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Summary

1. Ecological count data (e.g. number of individuals or species) are often log-transformed to satisfy

parametric test assumptions.

2. Apart from the fact that generalized linear models are better suited in dealing with count data, a

log-transformation of counts has the additional quandary in how to deal with zero observations.

With just one zero observation (if this observation represents a sampling unit), the whole data set

needs to be fudged by adding a value (usually 1) before transformation.

3. Simulating data from a negative binomial distribution, we compared the outcome of fitting mod-

els that were transformed in various ways (log, square root) with results from fitting models using

quasi-Poisson and negative binomial models to untransformed count data.

4. We found that the transformations performed poorly, except when the dispersion was small and

the mean counts were large. The quasi-Poisson and negative binomial models consistently per-

formedwell, with little bias.

5. We recommend that count data should not be analysed by log-transforming it, but instead mod-

els based on Poisson and negative binomial distributions should be used.
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Introduction

Ecological data are often discrete counts – the number of indi-

viduals or species in a trap, quadrat, habitat patch, on an

island, in a nature reserve, on a host plant or animal, the num-

ber of offspring, the number of colonies or the number of seg-

ments on an insect antenna. Densities of individuals are often

counts too: a count in an area of unit size (in the analysis

of these data, the actual area of a count can be included as an

offset; see below). Even though textbooks on statistical meth-

ods in ecology (e.g. Sokal & Rohlf 1995; Zar 1999; Crawley

2003; Maindonald & Braun 2007) recommend the use of the

square-root transformation to normalize count data, such data

are often log-transformed for subsequent analysis with para-

metric test procedures (e.g. Gebeyehu & Samways 2002; Ma-

gura, Tóthmérész, & Elek 2005; Cuesta et al. 2008). The

reasons for this (log-transforming count data) are not clear but

perhaps has to dowith the common use of log-transformations

on all kinds of data, and the fact that textbooks usually deal

with the log-transformation first, before evaluating other

transformation techniques.

The main purpose of a transformation is to get the sampled

data in line with the assumptions of parametric statistics (such

as anova, t-test and linear regression) or to deal with outliers

(see Zuur, Ieno, & Smith 2010; Zuur, Ieno, & Elphick 2009a).

These assumptions include that the residuals from a model fit

are normally distributed with a homogeneous variance. In

addition, regression assumes that the relationship between the

covariate and the expected value of the observation is linear.

Classical parametric methods deal with continuous response

variables (weights, lengths, concentrations, volumes and rates)

with few ‘zero’ observations. As such, a log-transformation

may successfully ‘normalize’ such continuous data for use in

parametric statistics.

Discrete response variables, such as count data, on the other

hand, often contain many ‘zero’ observations (see Sileshi,

Hailu, &Nyadzi 2009) and are unlikely to have a normally dis-

tributed error structure. The question arises: can, or should,

count data that include zeroes be transformed to approximate

normality to be subject to parametric statistics?Maindonald &

Braun (2007) argued that generalized linear models (GLMs)

have largely removed the need for transforming count data,

yet the practice is still widespread in the ecological literature

(see above).

Classically, response variables are transformed to improve

two aspects of the fit: linearity of the response and homogene-

ity of the variance (homoscedasticity). This can be done in an

exploratory manner (e.g. Box & Cox 1964), but transforma-

tions often have sensible interpretations, e.g. the log-transfor-

mation implies that the mechanisms are multiplicative on the
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scale of the raw data. Clearly, there is no reason to expect that

a single transformation will behave optimally for both linearity

and homoscedasticity; so, some compromise is often needed.

More recently, GLMs have been developed (McCullagh &

Nelder 1989). These allow the analyst to specify the distribu-

tion that the data are assumed to have come from, which

implicitly defines the relationship between the mean and vari-

ance. They can be chosen based on an understanding of the

underlying process that is assumed to have generated the data,

e.g. a constant rate of capture of individual members of a large

population implies a Poisson distribution. If the capture rate

varies randomly the data look clumped, with more zeroes but

also more sites with large counts. In generalized linear model-

ling terminology this is ‘overdispersion’, which can be handled

in several ways, the most popular of which is by specifying the

response as coming from a quasi-Poisson or negative binomial

distribution.

Here, we are interested in comparing how well the two

approaches work when analysing count data. An additional

wrinkle with the traditional approach of log-transforming is

that log(0) = )¥; so, a value (usually 1) is added to the count

before transformation. We are not aware of any justification

for adding 1, rather than any other value, and this may bias the

fit of themodel. Zeroes do not present any problems inGLMs,

as there it is the expected value that is log-transformed.

