction mod-
els, vary effect sizes, minor allele frequencies (MAF) and
the number of SNPs randomly selected as splitting can-
didates (mtry). Even though SNPs are used as predictive
variables, all results naturally generalize to other kinds of
categorical data.

Methods
Random forests
Detailed descriptions of random forests are available in
the original [18] and more recent literature [19, 20]. In
brief, random forests are ensembles of decision trees.
Depending on the outcome, trees can be classification or
regression trees (CARTs) [21], survival trees [22] or prob-
ability estimation trees (PETs) [23], among others. For

random forests, a number of trees are grown that differ
because of two components. First, each tree is based on a
prespecified number of bootstrap samples or subsamples
of individuals. Second, only a random subset of the vari-
ables is considered as splitting candidates at each split in
the trees. To classify a subject in the random forest, the
results of the single trees are aggregated in an appropri-
ate way, depending on the type of random forest. A great
advantage of random forests is that the bootstrapping
or subsampling for each tree yields subsets of observa-
tions, termed out-of-bag (OOB) observations, which are
not included in the tree growing process. These are used
to estimate the prediction performance or variable impor-
tance. There are two specifically important parameters to
random forests: The number mtry of randomly selected
splitting candidates is usually kept fixed for all splits. In
most implementations, the default value for mtry is √p,
where p is the number of variables in the dataset. How-
ever, for datasets with a large number of variables, a larger
value is required to capture more relevant variables [3].
Typically, mtry is tuned, e.g. by comparing the predic-
tion performance of several values using cross validation.
Another important parameter of random forests is the size
of single trees. This size is usually controlled by stopping
the tree growth if a minimal terminal node size is reached.
For regression and survival outcomes, the terminal node
size is usually tuned together with the mtry value, while
for classification the trees are grown to purity.

Gini importance
The standard splitting rule in random forests for classifi-
cation outcomes is to maximize the decrease of impurity
that is introduced by a split. For this, the impurity is typ-
ically measured by the Gini index [21]. Since a large Gini
index suggests a large decrease of impurity, a split with
large Gini index can be considered to be important for
classification. Thus, the Gini importance for a variable xi
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in a tree can be computed by summing the Gini index val-
ues of all nodes in which a split on xi has been conducted.
The average of all tree importance values for xi is then
termedGini importance of the random forest for xi. In our
simulation studies, the R package ranger [24] was used
to compute the Gini importance.

Permutation importance
The basic idea of the permutation variable importance
approach [18] is to consider a variable important if it has
a positive effect on the prediction performance. To evalu-
ate this, a tree is grown in the first step, and the prediction
accuracy in the OOB observations is calculated. In the
second step, any association between the variable of inter-
est xi and the outcome is broken by permuting the values
of all individuals for xi, and the prediction accuracy is
computed again. The difference between the two accuracy
values is the permutation importance for xi from a single
tree. The average of all tree importance values in a random
forest then gives the random forest permutation impor-
tance of this variable. The procedure is repeated for all
variables of interest. The package ranger [24] was used
in our analyses.

Pairwise permutation importance (PPI)
To measure the permutation importance for a pair of
variables, a modification of the permutation importance
was proposed [15]. Instead of permuting a single variable,
two variables xi and xj are permuted simultaneously. As
for the standard permutation importance, the difference
in prediction accuracy with and without permutation is
computed and used as importance value for the respec-
tive pair of variables. This procedure is repeated for all
variable pairs of interest. Here, usually, only a subset of
the variable pairs is selected to reduce runtime. Although
the concept could easily be extended to higher orders of
interaction, this would lead to high computational costs.
Originally, the approach was implemented in FORTRAN
77 [15]. For easier usage and higher computational speed,
we included the PPI measure in the R package ranger
[24] (see Additional file 1 for a version including this
measure).

