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Abstract

Neural generative models have been become

increasingly popular when building conversa-

tional agents. They offer flexibility, can be eas-

ily adapted to new domains, and require min-

imal domain engineering. A common criti-

cism of these systems is that they seldom un-

derstand or use the available dialog history ef-

fectively. In this paper, we take an empiri-

cal approach to understanding how these mod-

els use the available dialog history by study-

ing the sensitivity of the models to artificially

introduced unnatural changes or perturbations

to their context at test time. We experiment

with 10 different types of perturbations on 4

multi-turn dialog datasets and find that com-

monly used neural dialog architectures like re-

current and transformer-based seq2seq models

are rarely sensitive to most perturbations such

as missing or reordering utterances, shuffling

words, etc. Also, by open-sourcing our code,

we believe that it will serve as a useful diag-

nostic tool for evaluating dialog systems in the

future 1.

1 Introduction

With recent advancements in generative models of

text (Wu et al., 2016; Vaswani et al., 2017; Rad-

ford et al., 2018), neural approaches to building

chit-chat and goal-oriented conversational agents

(Sordoni et al., 2015; Vinyals and Le, 2015; Ser-

ban et al., 2016; Bordes and Weston, 2016; Serban

et al., 2017b) has gained popularity with the hope

that advancements in tasks like machine transla-

tion (Bahdanau et al., 2015), abstractive summa-

rization (See et al., 2017) should translate to dialog

systems as well. While these models have demon-

strated the ability to generate fluent responses,
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chinnadhurai/ParlAI/

they still lack the ability to “understand” and pro-

cess the dialog history to produce coherent and

interesting responses. They often produce bor-

ing and repetitive responses like “Thank you.” (Li

et al., 2015; Serban et al., 2017a) or meander away

from the topic of conversation. This has been often

attributed to the manner and extent to which these

models use the dialog history when generating re-

sponses. However, there has been little empirical

investigation to validate these speculations.

In this work, we take a step in that direction and

confirm some of these speculations, showing that

models do not make use of a lot of the informa-

tion available to it, by subjecting the dialog his-

tory to a variety of synthetic perturbations. We

then empirically observe how recurrent (Sutskever

et al., 2014) and transformer-based (Vaswani et al.,

2017) sequence-to-sequence (seq2seq) models re-

spond to these changes. The central premise of

this work is that models make minimal use of cer-

tain types of information if they are insensitive to

perturbations that destroy them. Worryingly, we

find that 1) both recurrent and transformer-based

seq2seq models are insensitive to most kinds of

perturbations considered in this work 2) both are

particularly insensitive even to extreme pertur-

bations such as randomly shuffling or reversing

words within every utterance in the conversation

history (see Table 1) and 3) recurrent models are

more sensitive to the ordering of utterances within

the dialog history, suggesting that they could be

modeling conversation dynamics better than trans-

formers.

2 Related Work

Since this work aims at investigating and gain-

ing an understanding of the kinds of information

a generative neural response model learns to use,

the most relevant pieces of work are where sim-

https://github.com/chinnadhurai/ParlAI/
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No Perturbations Token shuffling

1 Good afternoon ! Can I help you ? I afternoon help you Good ? ! Can
2 Could you show me where the Chinesc-style clothing is

located ? I want to buy a silk coat
the located Chinesc-style where is show a . buy you ? I
clothing want coat silk me Could to

3 This way , please . Here they are . They’re all handmade . are handmade . way please This all Here they . , They’re .

4 Model Response: How much is it ? Model Response: How much is it ?

Table 1: An example of an LSTM seq2seq model with attention’s insensitivity to shuffling of words in the dialog

history on the DailyDialog dataset.

ilar analyses have been carried out to understand

the behavior of neural models in other settings.

An investigation into how LSTM based uncondi-

tional language models use available context was

carried out by Khandelwal et al. (2018). They

empirically demonstrate that models are sensitive

to perturbations only in the nearby context and

typically use only about 150 words of context.