Zeroes can also be handled by using zero inflated models

(e.g. Sileshi et al. 2009; Zuur et al. 2009, chapter 11, Zuur,

Ieno, & Elphick 2010). When modelling counts, both zero

inflated models and overdispersed models can account for a

large number of zero counts, and there may be little advantage

in fitting the zero inflatedmodel.

To address this problem of data transformation, we simu-

lated data from a negative binomial distribution (as count data

in ecology are often clumped, producing an expected variance

that is greater than the mean, see McCullagh & Nelder 1989;

White & Bennetts 1996; Dalthorp 2004), which we then sub-

jected to various transformations [square root and log(y + n)].

The transformed datawere analysed using parametricmethods

and comparedwith an analysis of untransformed data inwhich

the response variable was defined as following either a Poisson

distribution with overdispersion (i.e. a quasi-Poisson distribu-

tion) or a negative binomial error distribution.

Generalized linear models

A GLM is an extension of the well-known linear models,

like regression and anova (O’Hara 2009). The key idea is

that, like linear models, the expected value of a data point

(i.e. its mean, which we can call l) is modelled as the sum –

called a linear predictor – of different terms. A linear model

assumes that the data point comes from a normal distribu-

tion, with this sum as the mean. A GLM extends this by,

firstly, allowing more distributions than a normal to be used.

For count data, the Poisson distribution is used as a good

model of the data. Then, a function of the linear predictor is

used as the mean of the distribution. So, for count data, yi,

for the ith observation we have

yi � PoissonðkiÞ eqn 1

log ki ¼ li: eqn 2

Here, log( ) is the function that links the linear predictor

to the expected value of the data point: it is called a link

function. If we had a single continuous covariate x (for

example), li might be

li ¼ aþ bxi; eqn 3

exactly as in a simple regression. This is equivalent to a

multiplicative model for ki, i.e.

ðkiÞ ¼ eaþbxi ¼ eaðexiÞb: eqn 4

If we were interested in estimating the density (d) of indi-
viduals in a plot of area a, the expected (mean) number in

the plot would be ad. Then, comparing with Eqn (4), we

see that the density is ea, and the area is exb. Hence, we

can estimate the density by ‘regressing’ against log(a)

using eqn (3), fixing b = 1: this is called using log(a) as

an offset.

One further point needs to be clarified. The Poisson distri-

bution assumes that the mean and variance are equal. Real

data do not follow this, and the variance (v) is often much

larger than the mean (k). This biological reality – called over-

dispersion – can be incorporated into a model in several

ways. These all estimate the amount of extra variation but

make different assumptions about how this extra variation

scales with the mean. Here, we use a quasi-Poisson distribu-

tion, which assumes v = rk, and the negative binomial dis-

tribution, which assumes v = k + k2 ⁄h (r and h are both

overdispersion parameters). Ver Hoef & Boveng (2007) pro-

vide a more detailed discussion and comparison of these

assumptions.

Materials and methods

Data sets were simulated from a negative binomial distribu-

tion, with different values of h (h = 0Æ5, 1, 2, 5, 10, 100). Low h
(also termed k, see fig. 2 inWright 1991) indicates greater vari-

ance in the data, i.e. stronger clumping. For each simulation,

100 data points were simulated at each of 20 mean values, k
(k = 1,…, 20). Five hundred replicate simulations were car-

ried out for each value of h.
The data were analysed assuming that the mean was a fac-

tor, with each mean being a different level. Models were fitted

making the following assumptions about the response, y:

1 y follows a negative binomial distribution

2 y follows a Poisson distribution with overdispersion

3 sqrt(y) transformation follows a normal distribution

4 log10(y + 0Æ001) transformation follows a normal distri-

bution

5 log10(y + 0Æ1) transformation follows a normal distribu-

tion

6 log10(y + 0Æ5) transformation follows a normal distribu-

tion

7 log10(y + 1) transformation follows a normal distribution
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The simulations were compared by calculating the mean

bias,B:

B ¼ 1

S

Xs

i¼1
l̂� l

and root mean-squared error (RMSE):

RMSE ¼ 1

S

Xs

i¼1
l̂� l2

for the simulations, where l̂ is the estimated parameter, l
is the true value (known from the simulations) and S is

the number of simulations. We calculated these on the log

scale, i.e. l = log(k). This is the scale on which the

parameters are estimated in all of the models except the

square-root transformation; so, for the latter model we

transformed the parameters onto the log scale.

Simulations and analyses were carried out in theR statistical

program (R Development Core Team 2009), using the MASS

(Vernables & Ripley 2002) package. The code that was used is

available as an online supplement (Appendix S1 in Supporting

Information).

Results

The proportion of counts that were zero are shown in Fig. 1.

