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Abstract 32 

Background 33 

Prediction of pregnancy-related disorders is mostly done based on established and easily 34 

measured risk factors. However, these measures are at best moderate at discriminating between 35 

high and low risk women.  Recent advances in metabolomics may provide earlier and more 36 

accurate prediction of women at risk of pregnancy-related disorders.  37 

Methods and Findings 38 

We used data collected from women in the Born in Bradford (BiB; n=8,212) and UK 39 

Pregnancies Better Eating and Activity Trial (UPBEAT; n=859) studies to create and validate 40 

prediction models for pregnancy-related disorders. These were gestational diabetes mellitus 41 

(GDM), hypertensive disorders of pregnancy (HDP), small for gestational age (SGA), large for 42 

gestational age (LGA) and preterm birth (PTB). We used ten-fold cross-validation and 43 

penalised regression to create prediction models. We compared the predictive performance of 44 

1) risk factors (maternal age, pregnancy smoking status, body mass index, ethnicity and parity) 45 

to 2) nuclear magnetic resonance-derived metabolites (N = 156 quantified metabolites, 46 

collected at 24-28 weeks gestation) and 3) risk factors and metabolites combined. The multi-47 

ethnic BiB cohort was used for training and testing the models, with independent validation 48 

conducted in UPBEAT, a study of obese pregnant women of multiple ethnicities.  49 

In BiB, discrimination for GDM, HDP, LGA and SGA was improved with the addition of 50 

metabolites to the risk factors only model. Risk factors area under the curve (AUC 95% 51 

confidence interval (CI)):  GDM (0.69 (0.64, 0.73)), HDP (0.74 (0.70, 0.78)) and LGA (0.71 52 

(0.66, 0.75)), and SGA (0.59 (0.56,0.63)). Combined AUC 95% (CI)): GDM (0.78 (0.74, 53 

0.81)), HDP (0.76 (0.73, 0.79)) and LGA (0.75 (0.70, 0.79)), and SGA (0.66 (0.63,0.70)). For 54 
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GDM, HDP, LGA, but not SGA, calibration was good for a combined risk factor and 55 

metabolite model. Prediction of PTB was poor for all models. Independent validation in 56 

UPBEAT at 24-28 weeks and 15-18 weeks gestation confirmed similar patterns of results, but 57 

AUC were attenuated. A key limitation was our inability to identify a large general pregnancy 58 

population for independent validation. 59 

Conclusions 60 

Our results suggest metabolomics combined with established risk factors improves prediction 61 

GDM, HDP and LGA, when compared to risk factors alone. They also highlight the difficulty 62 

of predicting PTB, with all models performing poorly.  63 

Abbreviations: GDM, gestational diabetes mellitus; HDP, hypertensive disorders of 64 

pregnancy; SGA, small for gestational age; LGA, large for gestational age; PTB, preterm 65 

birth; BMI, body mass index, BiB, Born in Bradford; UPBEAT, UK Pregnancies and Better 66 

Eating Activity Trial; AUC, Area under the curve; NMR, nuclear magnetic resonance  67 

  68 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 22, 2020. ; https://doi.org/10.1101/2020.06.22.20134650doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.22.20134650


 

4 

 

Author Summary  69 

Background 70 

• Current methods used to predict pregnancy-related disorders exhibit modest 71 

discrimination and calibration.  72 

• Metabolomics may enable improved prediction of pregnancy-related disorders.  73 

Why Was This Study Done? 74 

• We require tools to identify women with high-risk pregnancies earlier on, so that 75 

antenatal care can be more appropriately targeted at women who need it most and 76 

tailored to women’s needs and to facilitate early intervention.  77 

• It has been suggested that metabolomic markers might improve prediction of future 78 

pregnancy-related disorders. Previous studies tend to be small and rarely undertake 79 

external validation.  80 

What Did the Researchers Do and Find? 81 

• Using BiB (8,212 pregnant women of multiple ethnicities), we created prediction 82 

models, using established risk factors and 156 NMR-derived metabolites, for five 83 

pregnancy-related disorders. These were gestational diabetes mellitus (GDM), 84 

hypertensive disorders of pregnancy (HDP), small for gestational age (SGA), large for 85 

gestational age (LGA) and preterm birth (PTB). We sought external validation in 86 

UPBEAT (859 obese pregnant women). 87 

• We compared the predictive discrimination (area under the curve - AUC) and 88 

calibration (calibration slopes) of the models. The prediction models we compared were 89 
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1) established risk factors (pregnancy smoking, maternal age, body mass index (BMI), 90 

maternal ethnicity and parity) 2) NMR-derived metabolites measured in the second 91 

trimester and 3) a combined model of risk factors and metabolites.  92 

• Inclusion of metabolites with risk factors improved prediction of GDM, HDP, LGA 93 

and SGA in BiB. Prediction of PTB was poor with all models. Result patterns were 94 

similar in validation using UPBEAT, particularly for GDM and HDP, but AUC were 95 

attenuated.  96 

What Do These Findings Mean? 97 

• These findings indicate that combining current risk factor and metabolomic data could 98 

