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Research Article

INTRODUCTION
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by deficits in communication, social interaction, and 
increased repetitive behavior. ASD has a complex genetic contribution interacting between multiple genes and environmental factors (1). 
However, an exclusive explanation for the etiopathogenesis of autism has not yet been provided. 

The ubiquitin-proteasome system (UPS) is a major non-lysosomal proteolytic process that regulates the levels of cellular proteins including 
those involved in neuronal growth and function. Findings have suggested that ubiquitination and related proteins play major roles in synaptic 
plasticity (2,3). Furthermore, the UPS system is involved in neurodegenerative disorders, such as Alzheimer’s and Huntington’s disease (3). In 
addition, deficit or excess ubiquitin-protein ligase E3A (UBE3A) leads to autistic symptoms in the Angelman syndrome. UBE3A is regulated 
by phosphorylation and an autism-linked mutation causes regulation impairment of phosphorylation and synapse formation (4,5). Abnormal 
UBE3A activity is believed to contribute to neuropathological features in autism (5). As phosphorylation of UBE3A enables synapse develop-
ment, a close relationship between phosphorylation of ubiquitination and dendritic spine density has been reported (5,6,7,8,9,10). Moreover, 
in UBA6 brain-specific knockout mouse, it was revealed that autistic symptoms were observed in the absence of UBA6 (1). Therefore, 
abnormalities in ubiquitination system might be related with autistic pathology.

There are some molecules in the UPS, however brain and blood levels or pathophysiological role of these molecules have not been investigat-
ed in autism. Ubiquitin C-terminal hydrolase-L1 (UCH-L1), a 223-amino acid protein (25 kDa) is highly and specifically expressed in neurons, 
and has been used as a histological marker (11,12). It is involved in the process of ubiquitination of proteins destined for degradation via the 
proteosomal pathway to remove oxidized or misfolded proteins (13). UCH-L1 has been reported to be associated with Parkinsons disease 
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Introduction: The mechanism of ubiquitination-related abnormalities 
causing neural development problems is still unclear. We examined the 
association between autism and serum transactive response DNA-
binding protein-43 (TDP-43) and ubiquitin c-terminal hydrolase-L1 
(UCH-L1) levels, both of which are members of the ubiquitin-
proteosome system.

Methods: We measured serum levels of TDP-43 and UCH-L1 in 24 
children with autism and 24 healthy children. Childhood Autism Rating 
Scale (CARS) was used to assess symptom severity at admission. 

Results: The mean serum TDP-43 and UCH-L1 levels in children 
with autism spectrum disorder (ASD) were found to decrease 

compared to healthy controls (p<0.001, 506.21±780.97 ng/L and 

1245.80±996.76 ng/L, respectively; 3.08±5.44 ng/mL and 8.64±6.67 

ng/mL, respectively). A positive correlation between serum TDP-43 

levels and UCH-L1 levels was found in the ASD group (r=0.947, 

n=24, p<0.001). The CARS score of children with ASD was 48.91 

points (standard deviation [SD]: 5.82).

Conclusion: Low serum levels of UCH-L1 and TDP-43 may reflect 

disturbed ubiquitination in autism. 

Keywords: Autism, UCH-L1, TDP-43, ubiquitination

ABSTRACT

267

Cite this article as: Çetin İ, Tezdiğ İ, Tarakçioğlu MC, Kadak MT, Demirel ÖF, Özer ÖF, Erdoğan F,   Doğangün B. Do Low Serum UCH-L1 and 
TDP-43 Levels Indicate Disturbed Ubiquitin-Proteosome System in Autism Spectrum Disorder? Arch Neuropsychiatry 2017; 54:267-271.



(PD) and traumatic brain injury (TBI) (14). Interestingly, it was found that 
gene deletion of UCH-L1 leads to progressive loss of the dopaminergic 
neurons in substantia nigra and striatum (15,16). 

Another molecule related to ubiquitination, the transactive response 
DNA-binding protein (TDP-43), has been considered in neurodegenerative 
disorders, such as Amyotrophic Lateral Sclerosis (ALS) and Frontotempo-
ral Lobar Degeneration (FTD) (17). TDP-43 inclusions were observed in 
Alzheimer’s disease, Guam parkinsonism-dementia complex, Huntington’s 
disease, and Hippocampal sclerosis (18,19,20,21). Physiologically, TDP-43 
shuttles between the nucleus, where it regulates transcription and splicing, 
and the cytoplasm, where it has a role on RNA transport and mRNA sta-
bility and is a component of stress granules (3,17). Most ALS patients show 
TDP-43 pathology in postmortem tissue. TDP-43 is abnormally ubiquiti-
nated, phosphorylated, cleaved, translocated to the cytoplasm and found as 
aggregates in the (upper and lower) motor neurons (17,21).

Considering these aspects, we hypothesized that widespread TDP-43 and 
UCH-L1 proteinopathy may underlie multifocal neuronal dysfunction that 
contributes to complex nonmotor phenotypes in autism, including cogni-
tive impairment with prominent frontal executive dysfunction and extra-
pyramidal signs. In this regard, we aimed to investigate the serum levels of 
TDP-43 and UCH-L1 in children with autism.