Joint importance by maximal subtrees (JMST)
The joint importance by maximal subtrees measure ([17],
JMST) is based on maximal subtrees introduced by
Ishwaran et al. [16]. For this, any subtree of the original
tree is called an xi-subtree if the root node is split by xi. A
subtree is a maximal subtree if it is not a subtree of a larger
xi-subtree. It can now be assumed that variables with sub-
trees closer to the root node have a larger impact on the
prediction and are therefore more important than oth-
ers. The distance of the maximal subtree to the root node
is termed the minimal depth of a variable and gives the

importance value. For interactions, second-ordermaximal
(xj, xi)-subtrees are used that are defined as the maximal
xj-subtree within a maximal xi-subtree. Here, the mini-
mal depth is the distance of the maximal (xj, xi)-subtree
to the root of the maximal xi-subtree. For the simulation
studies, the find.interaction function of theR pack-
age randomForestSRC [25] was used with the option
maxsubtree. A matrix with normalized minimal depths
for all pairs of variables of interest is returned. Since we
are interested in two-way interactions, we used the aver-
age of the minimal depths of (xj, xi) and (xi, xj)-subtrees to
compute the joint importance of xi and xj.

Joint variable importance (JVIMP)
For the joint variable importance measure ([16], JVIMP),
maximal subtrees are utilized again. As in permutation
importance, the association between a variable xi and the
outcome is broken by randomization. However, instead
of permuting the variable, a so-called noise-up procedure
is employed: Each observation is dropped down the tree
until a maximal xi-subtree is reached. From then on, all
further splits are replaced by random child node assign-
ments. This is repeated for all trees. The importance of
variable xi is now measured by the difference between
the OOB prediction accuracy of the noised-up forest and
the original forest. For pairs of variables xi and xj, the
random assignments start as soon as a maximal subtree
of xi or xj is reached. The importance of the interac-
tion effect of xi and xj is computed by the difference of
the sum of both single importance values (additive effect)
and the joint importance value (pairwise effect). The
find.interaction function of randomForestSRC
[25] was used with the option vimp.

Genetic interaction models
We considered two-way interactions between two SNPs
based on 5 interaction models. The models were adopted
from Lanktree & Hegele [26] but modified for gene-gene
instead of gene-environment interactions and illustrated
in Fig. 2. First, in Interaction only, both SNPs have no
marginal effects, i.e. an odds ratio (OR) of 1, but an inter-
action effect. Second, in Modifier SNP, only one SNP has
a marginal effect, but the increase for the combination
of both is larger than would be expected from marginal
effects only. In No interaction, both SNPs have marginal
effects, but there is no additional interaction effect. In the
Redundant model, both SNPs have marginal effects, but
the combination leads to no further increase in the OR.
Finally, in Synergistic, both SNPs have a marginal effect
and an additional interaction effect in the same direction.

Simulation studies
Based on these 5 interaction models, data was simu-
lated with varying effect sizes for the interaction effects
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Fig. 2 Interaction models. Odds ratios for different interaction models, depending on a variant at the first SNP only, the second SNP only or at both
SNPs. If both SNPs have no marginal effect, i.e. an odds ratio of 1, but an effect if variants are present at both SNPs, the model is called Interaction
only. If only one SNP has a marginal effect and the combined effect is larger than the single marginal effect, the SNP without marginal effect is a
Modifier SNP. In No interaction both SNPs have a marginal effect but no additional combined effect. In this example both SNPs have an odds ratio of
1.5 and the combined effect is exactly 1.52 = 2.25. If both SNPs have a marginal effect and the combined effect is as large as each single marginal
effect, the marginal effects do not add up and we call the model Redundant. If both SNPs have a marginal effect and the combined effect is larger
than expected by the marginal effects only, it is a Synergisticmodel

and marginal effects and different MAF values. In each
dataset, two interacting SNPs with marginal and/or inter-
action effects depending on the interaction model, 5
marginal-only SNPs and 93 noise SNPs were generated.
Data was simulated with a sample size of 1000. The phe-
notypes were simulated with additive effects and logit
models, depending on the interaction model (Table 1).
The effects were chosen out of βM = (0.4, 0.8) and
βI = (0.4, 0.8), for marginal and interaction effects,
respectively. The baseline β0 was chosen to generate an
approximate equal number of cases and controls for each
scenario. The MAF was MAFM = (0.2, 0.4) and MAFI =
(0.2, 0.4) for the marginal effect and interaction SNPs,
respectively. For the noise SNPs, the MAF was drawn
from a uniform distribution between 0 and 1. All simu-
lation parameters are presented in Table 2. The resulting