improve the prediction of GDM, HDP, LGA and SGA. These findings need to be validated 99 

in larger, general populations of pregnant women. 100 

 101 
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Introduction 116 

Around 40% of all pregnancies are complicated by one or more of gestational diabetes (GDM), 117 

hypertensive disorders of pregnancy (HDP), small or large for gestational age (SGA, LGA) 118 

and preterm birth (PTB). These pregnancy-related disorders have adverse short- and long-term 119 

consequences for mother and child 1-7. Established risk factors for pregnancy-related disorders 120 

include pregnancy smoking, maternal age, body mass index (BMI), maternal ethnicity and 121 

parity 6, 8-12. However, a large proportion of disorders occur in women without any known risk 122 

factors. Current identification of women who are ‘high-risk’ uses clinical screening of these 123 

risk factors, sometimes in combination with early pregnancy measures of glucose for GDM 13, 124 

blood pressure for PE 6, ultrasound for SGA and LGA 14 and cervical length measurement/fetal 125 

fibronectin for (PTB) 15. However, whilst glucose measures in early pregnancy can identify 126 

women with undiagnosed existing diabetes, neither it, nor established risk factors in early 127 

pregnancy, predict GDM risk accurately 16. Ultrasound has poor consistency, is prone to human 128 

error and often fails to identify SGA or LGA babies until very late in pregnancy 17. Cervical 129 

length and fetal fibronectin have improved the prediction of PTB, but are invasive and only 130 

predict ‘imminent’ preterm birth in women where this is suspected 15.  131 

These pregnancy-related disorders often co-occur, with women with GDM more likely to have 132 

pregnancies complicated by hypertension or pre-eclampsia (PE), and their offspring being born 133 

LGA 2. Similarly, women with HDP are more likely to have their offspring born SGA or 134 

preterm 5. However, most research focuses on single outcomes. This multimorbidity should be 135 

addressed to see if a common prediction tool, or a tool with an overlap of variables can be 136 

developed for predicting global risk of several pregnancy-related disorders. It may also enable 137 

identification of women likely to have a healthy pregnancy 18 19, 20 138 

Metabolites might improve prediction of pregnancy-related disorders. Metabolite levels are 139 

known to change markedly during pregnancy 21, 22, associate with cardio-metabolic outcomes 140 
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(known correlates of pregnancy-related disorders) 18, and with pregnancy-related disorders in 141 

some studies 23. Most studies exploring the value of metabolomics in predicting pregnancy-142 

related disorders have focused on GDM, PE or SGA. The most notable omics predictor that 143 

has been identified to date is soluble fms-like tyrosine kinase 1 (sFlt-1) and placental growth 144 

factor (P1GF) ratio for predicting PE. sFlt-1:P1GF is an accurate predictor of PE in both low 145 

and high-risk pregnant women 24. With respect to metabolite prediction, two studies reported 146 

excellent predictive discrimination for SGA (AUC > 0.90) - one study which developed a 147 

metabolomic model of five metabolites 25 and another of 19 metabolites 26. However, these 148 

were based on small samples of 83 and 8 women, respectively. Similarly, a study reported that 149 

a panel of four mass-spectrometry derived metabolites could predict spontaneous PTB with a 150 

partial AUC (i.e. an alternative to AUC, whereby only the regions of ROC space where data 151 

are observed are included) of 12.6 in 105 women 27. These studies did not compare their models 152 

to existing risk factors or undertake external validation. A systematic review of metabolomic 153 

prediction of SGA identified 15 studies 28. Of these, only three were designed for prediction 154 

purposes and provided any metric of prediction. Two of these three had sample sizes of 80 and 155 

83 women. None of them sought external validation. For GDM, nuclear magnetic resonance 156 

(NMR)-derived metabolites have been found to distinguish between women who did and did 157 

not go on to develop GDM, when looked at in early pregnancy. However, discrimination did 158 

not improve when added to a risk prediction model of candidate biomarkers29.  159 

A recent collaboration between the Pregnancy Outcomes Prediction study (POPs) and the Born 160 

in Bradford (BiB) cohort (the latter used as external validation) using mass-spectrometry 161 

metabolomics (>1100 semi-quantified untargeted metabolites) has shown that 4-162 

hydroxyglutamate improves prediction of PE over risk factors alone 30.  The same collaboration 163 

found that sFlt-1:P1GF and a ratio of  combining four metabolites (1-(1-enyl-stearoyl)-2-164 

oleoyl-GPC, 1,5-anhydroglucitol,5α-androstan-3α,17α-diol disulfate and N1,N12-165 
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diacetylspermine) is a better predictor of fetal growth restriction than sFlt-1:P1GF combined 166 

with risk factors 31.  167 

In this study, we aim to see whether NMR-derived metabolites can improve the prediction of 168 

pregnancy-related disorders, over and above established risk factors (pregnancy smoking, 169 

maternal age, BMI, maternal ethnicity, and parity). We focus on the prediction of five common 170 

pregnancy-related disorders: GDM, HDP, SGA, LGA and PTB. We used two samples, 1) 171 

women in the BiB cohort, used for training and testing the prediction models and 2) obese 172 

pregnant women (BMI ≥ 30kg/m2) in the UPBEAT study, used for external validation of the 173 

prediction models. 174 

Methods 175 

Participants  176 

We used data from the BiB study, a population-based prospective birth cohort that recruited 177 

