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Abstract

Based on recent advances in natural language modeling and
those in text generation capabilities, we propose a novel data
augmentation method for text classification tasks. We use a
powerful pre-trained neural network model to artificially syn-
thesize new labeled data for supervised learning. We mainly
focus on cases with scarce labeled data. Our method, re-
ferred to as language-model-based data augmentation (LAM-
BADA), involves fine-tuning a state-of-the-art language gen-
erator to a specific task through an initial training phase on
the existing (usually small) labeled data. Using the fine-tuned
model and given a class label, new sentences for the class
are generated. Our process then filters these new sentences
by using a classifier trained on the original data. In a series
of experiments, we show that LAMBADA improves classi-
fiers’ performance on a variety of datasets. Moreover, LAM-
BADA significantly improves upon the state-of-the-art tech-
niques for data augmentation, specifically those applicable to
text classification tasks with little data.

1 Introduction

Text classification (Sebastiani 2002), such as classification
of emails into spam and not-spam (Shams 2014), is a
fundamental research area in machine learning and natu-
ral language processing. It encompasses a variety of other
tasks such as intent classification (Kumar et al. 2019), senti-
ment analysis (Tang, Qin, and Liu 2015), topic classification
(Tong and Koller 2001), and relation classification (Girid-
hara, Mishra, and Modam 2019).

Depending upon the problem at hand, getting a good
fit for a classifier model may require abundant labeled
data (Shams 2014). However, in many cases, and especially
when developing AI systems for specific applications, la-
beled data is scarce and costly to obtain.

One example of text classification is intent classification
in the growing market of automated chatbot platforms (Col-
linaszy, Bundzel, and Zolotova 2017). A developer of an in-
tent classifier for a new chatbot may start with a dataset con-
taining two, three, or five samples per class, and in some
cases no data at all.
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Data augmentation (Wong et al. 2016) is a common strat-
egy for handling scarce data situations. It works by synthe-
sizing new data from existing training data, with the objec-
tive of improving the performance of the downstream model.
This strategy has been a key factor in the performance im-
provement of various neural network models, mainly in the
domains of computer vision and speech recognition. Specif-
ically, for these domains there exist well-established meth-
ods for synthesizing labeled-data to improve classification
tasks. The simpler methods also apply transformations on
existing training examples, such as cropping, padding, flip-
ping, and shifting along time and space dimensions, as these
transformations are usually class preserving (Krizhevsky,
Sutskever, and Hinton 2012; Cui, Goel, and Kingsbury 2015;
Ko et al. 2015; Szegedy et al. 2015).

However, in the case of textual data, such transformations
usually invalidate and distort the text, making it grammati-
cally and semantically incorrect. This makes data augmen-
tation more challenging. In fact, textual augmentation could
even do more harm than good, since it is not an easy task to
synthesize good artificial textual data. Thus, data augmenta-
tion methods for text usually involve replacing a single word
with a synonym, deleting a word, or changing the word or-
der, as suggested by (Wei and Zou 2019).

Recent advances in text generation models (Radford et
al. 2018; Kingma and Welling 2014) facilitate an inno-
vative approach for handling scarce data situations. Al-
though improving text classification in these situations by
using deep learning methods seems like an oxymoron, pre-
trained models (Radford et al. 2018; Peters et al. 2018;
Devlin et al. 2019) are opening new ways to address this
task.

In this paper, we present a novel method, referred to
as language-model-based data augmentation (LAMBADA),
for synthesizing labeled data to improve text classification
tasks. LAMBADA is especially useful when only a small
amount of labeled data is available, where its results go
beyond state-of-the-art performance. Models trained with
LAMBADA exhibit increased performance compared to:
1) The baseline model, trained only on the existing data
2) Models trained on augmented corpora generated by the
state-of-the-art techniques in textual data augmentation.
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LAMBADA’s data augmentation pipeline builds upon a
powerful language model: the generative pre-training (GPT)
model (Radford et al. 2018). This neural-network model is
pre-trained on huge bodies of text. As such, it captures the
structure of natural language to a great extent, producing
deeply coherent sentences and paragraphs. We adapt GPT
to our needs by fine-tuning it on the existing, small data.
We then use the fine-tuned model to synthesize new labeled
sentences. Independently, we train a classifier on the same
original small dataset and use it to filter the synthesized
data corpus, retaining only data that appears to be qualita-
tive enough. We then re-train the task classifier on both the
existing and the synthesized data.