Naturally, the proportion decreases as the mean increases, and

it also decreases as the variance (controlled by h) decreases.
The biases for the different estimation methods are plotted

in Fig. 2 (the quasi-Poisson and negative binomial models

behave similarly; so, only the latter is presented; see below).

The negative binomial model has negligible bias, whereas the

models based on a normal distribution are all biased, particu-

larly at low mean values and high variances. The square-root

transformation has a lower bias than any of the log-transfor-

mations, unless themean is low.

The amount of bias also depends on the transformation

used. When there is little variation (i.e. high h, when the nega-

tive binomial distribution approaches the Poisson), the square-

root transformation has little bias, as does the log-transforma-

tion when the mean is high, i.e. there are few zeroes (compare

with Fig. 1).

The root mean-squared error shows a similar pattern, with

the negative binomial distribution consistently having a low

RMSE, and a high value added to the log-transformation

being better (Fig. 3). The behaviour of the log + 1 transfor-

mation is a result of a change in sign of the bias, with the mini-

mum at the point where the mean bias is zero (compare with

Fig. 2).

The difference between the negative binomial and quasi-

Poisson distribution models is insignificant. The largest abso-

lute difference in bias was 2Æ4 · 10)8, and the largest RMSE

was only 1Æ1 · 10)8, both of which are much smaller than the

scales in Figs 2 and 3.

Discussion

When the error structure of data is simple, a transformation

(usually a log or power-transformation) can be quite useful to

improve the ability of a model to fit to the data by stabilizing

variances or by making relationships linear (Miller 1997; Pie-

pho 2009) before applying simple linear regression.However, a

transformation is not guaranteed to solve these problems:

there may be a trade-off between homoscedasticity and linear-

ity, or the family of transformations used may not be able to

correct one or both of these problems. Different models may

therefore need to be applied, and there is now a wide variety of

possibilities, of which GLMs and their derivatives (McCullagh

&Nelder 1989) are themost popular.

For count data, our results suggest that transformations per-

form poorly. An additional problem with regression of trans-

formed variables is that it can lead to impossible predictions,

such as negative numbers of individuals. Instead statistical pro-

cedures designed to deal with counts should be used, i.e. meth-

ods for fitting Poisson or negative binomial models to data.

The development of statistical and computational methods

over the last 40 years has made it easier to fit these sorts of

models, and the procedures for doing this are available in any

serious statistics package.

It is perhaps not surprising that fitting the correct model to

the data (i.e. the samemodel thatwas used to simulate the data)

gives the best result; what is more interesting is that there is a

difference in performance of the models (see also Jiao et al.

2004). This suggests that the choice of model does make a dif-

ference, and we would suggest that a model based on counts is

more sensible, as it is easier to interpret, and avoids the prob-

lems of decidingwhich transformation to use. Themodel is also

more explicit, in the sense that the process that leads to a

Poisson distribution of counts is clear (i.e. sampling with a uni-

form rate of capture), and is likely to provide a more accurate
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Fig. 1. Proportion of values equal to zero in simulations from a neg-

ative binomial distribution. h controls the dispersion (clumping) in

the data: a larger value of hmeans lower dispersion.

120 R. B. O’Hara & D. J. Kotze

� 2010 The Authors. Journal compilation � 2010 British Ecological Society, Methods in Ecology & Evolution, 1, 118–122



foundation for the model. The extra variability that can be

added canbe chosen according to theway it affects the relation-

ship between the mean and variance (Ver Hoef & Boveng

2007).

In our simulations, the Poisson and negative binomial mod-

els gave almost identical estimates. This suggests that the mod-

els are robust to a mis-specification of the relationship between

the mean and variance. In contrast, Ver Hoef & Boveng (2007)

gave an example from a real data set where they differed in

their predictions. Whilst their data set is unusual (as they

acknowledge), it does serve as a warning that our result may

not generalize to real data, which rarely has as balanced a

design as our simulations. The two models differ in their rela-

tionships between the mean and variance; so, if distinguishing

them becomes important, this can be done by plotting

(yi ) ki)
2 against ki: it will be linear for a quasi-Poisson model
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the method will, on average, return the ‘true’ value. Note that the curves for a quasi-Poisson model would be indistinguishable from a negative
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but quadratic for a negative binomial model. A clear curve in

the plot would therefore suggest that a negative binomial

model will provide a better fit. In practice, it is probably advis-

able to bin the data, i.e. calculate the average mean values and

variances for data points with similar mean values, as this will

make the plots lessmessy (VerHoef &Boveng 2007).

Even though the choice of the type of GLM depends on

many things (O’Hara 2009; Zuur, Ieno & Elphick 2010), we do

recommend that count data not be transformed to be used in

parametric tests. For such data, GLMs and their derivatives

aremore appropriate.
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