12,453 women who had 13,776 pregnancies. Full details of the study methodology were 178 

reported previously 32. In brief, most women were recruited at their oral glucose tolerance test 179 

(OGTT) at approximately 26–28 weeks gestation, which was offered to all women booked for 180 

delivery at Bradford Royal Infirmary at the time of recruitment. Eligible women had an 181 

expected delivery between March 2007 and December 2010. Ethical approval for the study 182 

was granted by the Bradford National Health Service Research Ethics Committee (ref 183 

06/Q1202/48). The UPBEAT study  was a multicentre randomised control trial (RCT) which 184 

recruited 1,555 obese pregnant women (BMI ≥ 30kg/m2) between 15-18+6 weeks gestation, at 185 

eight centres across the UK 33. UPBEAT is registered with Current Controlled Trials 186 

(ISRCTN89971375) and approvals were obtained from the UK research ethics committee (ref 187 

09/H0802/5). Local Research and Development departments in participating centres approved 188 

participation of their respective centres. All women in both studies provided written informed 189 
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consent. Figure 1 illustrates the flow of participants. To be eligible for inclusion in the analysis, 190 

all women had to have a fasting pregnancy serum sample (used for NMR metabolome 191 

profiling), information on all established risk factor predictors and all pregnancy-related 192 

disorders. This resulted in 8,212 BiB women and 859 UPBEAT women being included. We 193 

use UPBEAT here as a cohort study, including both arms of the trial combined and adjusting 194 

for which arm they were allocated to. UPBEAT is a RCT looking at the effect of a tailored 195 

lifestyle intervention aimed at improving diet and physical activity 33. The UPBEAT 196 

intervention did not influence the primary outcome of GDM, or any of the pregnancy-related 197 

disorders explored here 34. It did influence change in several lipids, fatty acids and some amino 198 

acids from the NMR platform used here 34. 199 

 200 

Figure 1: Data overview: flow of participants (above) in Born in Bradford (BiB) cohort (top left) and UK 201 
Pregnancies Better Eating Activity Trial (UPBEAT) randomised control trial (RCT) (top right) to generate the 202 
final sample for analysis. Model overview: sample split for model selection (below middle) Abbreviations: BMI, 203 
body mass index; GDM, gestational diabetes; HDP, hypertensive disorder of pregnancy, SGA, small for 204 
gestational age; LGA, large for gestational age; PTB, preterm birth.  205 

 206 

 207 
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Metabolomic profiling 208 

In both studies comprehensive metabolomic profiling was performed using high throughput 209 

targeted NMR platform (Nightingale Health (http://www.computationalmedicine.fi/), 210 

(Helsinki, Finland) run either at the University of Bristol (BiB) or Nightingale Health (under 211 

its previous name of Brainshake) (UPBEAT). Of the 13,776 pregnancies in the BiB cohort, 212 

11,476 pregnancies had a fasting serum sample taken at a single timepoint, between 24-28 213 

weeks gestation. In UPBEAT, NMR profiling was conducted at three time points during 214 

pregnancy 15-18+6 weeks, 27-28+6 weeks, 34-36 weeks gestation 33. We used the 27-28+6-215 

week timepoint for our main analyses because it matched the gestational age at which BiB 216 

samples were taken for metabolomic profiling and, like BiB, were fasting samples. The NMR 217 

platform quantified 156 metabolic traits. The targeted metabolic traits measured by the 218 

platform represent a broad molecular signature of systemic metabolism including routine 219 

lipids, lipoprotein subclass profiling, fatty acid composition, and several low-molecular 220 

metabolites, including amino acids, ketone bodies and gluconeogenesis-related metabolites, 221 

mostly in molar concentration units. A full list of all the traits is provided in Table S1.  The 222 

NMR platform has been applied in various large-scale epidemiological studies, with detailed 223 

protocol and quality control information being previously published 35, 36.  224 

Maternal pregnancy measurements  225 

For all outcomes we compared the predictive ability of the metabolomic measures in 226 

relation to a set of common predictors that are routinely used in antenatal care to risk stratify 227 

women: maternal age, early-pregnancy/recruitment BMI, parity, ethnicity and smoking during 228 

pregnancy. This information was collected during recruitment or extracted from clinical 229 

records in both studies. All pregnancies included in this study were singleton pregnancies.  In 230 

both studies data on parity were extracted from the first antenatal clinic records (around 12-231 

weeks of gestation) and categorized as having experienced one or more previous pregnancy 232 
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≥24 weeks gestation, or no previous pregnancy. Ethnicity was self-reported or obtained from 233 

primary care medical records. It was categorised using UK Office of National Statistics criteria: 234 

