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Abstract

Most recent route choice models, following either the random utility maximization or rule-

based paradigm, require explicit enumeration of feasible routes. The quality of model esti-

mation and prediction is sensitive to the appropriateness of the consideration set. However,

few empirical studies of revealed route characteristics have been reported in the literature.

This study evaluates the widely applied shortest path assumption by evaluating routes fol-

lowed by residents of the Minneapolis—St. Paul metropolitan area. Accurate Global Posi-

tioning System (GPS) and Geographic Information System (GIS) data were employed to

reveal routes people used over an eight to thirteen week period. Most people did not choose

the shortest path. Using three weeks of that data, we find that current route choice set gen-

eration algorithms do not reveal the majority of paths that individuals took. Findings from

this study may guide future efforts in building better route choice models.

Introduction

Route choice analysis investigates the path travelers follow to implement their travel plans. It is

the most frequent, and thus arguably the most important decision travelers make on a daily

basis. Empirical studies show that route and schedule changes are the most dominant reactions

to network changes [1, 2]. Any sound arguments for infrastructure initiatives or policy changes

must be built on precise and reliable prediction of link flow and travel time, and thus on under-

lying route choice decisions. Travelers differ in attributes (value of time (VOT), willingness to

pay, time budgets, etc.), behavioral preferences (e.g. willingness to take risk, willingness to

switch routes with potential savings) experience, and knowledge about travel, all of which

could lead to significant heterogeneity in route choice behavior. Mainstream research and prac-

tice, however, has treated trips as the unit of analysis since the 1950s. This trip-based modeling

paradigm assumes homogeneous travelers and tends to focus on some form of User Equilib-

rium (UE) state, in which “the journey times in all routes actually used are equal and less than

those which would be experienced by a single vehicle on any unused route” (known as War-

drop’s first principle [3]).
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Although this shortest-path (usually measured as shortest travel time path) assumption and

the resulting aggregate UE approach are simple, intuitive, and easy to implement (efficient

solutions are widely available), it has been criticized for ignoring the heterogeneity among trav-

elers and limitations in their spatial knowledge and reasoning ability. Empirical studies (e.g.

[4–6] among others) on route choice criteria based on stated preferences indicate that many

other factors such as distance and reliability also affect route decisions. These factors, together

with the imperfections in travelers’ perception and reasoning capacity, can push travelers away

from the shortest time route. However, Wardrop’s first principle has rarely been directly tested

in the field. A pilot study by Jan et al.[7] concluded that travelers often chose paths that differed

significantly from the shortest time path. Limited by the number of samples (83), they did not

answer a natural follow-up question: to what extent the actual routes deviate from the shortest

time path, which has significant implications for research aiming to relax these behavioral

restrictions on UE models.

Some researchers argue that travelers are still rational in minimizing their perceived travel

time while limited in their capacity to get perfect information. Daganzo and Sheffi [8] intro-

duced the Stochastic User Equilibrium (SUE) model and used a random component to repre-

sent the perception error and other randomness in the system. Other researchers further

pointed out that many irrational components could be perfectly rational if modelers could cap-

ture travelers’ preferences more accurately. Random Utility Maximization (RUM) models have

been applied to investigate a wider spectrum of route choice preferences (e.g. shorter distance,

less toll, or more freeway use). Bekhor et al. [9] investigated 16 possible combinations of plausi-

ble preferences. Along this research branch, significant efforts have been dedicated to overcome

the so-called Independence of Irrelevant Alternatives (IIA) problem. Many variations of RUM

models have been introduced (e.g. C-logit model [10], Path-Size logit [11], among others).

With few exceptions (e.g. [12]), most of these models require explicit enumeration of all feasi-

ble routes (the consideration set). A consideration set either too large or too small could signifi-

cantly compromise flow prediction [13]. Because route enumeration is also time consuming, it

is crucial to establish the scope of routes that are likely to be used by travelers.

In parallel with the research efforts on RUMmodels, other researchers treat travelers as

“satisficers” who will switch to a more attractive route when the benefits such as time savings

are large enough. There has been abundant literature on boundedly rational users in fields such

as psychology and economics. Knight [14] pointed out that “the rational thing to do is to be

irrational” when considering the “deliberation and estimation cost”. Conlisk [15] provided a

comprehensive review on this topic and concluded that the importance of bounded rationality

is supported by both wide-ranging evidence and its excellent success in describing behavior. In

the context of travel demand modeling, Mahmassani and Chang [16] introduced the Bound-

edly Rational User Equilibrium (BRUE) when investigating the departure time choice on an

idealized network with a single Origin-Destination (OD) pair and a unique route. Nakayama

et al. [17] employed a micro-simulation model to investigate BRUE and pointed out that

BRUE does not necessarily converge to UE. Lou et al. [18] further evaluated the mathematical

properties of BRUE and revealed that BRUE assignments are not unique and when the thresh-

old for route switching is large enough, congestion pricing schemes may make the system

worse off. Their results showed that the extent to which people’s choices deviate from the

shortest path is also crucial in determining the domain of possible BRUE results, and thus per-

formance of policies under evaluation.

In contrast with the aggregate modeling paradigm, many researchers argue that the route

choice problem should be investigated from an individual perspective. For example, Tawfik

and Rakha [19] argued that a paradigm shift from network (such as UE and SUE) to driver

oriented modeling is necessary for the route-choice problem and revealed the route choice
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patterns estimated by the two modeling paradigms are very different based on data collected in

a real-world route choice experiment. Examples of the latter category includes cognitive-psy-

chology models [20], fuzzy models [21], and models based on data mining [22], among others.