Table 1 Logit model generation

Interaction model SNP1 SNP2 SNP1 x SNP2

Interaction only 0 0 βI

Modifier SNP 0 βI βI

No interaction βI βI 0

Redundant βI βI −βI

Synergistic βI βI βI

In the simulation studies, 2 interacting SNPs and several SNPs having only marginal
effects or no effects (noise SNPs) were generated. The phenotypes were simulated
with additive effects and logit models. The interacting SNPs have marginal and/or
interaction effects, depending on the genetic model. All effects of the interacting
SNPs are generated from a single coefficient βI . The table shows marginal effects of
SNP1 and SNP2 and the interaction effect. If variants at both SNPs are present, the
resulting effect is the sum of the marginal effects and the interaction effect. The
baseline β0 was chosen to generate an approximate equal number of cases and
controls for each scenario

penetrance table for βI = 0.4 and MAFI = 0.4 is shown
in Table 3 for the Interaction only model, the penetrance
tables for all other interaction models and scenarios are
given in the Additional file 2 (Tables S1–S20).
To study the influence of the fixed parameters, we fur-

ther simulated datasets where the number of marginal-
only SNPs was reduced to 2 and datasets where the
number of noise SNPs was increased to 2493. In both
cases, the effects were fixed to βM = βI = 0.4 and the
MAF toMAFM = MAFI = 0.2. To investigate the impact
of linkage disequilibrium (LD), we simulated LD struc-
tures based on data from phase 3 of the 1000 genomes
project [27]. A random region on chromosome 22 was
chosen, and 1000 SNPs without missing data and a MAF
between 0.05 and 0.2 were selected. The mean pairwise
LD between these SNPs was D′ = 0.69 (SD 0.35) and
the correlation r2 = 0.14 (SD 0.23). For each simulated
dataset, 100 SNPs were randomly selected out of these
region, and new data with LD structure was simulated
using HapSim [28]. Effects of βM = βI = 0 and all com-
binations of βM = (0.4, 0.8) and βI = (0.4, 0.8) were
simulated.
On each dataset, random forests with 500 trees each

were grown with a varying number of SNPs randomly
selected as splitting candidates (mtry value), chosen
from (10, 50). To investigate the capture of interacting
SNPs, two measures of importance for single variables
were computed in the first part, the Gini importance
and the permutation importance. Second, to investigate
the detection of interactions, we computed the pairwise
importance measures PPI [15], JMST [17] and JVIMP
[16]. In total, 800 simulation scenarios were analyzed, and
for each scenario, we ran 100 replications. Using every
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Table 2 Simulation parameters

Parameter Description Values

βM Effect of marginal-only SNPs 0.4, 0.8

βI Interaction effect (see Table 1) 0.4, 0.8

MAFM Minor allele frequencies for marginal-only SNPs 0.2, 0.4

MAFI Minor allele frequencies for interacting SNPs 0.2, 0.4

mtry Number of SNPs randomly selected as splitting candidates 10, 50

All combinations of these parameters were simulated. The interaction models Interaction only,Modifier SNP, No interaction, Redundant and Synergistic (see Fig. 2) were
considered. As variable importance measures, we determined the Gini importance, permutation importance, pairwise permutation importance, joint importance by maximal
subtrees and joint variable importance, resulting in a total of 800 simulation scenarios. In addition, one simulation with only 2 marginal-only SNPs and one simulation with
2493 noise SNPs was performed. In both cases,mtry = 50, βM = βI = 0.4 andMAFM = MAFI = 0.2 was set. Finally, a simulation with simulated linkage disequilibrium was
performed, see theMethods section for a description. All simulation scenarios were replicated 100 times