On the other hand, in conditional language mod-

eling tasks like machine translation, models are

adversely affected by both synthetic and natural

noise introduced anywhere in the input (Belinkov

and Bisk, 2017). Understanding what information

is learned or contained in the representations of

neural networks has also been studied by “prob-

ing” them with linear or deep models (Adi et al.,

2016; Subramanian et al., 2018; Conneau et al.,

2018).

Several works have recently pointed out the

presence of annotation artifacts in common text

and multi-modal benchmarks. For example, Guru-

rangan et al. (2018) demonstrate that hypothesis-

only baselines for natural language inference ob-

tain results significantly better than random guess-

ing. Kaushik and Lipton (2018) report that reading

comprehension systems can often ignore the entire

question or use only the last sentence of a doc-

ument to answer questions. Anand et al. (2018)

show that an agent that does not navigate or even

see the world around it can answer questions about

it as well as one that does. These pieces of work

suggest that while neural methods have the poten-

tial to learn the task specified, its design could lead

them to do so in a manner that doesn’t use all of

the available information within the task.

Recent work has also investigated the induc-

tive biases that different sequence models learn.

For example, Tran et al. (2018) find that recurrent

models are better at modeling hierarchical struc-

ture while Tang et al. (2018) find that feedfor-

ward architectures like the transformer and con-

volutional models are not better than RNNs at

modeling long-distance agreement. Transformers

however excel at word-sense disambiguation. We

analyze whether the choice of architecture and the

use of an attention mechanism affect the way in

which dialog systems use information available to

them.

3 Experimental Setup

Following the recent line of work on generative

dialog systems, we treat the problem of generat-

ing an appropriate response given a conversation

history as a conditional language modeling prob-

lem. Specifically we want to learn a conditional

probability distribution Pθ(y|x) where y is a rea-

sonable response given the conversation history x.

The conversation history is typically represented

as a sequence of utterances x1,x2, . . .xn, where

each utterance xi itself is comprised of a sequence

of words xi1 , xi2 . . . xik . The response y is a single

utterance also comprised of a sequence of words

y1, y2 . . . ym. The overall conditional probability

is factorized autoregressively as

Pθ(y|x) =
n∏

i=1

Pθ(yi|y<i,x1 . . .xn)

Pθ, in this work, is parameterized by a recurrent

or transformer-based seq2seq model. The crux of

this work is to study how the learned probability

distribution behaves as we artificially perturb the

conversation history x1, . . .xn. We measure be-

havior by looking at how much the per-token per-

plexity increases under these changes. For exam-

ple, one could think of shuffling the order in which

x1 . . .xn is presented to the model and observe

how much the perplexity of y under the model in-

creases. If the increase is only minimal, we can

conclude that the ordering of x1 . . .xn isn’t infor-

mative to the model. For a complete list of per-

turbations considered in this work, please refer to

Section 3.2. All models are trained without any

perturbations and sensitivity is studied only at test

time.
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Figure 1: The increase in perplexity for different models when only presented with the k most recent utterances

from the dialog history for Dailydialog (left) and bAbI dialog (right) datasets. Recurrent models with attention

fare better than transformers, since they use more of the conversation history.

3.1 Datasets

We experiment with four multi-turn dialog

datasets.

bAbI dialog is a synthetic goal-oriented multi-

turn dataset (Bordes and Weston, 2016) consisting

of 5 different tasks for restaurant booking with in-

creasing levels of complexity. We consider Task 5

in our experiments since it is the hardest and is a

union of all four tasks. It contains 1k dialogs with

an average of 13 user utterances per dialog.

Persona Chat is an open domain dataset (Zhang

et al., 2018) with multi-turn chit-chat conversa-

tions between turkers who are each assigned a

“persona” at random. It comprises of 10.9k di-

alogs with an average of 14.8 turns per dialog.

Dailydialog is an open domain dataset (Li et al.,

2017) which consists of dialogs that resemble day-

to-day conversations across multiple topics. It

comprises of 13k dialogs with an average of 7.9
turns per dialog.

MutualFriends is a multi-turn goal-oriented

dataset (He et al., 2017) where two agents must

discover which friend of theirs is mutual based on

the friends’ attributes. It contains 11k dialogs with

an average of 11.41 utterances per dialog.