1) White European (‘White British’ or ‘White European’); 2) South Asian (‘Pakistani’, ‘Indian’ 235 

or ‘Bangladeshi’); 3) Caribbean or African (‘Afro-Caribbean’ or ‘African’) or 4) Other. 236 

Information on maternal age and smoking were obtained at recruitment (24-28 weeks gestation 237 

in BiB and 15-18+6 weeks in UPBEAT) via researcher interview. Smoking was dichotomised 238 

as any smoking during pregnancy. In BiB, weight was extracted from the first antenatal clinic 239 

(~12-weeks) and height measured at recruitment. In UPBEAT, weight and height were 240 

measured at recruitment (15-18+6 weeks). 241 

We examined predictive discrimination for five pregnancy-related disorders: GDM, HDP, 242 

SGA, LGA and PTB. In BiB all blood pressure measures and proteinuria measurements taken 243 

at any time during pregnancy were extracted from medical records 1. In UPBEAT these 244 

measures were taken at the participating centres. In both studies, gestational hypertension was 245 

defined as new onset of elevated blood pressure (systolic blood pressure >140 mmHg or 246 

greater, and/or diastolic blood pressure >90 mmHg or greater) after 20 weeks’ gestation on two 247 

or more occasions. PE was defined as gestational hypertension plus clinically significant 248 

proteinuria, defined as 1 or greater ‘+’ on the reagent strip reading (equivalent to 30mg/mmol) 249 

or greater on spot urine protein/creatinine ratio). We a priori decided that there were too few 250 

cases in BiB to examine prediction of PE separately from gestational hypertension so combined 251 

these to generate the ‘hypertensive disorder of pregnancy’ variable used in this study. All 252 

women in BiB and UPBEAT were offered a 75-g OGTT at 27-28 weeks of gestation. In BiB, 253 

fasting and 2hr post-load samples were collected and analysed; in UPBEAT, fasting, 1hr and 254 

2hr glucose were collected and analysed. In BiB, GDM was defined according to modified 255 

World Health Organization (WHO) criteria operating at the time of the study; fasting glucose 256 

≥ 6.1 mmol/L or 2hr post-load glucose ≥ 7.8 mmol/l 3. In UPBEAT, GDM was defined 257 
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according to the guidelines recommended by the International Association of Diabetes and 258 

Pregnancy Study Groups (IADPSG); fasting glucose ≥5.1 mmol/L, 1-hour glucose ≥ 10.0 259 

mmol/L or higher, 2hr venous glucose of ≥8.5 mmol/L) 37. In both studies, UK WHO fetal 260 

growth charts were used as the external standard for generating gestational age and sex 261 

standardised birthweight percentiles. SGA was defined as <10th percentile and LGA as >90th 262 

percentile. In both studies PTB was defined as delivery before 37 completed weeks.  263 

Statistical analysis  264 

General approach 265 

We developed three prediction models for each pregnancy-related disorder: (i) established risk 266 

factors (maternal age, early-pregnancy/recruitment BMI, parity, ethnicity and smoking during 267 

pregnancy); (ii) NMR metabolites (156 metabolite traits) and (iii) combined risk factor and 268 

metabolomics predictors. Glucose was excluded from the metabolite prediction models for 269 

GDM because the samples had been taken at the OGTT and used to diagnose GDM. All three 270 

models were developed in a random subset of 75% of BiB (training set), and discrimination 271 

and calibration assessed in the remaining 25% of BiB (testing set). External validation in 272 

UPBEAT was undertaken by assessing the performance of the models developed in the BiB 273 

training subset.  274 

Having developed models for each outcome separately, we explored the extent to which these 275 

were consistent across outcomes based on the variables included in BiB. We also explored 276 

discrimination of models developed for one outcome with other outcomes (details in 277 

‘Sensitivity analyses’, below). This was done to assess the potential of having just one or a 278 

small number of models to predict all (or several) outcomes. 279 
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Model selection 280 

We performed ten-fold cross-validation and penalised regression using the caret package in R 281 

version 3.5.1 38. To construct a model in the training subset using elastic net, an optimal lambda 282 

parameter must first be selected.  This is done by applying ten-fold cross validation to the 283 

training subset with a variety of lambda values.  The lambda with the best cross-validated 284 

performance is then used to apply elastic net to the training set to obtain a final predictive 285 

model.  The performance of this model is internally validated by applying it to the testing 286 

subset.  This process is more robust than doing just one (training and testing) analysis 39. 287 

Penalised regression is a method for selecting which variables remain in the prediction model, 288 

variables whose coefficients are closer to the null are penalised (shrunk to zero) 40-42. We used 289 

optimal values of alpha and lambda (weights used in penalising) that minimize residual 290 

variance and hence maximise prediction. These cross-validation analyses were undertaken in 291 

a randomly selected 75% subset of the BiB cohort and then internal validation performed on 292 

the remaining 25%.  293 

External validation  294 

We were unable to identify an independent study with relevant metabolomic data in a general 295 

population of pregnant women for external validation. We therefore undertook external 296 

validation in a population of obese pregnant women (UPBEAT).   297 

Assessing model discrimination and calibration for prediction of pregnancy outcomes 298 