We compare LAMBADA to other data augmentation
methods and find it statistically better along several datasets
and classification algorithms. We mainly focus on small
datasets, e.g., containing five examples per class, and show
that LAMBADA significantly improves the baseline in such
scenarios.

In summary, LAMBADA contributes along three main
fronts:

1. Statistically improves classifiers’ accuracy.

2. Outperforms state-of-the-art data augmentation methods
in scarce-data situations.

3. Suggests a compelling alternative to semi-supervised
techniques when unlabeled data does not exist.

The rest of this paper is structured as follows: In Sec-
tion 2, we present related work for the state-of-the-art in tex-
tual data augmentation techniques and the recent advances
in generative pre-trained modeling. In Section 3, we define
the problem of data augmentation for text classification, and
in Section 4, we detail our LAMBADA method solution. In
Section 5, we describe the experiments and results we con-
ducted to analyze LAMBADA performance and to support
the paper’s main claims. We conclude with a discussion in
Section 6.

2 Related Work

Previous textual data augmentation approaches focus on
sample alteration (Kobayashi 2018; Wu et al. 2019; Wei
and Zou 2019; Mueller and Thyagarajan 2016; Jungiewicz
and Smywinski-Pohl 2019), in which a single sentence is
altered in one way or another, to generate a new sentence
while preserving the original class. One set of these ap-
proaches make local changes only within a given sentence,
primarily by synonym replacement of a word or multiple
words. One of the recent methods in this category is easy
data augmentation (EDA) (Wei and Zou 2019), which uses
simple operations such as synonym replacement and random
swap (Miller 1995). Another method, conditional BERT
contextual augmentation recently introduced in (Wu et al.
2019), proposes fine-tuned BERT (Devlin et al. 2019) for
data augmentation by carrying out a masked prediction of
words, while conditioning on the class label. Presumably,
methods that make only local changes will produce sen-
tences with a structure similar to the original ones, thus
yielding low corpus-level variability.

Other recent possible approaches to textual data aug-
mentation generate whole sentences rather than making a
few local changes. The approaches include using varia-
tional autoencoding (VAE) (Kingma and Welling 2014),
round-trip translation (Yu et al. 2018), paraphrasing (Ku-
mar et al. 2019), and methods based on generative adver-
sarial networks (Tanaka and Aranha 2019). They also in-
clude data noising techniques, such as altering words in
the input of self-encoder networks in order to generate
a different sentence (Xie et al. 2017; Zolna et al. 2017;
Li et al. 2018), or introducing noise on the word-embedding
level. These methods were analyzed in (Marivate and Sefara
2019). Although a viable option when no access to a formal
synonym model exists, they require abundant training data.

Last year, several exciting deep learning methods
(Vaswani et al. 2017) pushed the boundaries of natural lan-
guage technology. They introduced new neural architec-
tures and highly effective transfer learning techniques that
dramatically improve natural language processing. These
methods enable the development of new high-performance
deep learning models such as ELMO (Peters et al. 2018),
GPT (Radford et al. 2018), BERT (Devlin et al. 2019),
and GPT-2 (Radford et al. 2019). Common to these mod-
els is a pre-train phase, in which the models are trained on
enormous bodies of publicly available text, and a fine-tuned
phase, in which they are further trained on task-specific data
and loss functions.

When introduced, these models processed natural lan-
guage better than ever, breaking records in a variety of
benchmark tasks related to natural language processing and
understanding, as well as tasks involving text generation.
For example, when GPT was first introduced (Radford et
al. 2018), it improved the state-of-the-art in 12 benchmark
tasks, including textual entailment, semantic similarity, sen-
timent analysis, and commonsense reasoning. These models
can produce high-quality sentences even when fine-tuned on
small training data. Table 1, shows an example of a few gen-
erated sentences based on a small dataset consisting of five
sentences per class.