importance measure, the variables were ranked, and the
ranks of the true interaction SNPs or, in case of the pair-
wise measures, their combination were saved. Inspired by
Lunetta et al. [12] and McKinney et al. [29], the propor-
tion of replicates in which both true interaction SNPs were
among the top k ranks is plotted for k = 2, . . . , 10 for
the single variable importance measures. A high value for
k = 2 means that the interacting SNPs are ranked before
all other SNPs and the interaction is captured by the ran-
dom forest. High values for k = 3, . . . , 10 indicate that
the interaction is still captured, but masked by marginal
effects or noise.
For the pairwise measures, we plot the proportion of

replicates in which the combination of the true interact-
ing SNPs was among the top k ranks for k = 1, . . . , 10.
To make the analyses computationally feasible, combi-
nations containing noise SNPs were excluded from the
ranking. Here, a high value for a small k indicates a high
proportion of detection of the true interaction, with the
exception of the No interaction model, where the interac-
tion effect is 0 and any detection would be a false positive
result. To compare the ranking of the interacting SNPs
with the marginal-only SNPs the proportion of replicates,
in which the single variable importance measures ranked
the 5 marginal-only SNPs among the top k ranks is shown
for k = 5, . . . , 15. For the pairwise importance measures,

Table 3 Penetrance table for model Interaction only, βI = 0.4,
MAFI = 0.4. A1 and B1 represent the major alleles and A2 and B2
the minor alleles

SNP 1

A1A1 A1A2 A2A2

B1B1 0.35 0.35 0.35

SNP 2 B1B2 0.35 0.44 0.54

B2B2 0.35 0.54 0.72

Compared with Table 1 it can be seen that a variant at both SNPs is required for a
penetrance larger than the baseline of 0.35. Since the phenotype is simulated with
an additive model, the penetrance is increased if two minor alleles are present at
one SNP. The penetrances for other models and parameters are computed
analogously and are shown in Tables S1–S20 (Additional file 2)

the proportion of replicates, in which all 10 combinations
of marginal-only SNPs are among the top k pairs, is shown
for k = 10, . . . , 20. Replication code for all simulation
studies is included in Additional file 3.

Results
Capturing interaction effects by single variable importance
measures
The results for the single variable importance measures
and mtry = 50 are shown in Fig. 3. The Gini impor-
tance ranked the interacting SNPs generally higher than
the permutation importance. However, the results varied
greatly, depending on the interaction model, the simula-
tion scenario and the importance measure. For moder-
ate interaction and marginal effects and equal MAF for
interacting and marginal-only SNPs (Fig. 3a), the inter-
acting SNPs were ranked in the top 7 by Gini impor-
tance in almost all cases. Comparison with the ranking of
marginal-only SNPs (Figure S49, Additional file 4) reveals
that most of the other top ranked SNPs were marginal-
only. However, some noise SNPs were also included. With
permutation importance, the fraction of captured interac-
tions was generally low, except in the Synergistic model.
Both importancemeasures achieved a higher capture frac-
tion in No interaction than in Interaction only, which
was expected, since these measures were not designed
to detect interactions. When the MAF of the interact-
ing SNPs was increased (Fig. 3b), the capture fraction
was higher for both importance measures and all inter-
action models, except for permutation importance and
the Redundant model, where the interacting SNPs were
almost never ranked in the top 10 SNPs. If instead the
MAF of the marginal-only SNPs was increased (Figure S3,
Additional file 4), the Gini importance ranked the inter-
acting SNPs between the marginal-only and the noise
SNPs in almost all cases. For permutation importance,
the results were mostly unchanged. If the effect size of
the marginal-only SNPs was increased (Fig. 3c), the Gini
importance again ranked the interacting SNPs between
the marginal-only and the noise SNPs in almost all cases,
while the capture fraction of the permutation importance



