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Hypothesis

Do Neural Cells Communicate with Endothelial Cells via
Secretory Exosomes and Microvesicles?
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Neurons, glial, cells, and brain tumor cells tissues release small vesicles (secretory exosomes and microvesicles), which may
represent a novel mechanism by which neuronal activity could influence angiogenesis within the embryonic and mature brain. If
CNS-derived vesicles can enter the bloodstream as well, they may communicate with endothelial cells in the peripheral circulation

and with cells concerned with immune surveillance.
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1. Introduction

About a year and a half ago, I reviewed evidence that
cells within the central nervous system may transfer vesicles
containing RNAs and proteins among themselves in a novel
type of cell-cell communication [1]. That paper emphasized
the possible role of secretory exosomes as a mechanism
providing dynamic activity-dependent transfer of molecules
across synapses, corresponding to the morphological appear-
ance of “synaptic spinules” which had been long noted by
neuroanatomists. However, there are numerous additional
examples in the nervous system of transfer of molecules by
vesicles moving freely from cell to cell or by cytoplasmic
“fingers” intruding directly from one cell into another. For
example, astrocytes can provide neuroprotective HSP70 to
neurons via exosomes [2], and Schwann cells can provide
polyribosomes to the axons that they ensheath [3]. In this
brief hypothesis paper, I point out the possibility that central
nervous system-(CNS-) derived vesicles may potentially
interact with endothelial cells within the brain, and that they
may potentially find their way to the bloodstream, where
they could interact with endothelial cells and with cells of the
immune system.

Secretory exosomes are formed by a specific process of
invagination that occurs within endosomes, resulting in the
formation of multivesicular bodies [4], or on the cell surface,
resulting in budding-out from lipid raft regions of the plasma

membrane [5]. Microvesicles are little fragments that are
shed or pinched-off from the plasma membrane. Microvesi-
cles are generally thought to be larger than exosomes, but
their features and biogenesis may not be entirely distinct [6],
and there may be additional types of vesicles that cannot be
easily classified at present [7]. Exosomes and microvesicles
have been shown to be shed in a regulated fashion by many
cell types in culture, including neurons [8] and astrocytes
[9]; they have cell-adhesion molecules on their surface which
allow them to bind specifically to certain target cell types and
to be internalized (e.g., [9, 10]).

In several cases, the internalized mRNAs have been
shown to be translated, suggesting that they provide a form
of gene transfer to the target cells [9-11]. Studies of endothe-
lial cells have shown that exosomes and/or microvesicles
can alter their gene expression and activate thrombogenicity,
apoptosis, and angiogenesis [11-15].

2. Do CNS-Derived Vesicles Interact with
Endothelial Cells within the Brain?

Secretory exosomes have been detected within the cere-
brospinal fluid both in the embryonic and mature brain [16,
17], and neuron-enriched microRNAs have been detected in
the cerebrospinal fluid (CSF) as well [18]. This suggests that
neural cells do release vesicles into the extracellular space in



vivo. Vascularization and neurogenesis proceed concurrently
within the developing brain [19, 20]; both involve similar
events such as cell migration and differentiation, and both
respond to some of the same patterning cues, growth factors
(e.g., vascular endothelial growth factor), and so forth.
Endothelial cells interact with neurons and glial cells to
form a so-called functional “neurovascular unit” [21], and
these interactions are necessary in order for endothelial
cells to express tight junctions that underlie the blood-
brain barrier [22]. Transfer of vesicles is potentially one
way in which neural cells may interact with endothelial
cells during embryogenesis. Moreover, new growth of blood
vessels occurs in the mature brain and can be stimulated in
response to neuronal activity (e.g., environmental enrich-
ment [23]), another arena in which neural-derived cues
interact with endothelial cells. Finally, Skog et al. (2008) have
shown that glioblastoma-derived microvesicles can stimulate
angiogenesis of brain capillary endothelial cells in vitro, a
process that would be expected to support tumor growth in
vivo [11].

3. Can CNS-Derived Vesicles Reach the
Bloodstream?

Blood plasma or serum is an abundant source of microRNAs
and mRNAs, which appear to be contained within secretory
exosomes and/or microvesicles (e.g., [24-33]). Many differ-
ent normal as well as tumor cell types contribute vesicles
to the bloodstream. Placental-derived microRNAs have been
shown to provide a biomarker of pregnancy [24], whereas
vesicles bearing tumor-specific antigens have been shown to
express microRNA profiles related to the tumor cells from
which they derive (e.g., [25]). Acetaminophen overdose,
which damages the liver as well as other organs, results in
elevated levels of the liver-specific microRNA mir-122 [33].

To date, no evidence has been published demonstrating
that vesicles shed by CNS neurons or glial cells can enter
the bloodstream. (Glioblastoma cells have been reported to
shed vesicles into the blood [11], but their relation to nearby
blood vessels may be aberrant and not representative of
normal glial cells.) However, acetaminophen overdose causes
elevated levels of numerous microRNAs in the blood that
are generally thought to be brain-enriched [33]. This was
interpreted by the authors as likely due to neural damage
produced by the drug. Moreover, Dr. Samuil Umansky, Chief
Scientific Officer of Xenomics, Inc., presented unpublished
data at the Cambridge Healthtech Institute conference on
“microRNA in Human Disease and Development” in Boston,
MA, in March 2009, showing that microRNAs characteristics
of brain expression were detectable in human blood and
urine. Levels of these microRNAs were elevated in individu-
als poststroke in a time-dependent manner and were elevated
in individuals diagnosed with Alzheimer disease, though it
was not examined whether the microRNAs were contained
within vesicles.

What mechanisms might permit CNS-derived vesicles to
reach the bloodstream? The blood-brain barrier is thought
to prevent movement of large molecules into and out of
the brain, and it is unlikely that vesicles would be actively
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transported across capillaries. However, the blood-brain
barrier appears gradually during gestation [34] and so
exosomes may be free to communicate with the blood at
developmental stages. In the mature brain, it is conceivable
that clearance of the cerebrospinal fluid into the blood may
permit exit of intact vesicles. As well, the circumventricular
regions of the brain appear to be devoid of a blood-
brain barrier (including the pineal gland, area postrema,
choroid plexus, subfornical organ, supraoptic crest, median
eminence, and posterior pituitary) [35]. Furthermore, exit
of vesicles may be expected to occur under pathological
conditions in which the blood-brain barrier is compromised,
for example, following trauma, cell death, or inflammation.

4. Conclusion

There is a growing appreciation that secretory exosomes,
microvesicles, and possibly other types of cell-derived vesi-
cles comprise a physiological channel for cell-cell communi-
cation, both among neighboring cells and within the blood-
stream. Neurons and glial cells in the brain also appear to
shed vesicles that potentially may contribute to trophic inter-
actions and synaptic plasticity [1]. CNS-derived secretory
exosomes and/or microvesicles have the potential to interact
with endothelial cells during developmental stages and dur-
ing angiogenesis within the mature brain. These interactions
should have functional significance, insofar as neurogenesis
and angiogenesis are, in part, coordinated responses both in
the developing and mature brain [20, 36, 37].

Recent studies also raise the possibility that CNS-
derived vesicles may enter the bloodstream and interact with
endothelial cells in the peripheral circulation. This would
represent a novel communication channel between the
nervous system and the cardiovascular system. Circulating
vesicles also appear to have an important role in immune
surveillance and activation [7]. Perhaps future issues of
Cardiovascular Psychiatry and Neurology will contain articles
that provide evidence for this channel and that explore the
meaning of its messages.
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