Class label Sentences

Flight time
what time is the last flight from san
francisco to washington dc on continental

Aircraft
show me all the types of aircraft used
flying from atl to dallas

City
show me the cities served by canadian
airlines

Table 1: Examples of generated sentences conditioned on
the class label. The generative model was trained on a small
dataset consisting of only five sentences per class.

These results suggest a counter-intuitive text classification
approach: is it possible to fine-tune a pre-trained model and
use it to generate new high-quality sentences that will im-
prove the performance of a text classifier?
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3 Problem Definition

Text classification is an instance of the supervised learn-
ing problem (Russell and Norvig 2016) over textual data.
In this context, we are given a training dataset Dtrain =
{(xi, yi)}

n
i=1

containing n labeled sentences. Each xi is a
string of text or, specifically, a sequence of tokens (roughly,

words) x1

i . . . x
li
i . The label yi ∈ {1, . . . , q} indicates the

class of xi among a set of q classes. Each xi is drawn in-
dependently from the entire set of strings X (that is, xi ∈
X), according to an unknown distribution on X, denoted
by PX . Moreover, we assume there is an unknown function
f : X → {1, . . . , q}, and that in Dtrain, yi = f(xi) for all
i = 1, . . . , n.

The objective of a supervised learning problem is to ap-
proximate f on the entire X , given only the dataset Dtrain.
In short, we are generalizing from the domain of Dtrain

to the entire X . Formally, a classification algorithm A re-
ceives the training dataset Dtrain, and after a training pe-
riod, it outputs a classifier function h = A(Dtrain), where
h : X → {1, . . . , q} is also known as a hypothesis. To esti-
mate the extent to which h approximates f on X , it is cus-
tomary to initially leave out both a training dataset Dtrain

and a test dataset Dtest = {(x̂i, ŷi)}
n̂
i=1

. The test dataset is
chosen randomly and has the same structure as Dtrain. Both
parts are usually drawn from a single, extensive, dataset.

There are different ways of measuring the quality of clas-
sifier h as an approximation to f using Dtest. The most
straightforward way measures the accuracy:

1

n̂

n̂∑

i=1

δ(h(x̂i), ŷi),

where δ(·, ·) is the Kronecker delta (equals 1 when both ar-
guments are equal, or 0 otherwise), and x̂i, ŷi are drawn
from the test set. When the test set is large, accuracy approx-
imates the probability of having h(x) equal f(x), namely,
PX(h(x) = f(x)). We use accuracy as an estimate of clas-
sifier performance.

Regardless of how we measure performance, if the train
set Dtrain is small, it will dramatically affect the perfor-
mance of the algorithm A. Data augmentation tries to solve
this problem by synthesizing additional training pairs that,
together with the existing dataset, better reflect the underly-
ing distribution of the data while refraining from introducing
too much noise.

Our work does not focus on the classification algorithm
per se. Rather, given a training dataset Dtrain and an al-
gorithm A, we are interested in a general method for syn-
thesizing an artificial dataset, Dsynthesized. We aim to ap-

ply algorithm A on Dtrain ∪Dsynthesized, denoted by h̄ =
A(Dtrain ∪Dsynthesized), to yield a relatively good classi-
fier that outperforms the baseline classifier h.

In the following section, we describe our method,
LAMBADA, and exactly how we obtain Dsynthesized

from Dtrain and A. LAMBADA is specifically tailored to
the case of small training sets, even miniscule ones, with
only a few examples per class.

4 LAMBADA Method

We introduce a novel method for improving the performance
of textual classification. Named LAMBADA for its use of
Language Model Based Data Augmentation, this method
adds more synthesized, weakly-labeled data samples to a
given dataset. We define the method in Algorithm 1 and
elaborate on its steps in the following section. LAMBADA
has two key ingredients: 1) model fine-tuning (step 2), which
synthesizes labeled data and 2) data filtering (step 4), which
retains only high-quality sentences.