3.2 Types of Perturbations

We experimented with several types of perturba-

tion operations at the utterance and word (token)

levels. All perturbations are applied in isolation.

Utterance-level perturbations We consider the

following operations 1) Shuf that shuffles the se-

quence of utterances in the dialog history, 2) Rev

that reverses the order of utterances in the history

(but maintains word order within each utterance)

3) Drop that completely drops certain utterances

and 4) Truncate that truncates the dialog history

to contain only the k most recent utterances where

k ≤ n, where n is the length of dialog history.

Word-level perturbations We consider similar

operations but at the word level within every ut-

terance 1) word-shuffle that randomly shuffles the

words within an utterance 2) reverse that reverses

the ordering of words, 3) word-drop that drops

30% of the words uniformly 4) noun-drop that

drops all nouns, 5) verb-drop that drops all verbs.

3.3 Models

We experimented with two different classes

of models - recurrent and transformer-based

sequence-to-sequence generative models. All data

loading, model implementations and evaluations

were done using the ParlAI framework. We used

the default hyper-parameters for all the models as

specified in ParlAI.

Recurrent Models We trained a seq2seq

(seq2seq lstm) model where the encoder and

decoder are parameterized as LSTMs (Hochreiter

and Schmidhuber, 1997). We also experiment

with using decoders that use an attention mecha-

nism (seq2seq lstm att) (Bahdanau et al., 2015).

The encoder and decoder LSTMs have 2 layers

with 128 dimensional hidden states with a dropout

rate of 0.1.

Transformer Our transformer (Vaswani et al.,

2017) model uses 300 dimensional embeddings

and hidden states, 2 layers and 2 attention heads

with no dropout. This model is significantly

smaller than the ones typically used in machine
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Models Test PPL Only

Last

Shuf Rev Drop

First

Drop

Last

Word

Drop

Verb

Drop

Noun

Drop

Word

Shuf

Word

Rev

Utterance level perturbations ( ∆ PPL[σ] ) Word level perturbations ( ∆ PPL[σ] )

DailyDialog

seq2seq lstm 32.90[1.40] 1.70[0.41] 3.35[0.38] 4.04[0.28] 0.13[0.04] 5.08[0.79] 1.58[0.15] 0.87[0.08] 1.06[0.28] 3.37[0.33] 3.10[0.45]
seq2seq lstm att 29.65[1.10] 4.76[0.39] 2.54[0.24] 3.31[0.49] 0.32[0.03] 4.84[0.42] 2.03[0.25] 1.37[0.29] 2.22[0.22] 2.82[0.31] 3.29[0.25]
transformer 28.73[1.30] 3.28[1.37] 0.82[0.40] 1.25[0.62] 0.27[0.19] 2.43[0.83] 1.20[0.69] 0.63[0.17] 2.60[0.98] 0.15[0.08] 0.26[0.18]

Persona Chat

seq2seq lstm 43.24[0.99] 3.27[0.13] 6.29[0.48] 13.11[1.22] 0.47[0.21] 6.10[0.46] 1.81[0.25] 0.68[0.19] 0.75[0.15] 1.29[0.17] 1.95[0.20]
seq2seq lstm att 42.90[1.76] 4.44[0.81] 6.70[0.67] 11.61[0.75] 2.99[2.24] 5.58[0.45] 2.47[0.67] 1.11[0.27] 1.20[0.23] 2.03[0.46] 2.39[0.31]
transformer 40.78[0.31] 1.90[0.08] 1.22[0.22] 1.41[0.54] −0.1[0.07] 1.59[0.39] 0.54[0.08] 0.40[0.00] 0.32[0.18] 0.01[0.01] 0.00[0.06]