METHODS

Participant Samples
In total, 24 children with ASD and 24 controls were enrolled in the study. 
The children in the first group were diagnosed as having autism accord-
ing to the Diagnostic and Statistical Manual of Mental Disorders, 4th ed., 
criteria. In pediatric clinics of Medipol University Hospital, age- and sex-
matched children were recruited as the healthy control group. Eligible 
children in the control group were evaluated by child psychiatrists. The 
ethics committee of İstanbul University Cerrahpaşa School of Medicine 
approved the present study. Consent forms were obtained from parents 
of the participants.

Childhood Autism Rating Scale (CARS) was used to assess severity of 
autistic symptoms. CARS consists of 15 categories, each is rated on a four-
point scale. An individual is considered as mild-to-moderate when scores 
are between 30 and 36 and severely autistic when score are between 
37 and 60. The Turkish language version of CARS was used in previous 
studies (22). 

Procedure
Blood samples were collected after a ≥12 h fast. Blood specimens were 
allowed to clot for 30 min. They were routinely centrifuged at 4000 rpm 
for 10 min, and aliquots of serum samples were stored at −70°C for mea-
surement of TDP-43 and UCH-L1 concentration.

Measurement of TDP-43 and UCH-L1
Serum concentrations of TDP-43 and UCH-L1 were determined with 
the enzyme linked immunosorbent assay method (YEHUA Biological 
Technology, China, Catalog Number YHB3139Hu and YHB3139Hu, re-
spectively) according to the manufacturer’s instructions. Briefly, samples 
were added to wells that are precoated with monoclonal antibody and in-
cubated further; subsequently, biotin-labeled antibodies were added, and 
combined with streptavidin-horse radish peroxidase to form an immune 
complex; incubation and washing steps were performed. Chromogen 
solutions were then added, and the addition of stop solution resulted in 
yellow coloration. The absorbance was measured at 450 nm. Assay ranges 

of these kits were 20 ng/L→6000 ng/L for TDP-43 and 1 ng/mL→38 ng/
mL for UCH-L1.

Statistical Analysis
Univariate data were compared using the chi-square-test for categorical 
variables and Mann-Whitney test. Spearman correlation analyses were 
applied between UCH-L1 and TDP-43. A p value of <0.05 was consid-
ered significant. Statistical package for Social Sciences for Windows, v.17.0 
(SPSS Inc.; Chicago, USA), was used for statistical analyses

RESULTS
Table 1 shows sociodemographic data of the groups; 75% of the partic-
ipants were boys in the ASD group, and the mean age was 3.41 years 
(standard deviation [SD]: 0.92), while 66.7 % were boys in the controls, 
and the mean age was 3.37 years (SD: 0.76). The ASD group had no famil-
ial autism history. The mean serum TDP-43 levels were found to be signifi-
cantly lower in the children with ASD compared with controls (p<0.001; 
506.21±780.97 ng/L and 1245.80±996.76 ng/L, respectively). The mean 
serum UCH-L1 levels significantly decreased in the ASD group compared 
with controls (p<0.001; 3.08±5.44 ng/mL and 8.64±6.67 ng/mL, respec-
tively). Significant positive correlation was found between serum TDP-43 
and UCH-L1 levels (r=0.947, n=24, p<0.001). The mean CARS score of 
the ASD group was 48.91 points (SD: 5.82).

DISCUSSION 
In recent genetic studies, it has been suggested that there is an increased 
risk of autism with proteins related to synapse formation (23). UPS was 
considered important for regulating synaptic protein functions, particu-
larly in the synapse. As previously shown, molecules that are involved in 
ubiquitination play a significant role in brain development processes, such 
as synaptogenesis, as the balance between ubiquitination and deubiquiti-
nation is critical for synapse function (5,24). For example, regulation of 
ubiquitination via UBE3A with phoshorylation was impaired, and it led 
to increased synapsis and dendritic spine density in an autism proband 
with a mutant of T485 (4,5). To our knowledge, this is the first research 
investigating UCH-L1 and TDP-43 serum levels in ASD, in which both 
molecules are involved in protein formation. These preliminary study find-
ings revealed that serum UCH-L1 and TDP-43 levels of ASD patients 
were significantly lower than those in the healthy control group. Similarly, 
UBE3A, which is another important molecule in the ubiquitin system, was 
found to be associated with autistic symptoms in the Angelman syndrome 
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Table 1. Characteristics of the autism and control groups

 Autism   Control  
Variables (n=24) (n=24) p

Demographics   

Age, mean (SD) 3.41 (0.92) 3.37 (0.76) p>.05

Males, n (%) 18 (%75) 16 (%66.7) p>.05

CARS, mean (SD) 48.91 (5.82) - 

IQ score, mean (SD) 33.37 (10.89) - 

Laboratory findings   

Serum TDP-43  506.21±780.97 1245.80±996.76 p<0.001 
(ng/L) 

Serum UCH-L1  3.08±5.44 8.64±6.67 p<0.001 
(ng/mL) 

CARS: childhood autism rating scale; IQ: intelligent quotient; TDP-43: tran-
sactive response DNA-binding protein-43; UCH-l1: ubiquitin c-terminal 
hydrolase-L1; ng: nanogram; L: leter; mL: milileter; SD: standart deviation; 
n: number
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(25,26). Therefore, impairment in UPS might show the underlying mech-
anism of synapse pathology in autism. 