Algorithm 1: LAMBADA

Input: Training dataset Dtrain

Classification algorithm A
Language model G
Number to synthesize per class N1, . . . , Nq

1 Train a baseline classifier h from Dtrain using A
2 Fine-tune G using Dtrain to obtain Gtuned

3 Synthesize a set of labeled sentences D∗ using Gtuned

4 Filter D∗ using classifier h to obtain Dsynthesized

5 return Dsynthesized

Input The main input to LAMBADA is a training
dataset Dtrain, which we would like to augment with syn-
thesized data. Dtrain contains a set of sentences, each la-
beled with a class. To train a classifier, we use a training al-
gorithm A. As far as the LAMBADA method is concerned,
A is arbitrary. However, LAMBADA synthesizes data for
the algorithm A, and this is given as a second input to LAM-
BADA. This is a distinctive feature of our method. We de-
scribe both Dtrain and A in Section 3.

LAMBADA uses a pre-trained language model G to
synthesize new data. A language model (Bengio et al.
2003) provides an estimate for the probability that a to-
ken (word) will appear, in accordance with a given distri-
bution of text Ptext, conditioned on the preceding and/or
succeeding tokens. More formally, given a token w, and the
preceding k tokens (or less) w1, . . . , wk, one would like
G(w|w1, . . . , wk) to approximate the conditional probabil-
ity Ptext(w|w

1, . . . , wk) of the appearance of w in accor-
dance with Ptext. G is usually calculated using a concrete
corpus of text U , sampled from distribution Ptext.

In contrast to A, G is far from being arbitrary. We use
GPT-2, a recent pre-trained neural-network model (see Sec-
tion 2), and show that our method outperforms state-of-the-
art classifiers in our main use case, where Dtrain is scarce.

GPT-2 is pre-trained on an enormous body of text avail-
able on the web. The corpus is organized as a long sequence
of tokens, denoted by U = w1 · · · wj · · ·. GPT-2, like GPT,
is a right-to-left model based on the transformer architecture
(Vaswani et al. 2017). It is pre-trained on U with loss defined
by

Jθ = −
∑

j

logPθ(w
j |wj−k, . . . , wj−1) (1)

where θ is the set of learnable parameters in the neural net-
work of GTP2, and Pθ is the trained language model: an

7385



estimate of the conditional probability distribution on the
set of tokens, as calculated by the network. Specifically, we
take G = Pθ∗ , where θ∗ indicates the state of the learnable
parameters after pre-training. Nonetheless, from a technical
standpoint, the language model and its underlying technol-
ogy can differ to a great extent, and it is thus presented as a
third input to LAMBADA. As final input in addition to the
training set, classification set, and language model LAM-
BADA is given the number of labeled sentences to synthe-
size per class N1, . . . , Nq .

Step 1: Train baseline classifier We train a baseline clas-
sifier h = A(Dtrain) using the existing data Dtrain. This
classifier will be used for filtering in Step 4.

Step 2: Fine-tune language model Independently of
Step 1, we fine-tune the language model G to the task of
synthesizing labeled sentences, to obtain the fine-tuned lan-
guage model Gtuned. Here, G is specifically fine-tuned to the
linguistic domain of Dtrain (that is, the sentences, vocabu-
lary, style, etc.), as well as the particular classes in Dtrain.
Generally speaking, we would like to use Gtuned to generate
a sentence set of any size, and each sentence labeled with a
class.

In our case, G is the neural model of GPT-2. We fine-tune
GPT-2 by training it with the data in Dtrain = {(xi, yi)}

n
i=1

.
We concatenate the sentences in Dtrain in order to

form U∗, in the following way:

U∗ = y1SEPx1EOSy2SEPx2EOSy3 · · · ynSEPxnEOS (2)

Here, the auxiliary token SEP separates between a class label
and a corresponding sentence, while token EOS terminates
a sentence, and separates it from the label that follows. We
further train the learnable parameters of GPT-2 to predict the
next token in the exact same way GPT-2 was pre-trained –
using the loss function in Equation 1 (with the same training
procedure and hyperparameters). However, we use U∗ in-
stead of U , and the learnable parameters are already initial-
ized. The resulting language model is referred to as Gtuned.