We assessed model discrimination using AUC, ranging from no discriminative ability (0.5) to 299 

perfect discriminative ability (1). We assessed calibration (the extent to which our model 300 

predicted probability of outcomes matched observed risk) using calibration slopes. 301 

Sensitivity analysis  302 
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To explore whether the different definition of GDM in BiB and UPBEAT influenced results 303 

we estimated the AUC for our GDM model using the same OGTT criteria as those applied to 304 

BiB. We used women in UPBEAT’s individual glucose measurements to define as GDM using 305 

the criteria; fasting glucose ≥ 6.1 mmol/L or 2hr post-load glucose ≥ 7.8 mmol/l.  306 

As our external validation sample was only in obese pregnant women, we were concerned that 307 

any failure to validate might be due to differences in BMI distribution between BiB and 308 

UPBEAT. To explore this, we compared the association of BMI with the five pregnancy-309 

related disorders in 1) BiB, 2) in women in BiB with a BMI ≥ 30kg/m2 and 3) UPBEAT (where 310 

all women had BMI ≥ 30kg/m2).  This would enable us to see if there was any evidence that 311 

BMI relates differently to the outcome when only obese women were included.  312 

To evaluate whether we could use one model to predict more than one pregnancy-related 313 

disorder, we estimated the AUC for other outcomes using the models trained and tested in BiB 314 

that had an AUC >=0.6 for their specific outcome (e.g. we estimated the AUC for predicting 315 

HDP, SGA, LGA using the GDM models). 316 

In the main analyses, we used the 27-28+6-week UPBEAT timepoint for the validation to 317 

match our discovery sample. We repeated analysis in UPBEAT using the earliest timepoint 318 

(15-18+6 weeks’ gestation) of metabolite measurements and explored the correlation between 319 

the 15-18+6 - and 27-28+6-week measures.  320 

We examined prediction of spontaneous PTB, defined as those who had given birth before 37 321 

weeks, with natural onset of labour (no medical or surgical induction). As there were only 15 322 

spontaneous PTB in UPBEAT we did not seek to replicate the model that was trained and tested 323 

in BiB (n=260 spontaneous preterm).  324 

 325 

  326 
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Results  327 

Distributions of age, smoking, parity, HDP and PTB were broadly similar between the two 328 

cohorts. Differences in ethnicity reflected the sampling frame for each study. Other notable 329 

differences reflected the selection of only obese women in UPBEAT. They had higher mean 330 

BMI, and higher prevalence of GDM and LGA, but lower prevalence of SGA. The higher 331 

prevalence of GDM also reflects the different diagnostic criteria used in the two studies. 332 

Proportions remained higher in UPBEAT when the same criteria used in BiB were applied, but 333 

with a smaller difference between the two studies. 334 

 335 

 336 

 337 

 338 

 339 

 340 

 341 

 342 

 343 

 344 

 345 

 346 

 347 

 348 

 349 

 350 

 351 
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Table 1 shows the characteristics of the women in BiB and UPBEAT.  352 

Characteristic Born in Bradford, 

n=8,212 

UPBEAT,  

n=859 

Age (mean (SD)) 27(5.63) 30(5.47) 

Body mass index (mean (SD)) 26.14(5.73) 36.37(4.98) 

Smoking in pregnancy (n%)  1,420(17.3) 133(15.5) 

Nulliparous (n%)  3,382(41.2) 396(46.1) 

Ethnicity (n%)    

    White European 3,629(44.2) 573(66.7) 

    South Asian 4,085(49.7) 51(5.9) 

    Caribbean/African (Black) 152(1.9) 164(19.1) 

    Other 346(4.2) 71(8.3) 

Gestational diabetes WHO (n%)a 666(8.1) 90(10.5) 

Gestational diabetes IADSPG (n%)b / 249 (29) 

Hypertensive disorder of pregnancy (n%)   803(9.8) 79(9.2) 

Small for gestational age (n%) 1,139(13.9) 59(6.9) 

Large for gestational age (n%) 617(7.5) 102(11.9) 

Preterm birth (n%)c  430(5.2) 39(4.5) 

Spontaneous preterm birth 260(3.2) 14(1.6) 

Table 1 Data are expressed as mean (SD) or n (%) as appropriate. Data were 100% complete. Maternal age and 353 
weight/height (used to calculate body mass index (BMI)) were measured at recruitment. Smoking was defined as 354 
any smoking during pregnancy. Parity defined as this pregnancy being their first child (nulliparous) or having pr355 

eviously giving birth (multiparous). Ethnicity was based on self-report. 
a 

Gestational diabetes was diagnosed in B356 
orn in Bradford according to modified World Health Organization (WHO) criteria operating at the time of the st357 

udy. 
b 

In UPBEAT, gestational diabetes was defined according to the guidelines recommended by the Internatio358 
nal Association of Diabetes and Pregnancy Study Groups (IADSPG). We conducted a sensitivity analysis using t359 

he WHO criteria in UPBEAT to check differences were not due to different GDM criteria. 
c 