UCH-L1 and the UPS molecule are thought to be essential for synap-
tic function and cognition (27,28,29). Altered ubiquitination resulting 
from abnormal UCH-L1 expression may contribute to learning and 
memory impairment (30). According to these aspects, mouse models 
in ASD, such as UBA6 brain-specific knockout mouse, suggest a rela-
tion of ubiquitination and autism. Lee et al. (1) revealed that the UBA6 
deficit in the neuronal tissue leads to autistic symptoms. Beyond these, 
Angelman syndrome is caused by lack of or excess of UBE3A, which 
leads to autistic features (31). In addition to UBE3A, it was revealed that 
there was association between synaptic pathology in autism and oth-
er ubiquitin genes, including SHANKS, RFWD2, FBXO40, and PARK2 
(32,33). Furthermore, increased UBE3A in the synapse leads to sup-
pression of glutamatergic signaling. This might show a mediator effect 
of UPS (e.g., UBE3A, UCH-L1, and UBA6, genes including SHANKS, 
RFWD2, FBXO40, and PARK2) associated with neuronal activity (32). 
Therefore, decreased serum level of UCH-L1 may reflect underlying 
problems in UPS. However, our findings have to be confirmed by cell-
based studies.

TDP-43, an RNA binding protein, dynamically plays a role in synaptic 
activity (34). It was demonstrated that alteration in TDP-43 regulation in 
the early phases of development might lead to neurodegeneration (35). 
Moreover, TDP-43 protein aggregated in FTD and ALS was shown in 
ubiquitinated neuronal cytoplasmic inclusions either in central or periph-
eral neurons (17). However, TDP- 43 has been recently demonstrated 
to have multiple roles in the regulation of the mRNA fate in neuronal 
cells, such as transcript stabilization and activity-dependent transport to 
dendrites (36,37). TDP-43 homeostasis might be maintained by UPS 
and autophagy (38). Such ubiquitination, abnormal hyperphosphoryla-
tion, and N-terminal cleavage 43 modifications were revealed in FTLD 
and ALS patients (39). These findings were interpreted as playing a vital 
role in the early development. Similarly, low serum level of TDP-43 in 
our study may show disturbed UPS leading to altered development of 
synapse in autism. 

While TDP-43 and UCH-L1 are typically regarded as intracellular pro-
teins, they have however been discovered to be normally present in 
extracellular biological fluids, including human cerebrospinal fluid (CSF) 
and blood plasma (40). It was thought that increased CSF level of TDP-
43 might highlight a critical effect of TDP-43 level in neuronal func-
tions (41). Furthermore, UCH-L1, which is abundant in the body of 
neurons in the central nervous system, was a biomarker of neuronal 
injury that shows elevated CSF and serum UCH-L1 levels in an ischemic 
stroke model (42). However, this was not found in intracranial hem-
orrhage (43). It has been also revealed that increased serum levels of 
UCH-L1 reflect neuropathology, such as subcortical white matter lesion 
and increased level of UCH-L1 level in the CSF (44,45). Thus, UCH-L1 
was suggested as an indicator of TBI. As shown in both elevations of 
UCH-L1 levels in response to neuronal injury, low serum levels might be 
a reflection of disturbed neuroplasticity in autism. In addition, another 
important finding of our study was the positive correlation of these 
two molecules. As both molecules are involved in UPS, this association 
may the support role of UPS in autism. Thus, our study revealed that 
molecules involved in ubiquitination may influence the autistic behaviors. 
Probably, an unexplained mechanism underlies the pathogenesis of au-
tism, for example, UCH-L1 may play a role in the underlying mechanism 
in autism via ubiquitination (14). Thus, we thought that low serum levels 
of UCH-L1 and TDP-43 may indicate subtle dysregulation of ubiquiti-

nation in the cellular aspect of autism (1). However, further studies are 
required to support these results.

There are several limitations in the present study. Therefore, our study 
should be considered as a preliminary study. Firstly, the range of our study 
samples was small. Secondly, we collected only serum samples, while CSF 
samples were absent. Thirdly, reliability and validation of CARS have not 
yet been confirmed for the Turkish population, while study has been con-
ducted.

Low serum levels of UCH-L1 and TDP-43 may imply disturbed ubiquiti-
nation in ASD. Since protein ubiquitination is a universal reaction occur-
ring in almost every physiological process within the cell, the reason for 
ubiquitination-related molecular abnormalities in neural development 
has not been explained. There may be some signatures in functionally 
important proteins, which are processed during neural development. 
Further studies are required to identify the underlying pathogenesis of 
ASDs. 
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