Step 3: Synthesize labeled data Given Gtuned, new la-
beled sentences can be synthesized. For any class label
y ∈ {1, . . . , q}, we can use the adapted language model to
predict the continuation of the sequence “y SEP” until EOS,
which terminates the generated sentence. This way, for each
class, any number of sentences may be synthesized. For ex-
ample, this allows us to balance between the classes or other-
wise control the ratio of generated sentences per class. Cre-
ating a more balanced training set can improve classification
performance, especially in the case of classifiers that are sen-
sitive to unbalanced classes.

In this step, we synthesize a set of labeled sentences,
which is denoted by D∗ = {(x′

i, y
′

i)}
N
i=1

. We use a simple
and rather crude heuristic, where we generate for each class
y, 10 times more sentences than we wish to add to the class
(i.e., 10Ny). Accordingly, the total number of generated sen-
tences is N = 10

∑q

y=1
Ny . Of course, more sophisticated

heuristics can also be examined.

GPT-2 generates labeled sentences that are typically both
high quality and diverse, facilitating the relative success of
our method. This is also where the power of GPT-2 comes
into play.

Step 4: Filter synthesized data One obstacle in using
synthesized text is the noise and error it may introduce. In
the last step, we filter the data in D∗, which was synthesized
by Gtuned in Step 3, leaving only the instances of the highest
quality. We do this using the classifier h that was trained in
Step 1.

For each class y, we take the top Ny sentences from D∗

that are labeled by y, as follows: Given a synthesized sen-
tence (x, y) ∈ D∗, we first verify that h(x) = y, and then
use h confidence score (see below) as a rank for (x, y). That
is, we take the top ranked Ny sentences for class y. This re-
sults in a synthesized dataset Dsynthesized ⊆ D∗, consisting
of labeled sentences and with the same structure as Dtrain.
This is the outcome of LAMBADA.

The confidence score given to a data instance by h can be
regarded as the extent the instance is conservative with re-
spect to h. In turn, h takes into account both Dtrain and
the algorithm A that is to be used with the augmented
dataset. This approach is borrowed from semi-supervised
learning (Shams 2014), where it is used to classify and fil-
ter unlabeled data in a conservative manner. Note, however,
that Gtuned generates sentences conditioned on a class la-
bel. In our case, this means we have a type of double voting
mechanism.

While not addressed in this paper, the process described
could generally be repeated by applying LAMBADA fur-
ther on Dtrain ∪ Dsynthesized to obtain D′

synthesized,

D′′

synthesized, and so on.

5 Experimental Results

We tested our method with three different classifiers (BERT,
SVM and LSTM) on three distinct datasets (ATIS, TREC,
and WVA) by running multiple experiments in which we
varied the amount of training samples per class. Next, we
compared LAMBADA to other data augmentation methods
(CVAE, EDA, and CBERT) by using the above-mentioned
classifiers and datasets. We statistically validated our results
with the McNemar test (McNemar 1947; Dror et al. 2018).

Datasets

Table 2 presents a description of the datasets we used in our
experiments.

Name Domain # Classes Size

ATIS Flight reservations 17 4.2k

TREC Open-domain questions 50 6k

WVA Telco Customer support 87 17k

Table 2: Datasets.
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• Airline Travel Information Systems (ATIS)1 A dataset
providing queries on flight-related information widely
used in language understanding research. ATIS is char-
acterized as an imbalanced dataset, as most of the data
belongs to the flight class.

• Text Retrieval Conference (TREC)2 A well-known
dataset in the information retrieval community for ques-
tion classification consisting of open-domain, fact-based
questions, divided into broad semantic categories.

• IBM Watson Virtual Assistant (WVA) A commercial
dataset used for intent classification, comprising data for
training telco customer support chatbot systems.

We mainly focus on topic classification datasets with the
task of classifying a sentence, not an entire document. No-
tably, classification of shorter text is considered a more dif-
ficult task. We randomly split each dataset into train, vali-
dation, and test sets (80%, 10%, 10%). We then randomly
chose from the training set a subset including 5, 10, 20, 50,
or 100 samples per class, which we used in each experi-
ment for training. Once determined, we used the same subset
throughout all experiments.