Preterm birth includ360 
es spontaneous and iatrogenic preterm birth (birth <37 weeks gestation).   361 
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Variables included in the final models for each outcome and overlap between these 362 

Table 2 shows the number of predictors retained in each model during model training in BiB. 363 

A full list of the predictors retained in any of the prediction models can be found in Tables S2-364 

S4.  365 

Outcome Model (retained predictors/total number of variables possible [%]) 

Gestational diabetes  Risk factor (5/5 [100%]) 

 
Metabolite (140/156 [90%]) 

 
Combined (152/161 [94%]) 

Hypertensive disorder of pregnancy  Risk factor (4/5 [80%]) 

 
Metabolite (50/156 [32%]) 

 
Combined (38/161 [24%]) 

Small for gestational age  Risk factor (4/5 [80%]) 

 
Metabolite (86/156 [55%]) 

 
Combined (101/161 [63%]) 

Large for gestational age  Risk factor (4/5 [80%]) 

 
Metabolite (65/156 [42%]) 

 
Combined (56/161 [35%]) 

Preterm birth Risk factor (4/5 [80%]) 

 
Metabolite (19/156 [12%]) 

 
Combined (18/161 [11%]) 

Table 2 Number of predictors retained in each model developed and tested in BiB from total possible (n(%)). 366 
Percentages are rounded to the nearest whole number.  367 

 368 

Of the total 161 variables included in the combined model, most (94%) were retained in the 369 

GD model and least (11%) in the PTB model. At least 4, of the 5, established risk factors were 370 

retained in the combined models for all outcomes. The predominant metabolite classes retained 371 

in GDM, SGA and LGA outcomes were triglycerides, monounsaturated fatty acids, and 372 

apolipoproteins.  373 

Only ten predictors were common across all models (Table S5). These were BMI, parity, 374 

smoking, ethnicity, creatinine, phenylalanine, isoleucine, glycine, valine, and glycerol.  375 
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Model discrimination and calibration  376 

Figure 2 shows the AUC for all three models with all outcomes in BiB (triangles) and UPBEAT 377 

(circles).  378 

 379 

 380 

 381 

 Figure 2 Predictive discrimination of models for each outcome AUC and 95% confidence intervals are shown 382 
for established risk factor prediction models (red), metabolite models (green) and combined risk factor and 383 
metabolite models (yellow) in Born in Bradford (BiB) (triangles) and the UK Pregnancy Better Eating Activity 384 
Trial (UPBEAT) (circles). Abbreviations: GD, gestational diabetes; HDP, hypertensive disorders of pregnancy; 385 
SGA, small for gestational age; LGA, large for gestational age; PTB, preterm birth (iatrogenic or spontaneous) 386 
(Table S6).  387 
 388 

 389 

In BiB, discrimination for GD, HDP and LGA was good (Figure 2, range of AUC for all 390 

models across these three outcomes 0.69 to 0.78) for all models and improved with the addition 391 

of metabolites to the risk factors only model, particularly for GDM (difference in AUC 392 
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(95%CI): 0.09 (0.08, 0.10), 0.02 (0.03, 0.01) and 0.04 (0.04, 0.03)), respectively for GD, HDP 393 

and LGA). Modest discrimination for the SGA risk factors only model (AUC (95%CI) 0.59 394 

(0.56-0.63)) improved when metabolites were added (AUC (95% CI) 0.66 (0.63,0.70)). For 395 

PTB discrimination was poor in all models (AUC~0.5).  396 

We evaluated calibration of the models which had performed well: GDM, HDP and LGA in 397 

BiB (Figures 3-5). As the intercepts on the slopes show, calibration is good for GD and LGA, 398 

but with some overestimation of GD and underestimation of LGA compared with the observed 399 

incidence. The combined model for HDP had the best calibration.  400 

Figure 3 shows the calibration slope for the combined model for GD.  401 

 402 
Figure 3 Calibration of combined model tested in BiB.  403 
 404 

Figure 4 shows the calibration slope for the combined model for HDP.  405 
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 406 
 407 

Figure 4 Calibration of HDP combined model tested in BiB. 408 
 409 

 410 

Figure 5 shows the calibration slope for the combined model for LGA.  411 

 412 

Figure 5 Calibration of LGA combined model tested in BiB 413 

 414 

External validation  415 

External validation in UPBEAT revealed similar patterns of results to those in BiB (Figure 2). 416 

AUC was higher for the GDM and HDP combined models when compared to the risk factor 417 

models. However, across all models, we saw lower discrimination (AUC lower by ~1). For 418 
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example, the combined model AUC (95% CI) for GDM was 0.78 (0.74,0.81) in BiB and 0.62 419 

(0.56,0.69) in UPBEAT. Equivalent results for HDP were AUC (95% CI) 0.76 (0.73,0.79) in 420 