Wright et al. BMC Bioinformatics  (2016) 17:145 Page 6 of 10

a

b

c

d
Fig. 3 Simulation results for single variable importance measures. On the vertical axis, the proportion of simulation replications in which both
interacting SNPs were included in the top k SNPs according to the ranking by the variable importance measures is shown. On the horizontal axis,
the number of k top SNPs considered is shown. If the importance measure included both interacting SNPs in the top k SNPs, they were captured. In
(a) to (d), different simulation scenarios are shown. The parameters βI and βM correspond to the effects of the interacting SNPs and marginal-only
SNPs, respectively.MAFI andMAFM are the minor allele frequencies of the corresponding SNPs. See Figures S1–S24 (Additional file 4) for results of all
simulation scenarios for the single variable importance measures

was very low, except for the Synergistic model. If the
effect size of the interacting SNPs was increased (Fig. 3d),
the capture fraction was generally higher compared with
Fig. 3a, in particular for the permutation importance. If
MAF and effect sizes were modified at the same time, the

described effects added up (Figures S5–S12, Additional
file 4). For mtry = 10, which is the default value in
most random forests implementations, the capture frac-
tion was generally lower (Figures S13–S24, Additional
file 4). If the number of marginal-only SNPs was reduced
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to 2 (Figure S97, Additional file 4), the results were mostly
similar, except that, as expected, the interacting SNPswere
ranked on average 3 ranks higher. If the number of SNPs
was increased to 2500 (Figure S98, Additional file 4) and
in the case of LD (Figures S99–S103, Additional file 4),
the capture fraction was low with both importance mea-
sures. In the simulation with LD, the permutation impor-
tance ranked the interacting SNPs higher in most of the
scenarios.

Detecting interaction effects by pairwise variable
importance measures
The results for the pairwise variable importance measures
and mtry = 50 are shown in Fig. 4. The detection
fraction was low in all models. The difference between
the methods were generally smaller than for the single
variable importance measures. For moderate interaction
and marginal effects and equal MAF for interacting and
marginal-only SNPs (Fig. 4a), the importance measures
were about equal, except for Redundant, where JVIMP
was slightly higher, and for Synergistic, where it was lower.
Remarkably, with all importance measures, the detection
in No interaction was higher than in Interaction only.
When the MAF of the interacting SNPs was increased
(Fig. 4b), the detection increased for all models, except
for Redundant, where it was lower for JMST and PPI and
unchanged for JVIMP. In Interaction only, the increase
was largest, and for JVIMP, the detection was higher than
in No interaction. If instead the MAF of the marginal-
only SNPs was increased (Figure S27, Additional file 4),
the detection was slightly lower than in Fig. 4a, in par-
ticular for JVIMP. If the effect size of the interacting
SNPs was increased (Fig. 4c), the detection was higher
for all importance measures. The detection of JVIMP was
high for Interaction only and low for No interaction and
Synergistic. If the effect size of the marginal-only SNPs
was increased (Fig. 4d), the detection was very low in
all cases. If MAF and effect sizes were modified at the
same time, the described effects added up (Figures S29–
S36, Additional file 4). Again, for mtry = 10, the
detection fraction was generally lower (Figures S37–
S48, Additional file 4). If the number of marginal-only
SNPs was reduced to 2 (Figure S104, Additional file 4),
the results were similar for small values of k, and the
detection was higher for larger values of k. This was
expected, since combinations including noise variables
are excluded in the pairwise measures and thus only 6
combinations of SNPs are possible in this case. If the
number of SNPs was increased to 2500 (Figure S105,
Additional file 4), the results were comparable to the sim-
ulation with 100 SNPs. In the case of LD (Figures S106–
S110, Additional file 4), the detection fraction for larger
values of k was slightly increased. However, this was
also the case if no interaction or marginal effects were

included, indicating that correlations were detected as
interactions.