Classifiers

We demonstrated that our augmentation approach is inde-
pendent of the classification algorithm by inspecting three
different classifiers, representing three text classification
“generations”.

SVM Support Vector Machine classifiers were already
commonly used before the deep neural network era. We
employ a commercial SVM classifier (IBm Watson Natural
Language Classifier) dedicated to natural language process-
ing, which handles both the feature extraction process and
the training of the classifier. While recent models are based
on neural networks, in the context of our problem, SVM may
have an advantage, since unlike neural-network-based mod-
els, it performs well even for relatively small datasets.

LSTM Long Short Term Memory represents the type of
classifiers that emerged after the advances in training recur-
rent neural networks, and the introduction of word embed-
dings (Mikolov et al. 2013), LSTMs are commonly used for
sequential and textual data classification. We implemented
a sequence-to-vector model based on an LSTM component
followed by two fully connected layers and a softmax layer.
For word embedding, we employed GLoVe (Pennington,
Socher, and Manning 2014) of 100 dimensions. An LSTM
classifier usually requires a large amount of data for training.

BERT Bidirectional Encoder Representations from Trans-
formers is a relatively new family of classifiers. Based on the
transformer architecture, BERT is pre-trained using two un-
supervised tasks: masked language model and next-sentence
prediction, on the “BooksCorpus” (800 million words) (Zhu
et al. 2015) and has proven state-of-the-art performance on
several text classification tasks. Therefore, BERT, like GPT-
2, leverages large amounts of data that were used as part of

1www.kaggle.com/siddhadev/atis-dataset-from-ms-cntk
2https://cogcomp.seas.upenn.edu/Data/QA/QC/

its pre-training phase, in order to perform well, even on rel-
atively small datasets.

Generative Models

We compared LAMBADA’s synthetic corpus quality to syn-
thetic corpora generated by various other generative models.
Similar to our selection of classifiers, we selected genera-
tors of various types representing different generation ap-
proaches. For a fair comparison, we mainly considered con-
ditional generative models that allow generating samples
conditioned on the class label. This enabled the creation of
balanced synthetic corpora, an important feature for some
classification models. In the following we provide a brief
description of these generators.

EDA Easy Data Augmentation (Wei and Zou 2019). This
is a recent but simple rule-based data augmentation frame-
work for text. It includes synonym replacement, random in-
sertion, random swap, and random deletion. These methods
were found beneficial, especially for small training set sizes.

CVAE Conditional Variational Autoencoder (Kingma and
Welling 2014). This generative model assumes a prior dis-
tribution over a latent space and uses deep neural networks
to predict its parameters. It is an extension of the Variational
Autoencoder model, enabling the conditional generation of
an output sentence given a latent vector and the target class.
We used a standard CVAE model with RNN-based encoder
and decoder for generating sentences.

CBERT Conditional Bidirectional Encoder Representa-
tions from Transformers (Wu et al. 2019). As a recent aug-
mentation method for labeled sentences based on BERT, this
model operates by randomly replacing words with more var-
ied substitutions predicted by the language model. CBERT is
pre-trained on a large corpus in an unsupervised setting, al-
lowing it to adapt to specific domains even when fine-tuned
through relatively small datasets.

Table 3 describes the attributes of the three generative
models mentioned above, including the GPT-2 model.

Name Type External Dataset

EDA Rule-Based Word-Net

CVAE Autoencoder -

CBERT Language Model Wiki & Book corpus

GPT-2 Language Model Web Pages

Table 3: Description of the different text generation models.

Results

We conducted comprehensive experiments, testing LAM-
BADA’s quality from various aspects. We statistically val-
idated all our results with McNemar’s test.