BiB and 0.62 (0.55,0.69) in UPBEAT.  421 

Sensitivity analysis  422 

We did not find that criteria used to diagnose GDM had much influence upon the results. The 423 

combined risk factor and metabolite model for the UPBEAT GD models using the IADSPG 424 

criteria was AUC (95% CI) 0.64 (0.60,0.68). Using the WHO criteria, as in BiB, the combined 425 

model discrimination was AUC (95% CI) 0.65 (0.58,0.71) (Table S6).   426 

The strength and direction of association between BMI and each outcome was similar in the 427 

whole BiB cohort and the BiB cohort including only obese women; associations in UPBEAT 428 

were weaker than either BiB dataset (Table S7).  429 

To assess the possibility that one predictive model could predict more than one outcome - we 430 

evaluated the discrimination of models developed for outcomes for which they were not 431 

trained. None of the models performed as well when applied to different outcomes to those 432 

(Table S8). 433 

Performances of models in UPBEAT were similar when applied to NMR metabolites obtained 434 

from ~15-week samples (Table S9). The combined model AUC was the same for HDP (AUC 435 

0.62) at both timepoints. The combined model AUC was similar for GDM (AUC (95% CI) 436 

0.62 (0.57,0.66) and 0.65 (0.60,0.69)) at 15 and 27 weeks, respectively), LGA (AUC (95% CI) 437 

0.52 (0.45,0.59) and 0.57 (0.51,0.63), SGA (AUC (95% CI) 0.51(0.43,0.59) and 0.55 438 

(0.47,0.62)) and PTB (AUC (95% CI) 0.52 (0.42,0.62) and 0.54 (0.44,0.64). There was good 439 

correlation between the measures at the two timepoints (mean correlation 0.68) (Table S10).  440 

When we trained and tested models for spontaneous PTB in BiB, we obtained a combined 441 

model for spontaneous PTB that had better discrimination than any (iatrogenic or spontaneous) 442 
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PTB. The combined model AUC (95% CI) for spontaneous PTB was 0.58 (0.51,0.65) 443 

compared to AUC (95% CI) 0.53 (0.48,0.59) for any PTB. However, the risk factor only model 444 

had the highest AUC (95% CI) at 0.65 (0.57,0.72), with the metabolite only model performing 445 

poorly (AUC (95% CI) 0.48 (0.42, 0.56)) (Table S6).  446 

 447 

 448 

 449 

  450 
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Discussion  451 

Using data from a large multi-ethnic cohort we have shown good discrimination and calibration 452 

for GDM, HDP, and LGA can be obtained from a combination of established risk factors and 453 

metabolites. The overall pattern of discrimination results was validated in a smaller 454 

independent cohort of obese pregnant women, though the AUC’s were weaker. These findings 455 

show promise for the use of NMR-derived metabolites to improve prediction of common 456 

pregnancy complications, though we acknowledge the need to undertake further validation in 457 

a large independent sample of unselected women. To date we have not been able to find such 458 

a study. 459 

The proportion of GDM was more than three times greater in UPBEAT compared with BiB 460 

when you used the IADSPG criteria. The proportion was more similar, but still higher (10.3% 461 

in UPBEAT compared to 8.1% in BiB) when using the WHO criteria. The lower proportion of 462 

those who are SGA, and higher proportion who are LGA in UPBEAT is also likely to reflect 463 

the fact that UPBEAT includes only obese women. The prevalence of HDP and PTB was 464 

similar between the two cohorts.  465 

We found little overlap in the risk factor and metabolite predictors retained in models for each 466 

outcome. Risk factors were retained in the combined models for all pregnancy-related 467 

disorders. A small number of the metabolites were retained in the prediction models for more 468 

than one outcome.  Specifically, apolipoproteins, monounsaturated fatty acids and triglycerides 469 

were retained in the prediction models for GDM, LGA and SGA.  470 

The overall best discrimination was seen for the combined (established risk factors and 471 

metabolite) models for predicting GDM, HDP and LGA. Discrimination for GDM with the 472 

combined model (AUC 0.78) was similar to that previously reported for GDM prediction based 473 

on clinical information, such as previous history of GDM or LGA, and sociodemographic 474 
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characteristics (AUC ~0.78) 43. It performs better than a previous reported model of risk factor 475 

variables (age, previous GDM, family history of type 2 diabetes, systolic blood pressure, 476 

skinfold thicknesses, and waist to height/neck to thigh ratios (AUC 0.71). This risk factor 477 

model improved when it included biomarkers such as glucose, adiponectin, sex hormone 478 

binding globulin and triglycerides (AUC 0.77), but not with the addition of NMR metabolites 479 

(AUC 0.77). 29 However, our combined model has the advantage in that it can be applied to 480 

nulliparous women and does not rely on personal and family medical history. The combined 481 

models for GDM, HDP and LGA in our study had good discrimination and calibration. One 482 

aim of this study was to explore the extent to which a group of potential predictors (metabolites 483 

or established risk factors) might predict several pregnancy outcomes. However, the best 484 

performing models (combined models for GDM, LGA and HDP) showed only modest 485 

discrimination for other outcomes (AUC ranging from 0.60 – 0.68), with the strongest being 486 

for the prediction of LGA using the GD combined model (Table S8). Overall, these findings 487 

for the NMR metabolite platform suggest that it may not be possible to develop a single 488 