MutualFriends

seq2seq lstm 14.17[0.29] 1.44[0.86] 1.42[0.25] 1.24[0.34] 0.00[0.00] 0.76[0.10] 0.28[0.11] 0.00[0.03] 0.61[0.39] 0.31[0.25] 0.56[0.39]
seq2seq lstm att 10.60[0.21] 32.13[4.08] 1.24[0.19] 1.06[0.24] 0.08[0.03] 1.35[0.15] 1.56[0.20] 0.15[0.07] 3.28[0.38] 2.35[0.22] 4.59[0.46]
transformer 10.63[0.03] 20.11[0.67] 1.06[0.16] 1.62[0.44] 0.12[0.03] 0.81[0.09] 0.75[0.05] 0.16[0.02] 1.50[0.12] 0.07[0.01] 0.13[0.04]

bAbi dailog: Task5

seq2seq lstm 1.28[0.02] 1.31[0.50] 43.61[15.9] 40.99[9.38] 0.00[0.00] 4.28[1.90] 0.38[0.11] 0.01[0.00] 0.10[0.06] 0.09[0.02] 0.42[0.38]
seq2seq lstm att 1.06[0.02] 9.14[1.28] 41.21[8.03] 34.32[10.7] 0.00[0.00] 6.75[1.86] 0.64[0.07] 0.03[0.03] 0.22[0.04] 0.25[0.01] 1.10[0.80]
transformer 1.07[0.00] 4.06[0.33] 0.38[0.02] 0.62[0.02] 0.00[0.00] 0.21[0.02] 0.36[0.02] 0.25[0.06] 0.37[0.06] 0.00[0.00] 0.00[0.00]

Table 2: Model performance across multiple datasets and sensitivity to different perturbations. Columns 1 & 2

report the test set perplexity (without perturbations) of different models. Columns 3-12 report the increase in

perplexity when models are subjected to different perturbations. The mean (µ) and standard deviation [σ] across

5 runs are reported. The Only Last column presents models with only the last utterance from the dialog history.

The model that exhibits the highest sensitivity (higher the better) to a particular perturbation on a dataset is in bold.

seq2seq lstm att are the most sensitive models 24/40 times, while transformers are the least with 6/40 times.

translation since we found that the model that re-

sembled Vaswani et al. (2017) significantly overfit

on all our datasets.

While the models considered in this work might

not be state-of-the-art on the datasets considered,

we believe these models are still competitive and

used commonly enough at least as baselines, that

the community will benefit by understanding their

behavior. In this paper, we use early stopping with

a patience of 10 on the validation set to save our

best model. All models achieve close to the per-

plexity numbers reported for generative seq2seq

models in their respective papers.

4 Results & Discussion

Our results are presented in Table 2 and Figure 1.

Table 2 reports the perplexities of different mod-

els on test set in the second column, followed by

the increase in perplexity when the dialog history

is perturbed using the method specified in the col-

umn header. Rows correspond to models trained

on different datasets. Figure 1 presents the change

in perplexity for models when presented only with

the k most recent utterances from the dialog his-

tory.

We make the following observations:

1. Models tend to show only tiny changes in

perplexity in most cases, even under extreme

changes to the dialog history, suggesting that

they use far from all the information that is

available to them.

2. Transformers are insensitive to word-

reordering, indicating that they could be

learning bag-of-words like representations.

3. The use of an attention mechanism in

seq2seq lstm att and transformers makes

these models use more information from ear-

lier parts of the conversation than vanilla

seq2seq models as seen from increases in per-

plexity when using only the last utterance.

4. While transformers converge faster and to

lower test perplexities, they don’t seem to

capture the conversational dynamics across

utterances in the dialog history and are less

sensitive to perturbations that scramble this

structure than recurrent models.

5 Conclusion

This work studies the behaviour of generative neu-

ral dialog systems in the presence of synthetically

introduced perturbations to the dialog history, that

it conditions on. We find that both recurrent and

transformer-based seq2seq models are not signifi-

cantly affected even by drastic and unnatural mod-

ifications to the dialog history. We also find sub-

tle differences between the way in which recurrent

and transformer-based models use available con-

text. By open-sourcing our code, we believe this

paradigm of studying model behavior by intro-

ducing perturbations that destroys different kinds

of structure present within the dialog history can
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be a useful diagnostic tool. We also foresee this

paradigm being useful when building new dialog

datasets to understand the kinds of information

models use to solve them.
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