Discussion
In our extensive simulation studies, we found that random
forests are capable of capturing SNP-SNP interactions,
i.e. of including them in the model. Of the single
variable importance measures, the Gini importance
ranks the interacting SNPs higher than the permuta-
tion importance. The single importance measures are
unable to detect interactions, and this by design. They
can thus not differentiate between marginal and inter-
action effects. But since, in most cases, the interact-
ing SNPs are ranked higher than noise SNPs even
if no marginal effects are present, we conclude that
the interaction effects are thereby captured in ran-
dom forests. In general, the ranking depends heavily
on the MAF, with more frequent SNPs being ranked
higher.
The results of the pairwise importance measures sug-

gest that they are unable to detect interactions in the
presence of marginal effects. With all measures, marginal
effects were detected as interaction effects, and true inter-
actions were not found if other SNPs with strong marginal
effects were present. Again, SNPs were ranked higher if
the MAF was increased. All methods ranked the inter-
acting SNPs higher in the model without interaction,
compared with the model with interaction only, sug-
gesting that interaction effects cannot be differentiated
from marginal effect. Of the compared methods, JVIMP
[16] achieved the best results, since detection was high-
est for the model with interaction only and lowest for
the model without interaction in most of the simulation
scenarios.
To study SNP-SNP interactions with random forest,

we used 5 interaction models in a simplified setting.
We simulated rather strong effects and large MAF
values. Our results show that the pairwise impor-
tance measures are unable to detect interactions in
this setting. In simulations with an increased number
of noise SNPs, the single importance measures per-
formed worse and the pairwise measures about equal.
If LD was considered, only very strong effects were
detected at all and again marginal effects were detected as
interactions.
Despite the difficulty of the pairwise variable impor-

tance measures to detect interactions, our data suggest
that interaction effects are generally captured by ran-
dom forests. One approach to improve the detection rate
might be to use random forests to perform a variable
selection first and applying another method to identify
interactions subsequently [30, 31]. However, interaction
effects might again be masked by marginal effects in
that approach. A related idea is to uncover marginal
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Fig. 4 Simulation results for pairwise variable importance measures. On the vertical axis, the proportion of simulation replications in which the true
interaction between the two interacting SNPs is included in the top k SNP pairs according to the ranking by the variable importance measures is
shown. On the horizontal axis, the number of k top SNP pairs considered is shown. If the importance measure included the true interaction in the
top k SNP pairs, the interaction is detected. In (a) to (d), different simulation scenarios are shown. The parameters βI and βM correspond to the effects
of the interacting SNPs and marginal-only SNPs, respectively.MAFI andMAFM are the minor allele frequencies of the corresponding SNPs. See
Figures S25–S48 (Additional file 4) for results of all simulation scenarios for the single variable importance measures

effects in a first step and project the remaining effects
on a space orthogonal to the marginal effects, to detect
interactions in a second step [32, 33]. On a different
route, the detection of interactions might be facilitated
by developing new pairwise importance measures based
on standard random forests [34]. However, it is argued

that in the case of many predictor variables, it is unlikely
that interacting variables are selected simultaneously in
a given tree [9]. Second, for combinations of variables,
the attributable risk [35] can be small, in particular for
variants with small MAF. This means that only a small
proportion of cases is attributable to the interaction, and
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even for large effect sizes these interactions are difficult
to detect. Finally, it can be argued that random forests are
by design unable to split on interactions [36]. As shown
in Fig. 1a, if interacting variables have no marginal effect
at all, no first split is possible and the interaction can-
not be captured. To solve this, the tree growing process
in the random forest itself could be modified to better
incorporate interactions. A promising, yet computation-
ally intensive new approach are reinforcement learning
trees [37], which employ reinforcement learning in each
node, to additionally incorporate future splits down in
the tree. Several other approaches have been proposed
[38], but these are based on single trees only, limiting
their usage to low dimensional settings. With fast ran-
dom forest implementations now available for large sam-
ple sizes [39] and high dimensional data [24] these or
new methods could be integrated into the random forest
framework.

Conclusions
We conclude that random forests are generally capable
of capturing SNP-SNP interactions, but current variable
importance measures are unable to detect them. The
Gini importance performs better than the permutation
importance in identifying SNPs involved in an interac-
tion. However, both methods are not designed to uncover
interactions as such, and consequently, in most of the
cases, the interactions are masked by other SNPs with
marginal effects. None of the pairwise importance mea-
sures is able to reliably detect interactions. Marginal
effects are detected as interaction effects and here, too,
other SNPs with marginal effects hinder the detection
of interactions. As a result one should be cautious
when claiming that random forests uncover interaction
effects.
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