Number of Samples and Classifiers We compared the
LAMBADA approach with the baseline using three differ-
ent classifiers over varied numbers of trained samples: 5, 10,
20, 50, and 100 for each class. We used the ATIS dataset to
discover for which sample size our approach is beneficial.
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Figure 1: Accuracy for each sample size over ATIS

Figure 1 clearly demonstrates the superiority of our LAM-
BADA approach over the baseline throughout all classi-
fiers and all sample sizes that are smaller than or equal to
50. Larger amounts of data do not benefit as much from
data augmentation and therefore, in the case of 100 sam-
ples for each class, the accuracy of LSTM and SVM does
not improve. Figure 1 also nicely demonstrates the differ-
ences between the classifiers after training them on simi-
lar datasets with various sizes. BERT, which is a pre-trained
model, is significantly better than SVM and LSTM through-
out all sample sizes. However, the gap between the accuracy
of BERT and the other classifiers is more predominant in
smaller sample sizes. SVM handles smaller data sizes better
than LSTM, as expected. Notably, our approach was even
able to improve BERT, which is state-of-the-art for text clas-
sification and already pre-trained on vast amount of data.

Datasets We substantiate previous results by comparing
the baseline to our LAMBADA approach over three datasets
using five samples for each class. Table 4 shows that our ap-
proach significantly improves all classifiers over all datasets.

Dataset BERT SVM LSTM

ATIS
Baseline 53.3 35.6 29.0

LAMBADA 75.7 56.5 33.7
% improvement 58.5 58.7 16.2

TREC
Baseline 60.3 42.7 17.7

LAMBADA 64.3 43.9 25.8
% improvement 6.6 2.8 45.0

WVA
Baseline 67.2 60.2 26.0

LAMBADA 68.6 62.9 32.0
% improvement 2.1 4.5 23.0

Table 4: Accuracy of LAMBADA vs. baseline over all
datasets and classifiers. Significant improvement over all
datasets and all classifiers (McNemar, p−value< 0.01).

Similarly to ATIS dataset, TREC and WVA datasets also
demonstrate the dominance of BERT over SVM and LSTM.
LSTM achieves poor results when using a small number
of samples, as expected. Interestingly, on the ATIS dataset,
with BERT and SVM classifiers, the percentage of improve-

ment is far greater than on the other datasets. We believe
that this improvement is due to ATIS’ imbalanced charac-
teristics and our ability to generate additional data for the
under-represented classes.

Comparison of Generative Models We compared our ap-
proach to other leading text generator approaches. Table 5
shows that our approach is statistically superior to all other
generation algorithms in the ATIS and WVA datasets over
all classifiers. In the TREC dataset, the results for BERT
are significantly better than all other methods. On the TREC
dataset with SVM classifier, our method is on par with EDA.

Dataset BERT SVM LSTM

ATIS

Baseline 53.3 35.6 29.0
EDA 62.8 35.7 27.3

CVAE 60.6 27.6 14.9
CBERT 51.4 34.8 23.2

LAMBADA 75.7* 56.5* 33.7*

TREC

Baseline 60.3 42.7 17.7
EDA 62.6 44.8* 23.1

CVAE 61.1 40.9 25.4*
CBERT 61.4 43.8 24.2

LAMBADA 64.3* 43.9* 25.8 *

WVA

Baseline 67.2 60.2 26.0
EDA 67.0 60.7 28.2

CVAE 65.4 54.8 22.9
CBERT 67.4 60.7 28.4

LAMBADA 68.6* 62.9* 32.0*

Table 5: Accuracy of LAMBADA vs. other generative ap-
proaches over all datasets and classifiers. LAMBADA is sta-
tistically (* McNemar, p−value< 0.01) superior to all mod-
els on each classifier and each dataset (on par to EDA with
SVM on TREC).

LAMBADA vs. Unlabeled Data Our augmentation
framework does not require additional unlabeled data. As
such, it can be applied when unlabeled data is unavailable
or costly. To test the expected LAMBADA performance in
such a scenario, we compared it to a semi-supervised ap-
proach (Ruder and Plank 2018) that uses unlabeled data. Ta-
ble 6 compares between different experimental settings on
ATIS using three classifiers and five samples per class.

Classifier Base. Unlab. Unlab. LAMBADA
Data GPT

BERT 53.3 54.5 73.2 75.7*

SVM 35.6 23.5 47.2 56.5*

LSTM 29.0 40.1* 23.2 33.7

Table 6: Accuracy of LAMBADA with or without label
vs. unlabeled data for ATIS dataset with 5 samples per
class. Significant improvement for BERT and SVM classi-
fiers (*McNemar, p−value< 0.01).