prediction model that is accurate for several adverse pregnancy outcomes. 489 

For HDP and SGA, whilst the combined models had good discrimination, the metabolites did 490 

not substantially improve the discrimination or calibration when compared to the established 491 

risk factors. In the interests of maximising the sample, our HDP variable included both 492 

gestational hypertension and PE, and our model discrimination for HDP was weaker than that 493 

seen for the sFlt-1/PlGF ratio for PE alone 24 and that seen for a model including first antenatal 494 

clinical characteristics and  repeat antenatal blood pressure measurements for PE or gestational 495 

hypertension alone (AUC 0.77 - 0.88) 6.  It would be useful to repeat our analyses in a larger 496 

study that had sufficient power to explore the prediction accuracy of metabolites for PE and 497 

gestational hypertension separately. 498 
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Previous studies have reported better discrimination for SGA using metabolite models than 499 

reported in this study. However in those studies, sample sizes were small and they did not 500 

attempt external validation or assessment of calibration 25 26 . We used a <10% cut off for SGA, 501 

as recommended by the WHO. Some recommendations advise using a more conservative <3% 502 

cut off 28, whilst there is also evidence that a threshold of 25% better predicts stillbirth and 503 

neonatal mortality44. We lacked power in this study to explore a range of different thresholds 504 

for SGA and LGA and be able to precisely detect differences between them.   505 

For any PTB (iatrogenic or spontaneous), discrimination was very poor across all models. 506 

When we ran the analyses limited to spontaneous PTB, we found the discrimination for all 507 

models was higher than that seen for the models with any PTB. However, the AUC remained 508 

poor for the combined (AUC (95% CI) 0.58 (0.51,065)) and metabolites alone model (AUC 509 

(95% CI) 0.48 (0.41,0.56)), with modest discrimination for the risk factor model (AUC (95% 510 

CI) 0.65 (0.57,0.72). We acknowledge that by its very nature, spontaneous PTB is difficult to 511 

predict. Our results demonstrate the need for better models to predict PTB, aside from a 512 

previous history of PTB. Our results also suggest that metabolomics quantified using the NMR 513 

platform are not useful for predicting iatrogenic or spontaneous PTB.  514 

We were unable to identify a general population of pregnant women with relevant data for 515 

validation, so we performed validation in obese pregnant women (UPBEAT). In this sample, 516 

models demonstrated poorer discrimination. It is expected that prediction is poorer in external 517 

validation samples 45, but it is also likely that this has also been influenced by the different 518 

incidences of some outcomes between the two cohorts and the distinct  metabolic perturbations 519 

experienced by obese women during pregnancy 23.  520 

 521 

 522 
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Strengths and limitations  523 

Previous studies aiming to improve prediction of pregnancy-related disorders often do not 524 

compare performance to established risk factors, assess calibration or undertake external 525 

validation as we have done here 46 47 47 48 49. BiB has considerably larger numbers of women 526 

with NMR data than previous studies of metabolite prediction. The NMR platform has several 527 

strengths in relation to its use for prediction; measurements are reliable with little variation 528 

between batches, the volume of plasma or serum required for analyses is small (100-300 529 

microlitres) and to obtain all measures is not expensive (~£20) 50. NMR provides absolute 530 

quantification, which can represent clinically useful units. However, the platform quantifies 531 

only a small proportion of the metabolome.  Other platforms, such as Metabolon mass 532 

spectrometry, are able to quantify over 1000 metabolites 51. With greater coverage of the 533 

metabolome it is possible that we would have improved prediction for the pregnancy outcomes 534 

explored here. We were limited in this study by the BiB NMR samples being taken in the 535 

second trimester. However, when we performed the validation using the 15-week gestation 536 

data from UPBEAT, the results were comparable to second trimester results in UPBEAT 537 

(Table S9) and metabolites at 26 weeks correlate with those at 15-weeks (Table S10). Taken 538 

together, these suggest that the metabolites measured in the second trimester are good proxies 539 

for earlier antenatal measures of the same metabolites. However, this needs to be directly 540 

tested. Ideally, we would have a prediction tool that could be used as early as possible in 541 

pregnancy. It would be able to be repeated so that women’s antenatal care could be tailored to 542 

their risk from early pregnancy and updated with repeat assessment if risk changed. 543 

 544 

 545 

 546 

 547 
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Concluding remarks   548 

To conclude, our results suggest metabolomics combined with established risk factors improve 549 

prediction of GD, HDP and LGA, compared to established risk factors alone. As we were only 550 

able to explore validation in a select cohort of obese women, we need to validate these findings 551 

in large, general cohorts of pregnant women. A predictive test for all or several of these 552 

outcomes would have significant clinical importance and allow us to identify mothers in need 553 

of further resources and antenatal monitoring. However, we found relatively little overlap in 554 

the models for different outcomes and poor discrimination for other outcomes for any 555 

combined model than the outcome it had been developed for. By improving the allocation of 556 

resources and stratifying antenatal care from early pregnancy until delivery, we can reduce the 557 

burden on the healthcare providers and the morbidity and mortality of mothers and offspring. 558 

 559 

 560 

 561 

 562 
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