To create an unlabeled dataset, we randomly selected
samples from the original dataset while ignoring their labels.
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Next, following a simple weak labeling approach, we clas-
sified the samples with one of the classifiers after training it
on the labeled dataset. We compared LAMBADA’s classifi-
cation results with the results we obtained from this classi-
fier. These results appear in the LAMBADA and Unlabeled
data columns of Table 6. Surprisingly, for most classifiers,
LAMBADA achieves better accuracy compared to a simple
weak labeling approach. Clearly, the generated dataset con-
tributes more to improving the accuracy of the classifier than
the unlabeled samples taken from the original dataset.

We may attribute this increased performance to two main
factors:

1. LAMBADA uses its “generated” labels, which signifi-
cantly improve performance.

2. LAMBADA allows us to control the number of sam-
ples per class by investing more effort in generating sam-
ples for classes that are under-represented in the original
dataset.

We further assessed the importance of the “generated”
labels by removing them from LAMBADA’s synthesized
dataset. We provide the results for this experiment under the
GPT Unlabeled column in Table 6. In future work, we plan
to use various data balancing approaches on the unlabeled
dataset to assess the importance of the second factor above.

6 Discussion and Future Work

We introduce LAMBADA for improving classifiers’ perfor-
mance. It involves fine-tuning a language model, generat-
ing new labeled-condition sentences and a filtering phase.
We showed that our method statically improves classifiers’
performance on small data sets. In addition, we showed
that LAMBADA beats the state-of-the-art techniques in data
augmentation.

Generative vs. Discriminative Generally speaking, train-
ing a generative model requires more data than training
a discriminative model (Ng and Jordan 2002). This is at-
tributed mainly to the fact that discriminative models aim
at estimating the class boundaries, while generative models
approximate the probability distribution of the samples in
each class. Therefore, prima facie, it is counter-intuitive to
employ a generative model to improve discriminative classi-
fier accuracy. All the more so, when both models are trained
on the same dataset. However, unlike discriminative models,
generative models may exploit unsupervised data to com-
pensate for the inherent higher sample complexity. Conse-
quently, and given the available abundant amount of un-
labeled textual data, language models, pre-trained on huge
corpora, have recently become state-of-the-art. Fine-tuning
these generative models requires an extremely small amount
of labeled data, as we show in this work, and sampling from
them is straightforward.

Filtering Approach LAMBADA synthesizes data in two
steps. It first generates a large number of sentences per class
and then filters them by multiple conditions. In this work,
we employ a simple filtering heuristic, inspired by the semi-
supervised paradigm that takes into account: 1) the class la-
bel of the generated sentence 2) the class label as given by

the filtering classifier, together with its confidence score and
3) the number of sentences per class. We plan to further in-
vestigate other filtering heuristics and approaches in future
work.

Weak Labeling and Self-Supervision LAMBADA syn-
thesizes corpora of weakly labeled data by conditionally
generating sentences on a given class’ label. Thus, one may
incorporate a LAMBADA synthesized corpus within any
weak labeling or semi-supervised framework such as one of
these suggested by (Ruder and Plank 2018). Moreover, one
may use a synthesized corpus in situations where unlabeled
data is not available and still expect comparable results.

Zero-shot Learning Most textual datasets contain class
names with semantic meaning. LAMBADA, an approach
based on a language model, utilizes this class label mean-
ing in its generation process. Consequently, it enables syn-
thesizing samples for any meaningful, domain-related, class
name. It thus potentially allows the generation of samples
for unseen classes, a method also known as zero-shot learn-
ing (Socher et al. 2013). We plan to investigate this idea in
future research.

Iterative Training Process While a single step of the aug-
mentation process may sufficiently improve the classifier, as
shown in this paper, there is no real impediment to repeat the
process by running several iterations of Algorithm 1. One of
the possible hazards that the repetition of this process may
cause is data drifting, in which biased synthesized samples
gain domination over the training dataset.
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