Zhang developed a behavioral user equilibrium model [23].

However, many advanced models in both categories still heavily rely on the shortest path

assumption. For example, Jha et al. [24] assume drivers are provided with travel time informa-

tion on five shortest paths when investigating day-to-day dynamics using DYNASMART.

Some models such as MATSIM [25] applied RUMmodels on a pre-determined choice set gen-

erated by the K-shortest path algorithms [26]. The number of alternatives and their generation

process is arbitrary and depends on computing convenience. Similarly, route choice models

which adopt a rule-based paradigm (e.g.ALBATROSS by Arentze and Timmermans [27] and

Agent-based Route Choice model by Zhang et al. [28]) also require a well-defined consider-

ation set based on which route choice rules could be derived and applied for flow prediction. A

choice set which is not correctly specified can distort both the calibration and the prediction

process [13]. Therefore, the research question, “How Far is Traffic from User Equilibrium?”,

has significant implications for both macroscopic and individual travel demand models.

However, empirical studies about formation of the consideration route set are few (Bovy

[13] reviewed this topic). The difficulties are three-fold: first, unlike other dimensions such as

mode and destination choice, route choice is very difficult to describe. Bekhor et al. [9] reported

gaps and ambiguity in the written descriptions of travelers’ habitual route in their analysis and

shortest paths were applied to fix them. Second, most data only contain habitual routes, while a

large portion of candidate routes that have been considered but not frequently chosen have not

been reported during the survey process. Third, the size and complexity of the regional traffic

network makes it difficult to define and distinguish highly overlapping candidates. Prato [29]

later provided a more comprehensive review (in both choice set generation and discrete choice

model estimation) and arrived at similar conclusions.

Bekhor et al. [9] evaluated the habitual route reported by faculty and staff from the Massa-

chusetts Institute of Technology in Cambridge, Massachusetts. The data were collected in writ-

ten description and shortest paths were utilized where ambiguity or holes were found. Among

the 188 routes between 91 OD-pairs, 37% of respondents followed the shortest time path (90%

overlapping is required for coverage) and 22% followed the shortest distance path. Similarly,

Prato and Bekhor [30] evaluated 236 routes between 182 OD pairs in Turin, Italy and found

53.5% of respondents chose the shortest distance path while 43.3% chose the shortest time

path. However, neither study reported how much longer those non-shortest paths were com-

pared to the shortest ones. Moreover, both studies used planning network and assignment

results to derive path travel time, which may not be sufficiently accurate.

Spissu et al. [31] show significant amounts of intra-individual variability from a sample of

12 university students. Related research explained route switching behavior as a function of

factors beyond travel time [32].

Several studies have examined taxis. Morikawa et al. [33] measured the travel time on 6

alternative routes (one of them a toll road) based on Global Positioning System (GPS) data

from 1500 taxis in Nagoya, Japan during two months and evaluated the route choice decisions

of the same set of vehicles. They found a high percentage of trips employed non-shortest path

(e.g. using the toll road while travel time on it is even longer than toll-free alternatives) and

they concluded that this phenomenon is due to the lack of knowledge of network connectivity

or travel time reliability. However, their samples are biased in both the subjects identity (taxi

only) and the trip destination (the airport). Ding et al. [34] investigated routing policy choice

set generation based on individual-level route choice data from GPS observations in Stock-

holm, Sweden and Singapore. They found that with a threshold of 80% to define the same
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route, a combination of link elimination and simulation method can identify 92% of the route

people actually use. Ma and Fukuda [35] compare shortest path routes of taxis with hyperpaths

and find that hyperpaths have more explanatory power. GPS data from Taxis may not be con-

sistent with general traffic.

A branch of the literature has explored the route choice decisions of users of non-auto

modes. Bicyclists are known not to follow the shortest path because of obvious qualitative dif-

ferences in routes. This has included stated preference work [36] as well as more recent GPS

based revealed preference analysis [37–40]. Motorcyclists also have different preferences [41].

The onset of recent smart phone based GPS (as well as earlier research based on triangula-

tion) has opened new data avenues that promise to make this type of analysis more widespread

[42]. Similarly, new tools for both Geographic Information System (GIS) and route choice

modeling are also making this research more feasible [29, 43, 44].

Empirical research demonstrates that automobile travelers care about tolls [45], stops [46],

reliability [47], traffic lights [48], and aesthetics [49]. Further, travel time is systematically mis-

perceived [50].

This study investigates the characteristics of routes followed by randomly recruited subjects

during a study period of up to 13 weeks and compares them with the shortest time or distance

path. GPS devices have been installed in subjects’ vehicles and their trajectories during the

entire study period documented. The travel trajectories of instrumented vehicles are projected

onto a GIS map of high-resolution and their characteristics analyzed. In contrast with previous

studies, this study uses observed travel time derived from the travel time of the same set of

instrumented vehicles (serving as probe vehicles). The shortest time or distance paths are

developed based on the same GIS map, ensuring the consistency across different routes. Find-

ings from this study could help evaluate current route choice models and provide guidance for

constructing choice sets. Moreover, the shortest path assumption is still commonly employed

in practice, from aggregate planning models to emerging agent-based models (e.g. TRANSIMS

[51], MATSIM [25]). Therefore, an empirical evaluation of how far this assumption deviates

from observation in the field would help researchers and practitioners better interpret results

and improve future models.

The next section summarizes major findings in this study. Details of modeling approach

and data used in this study will then be presented.

Results

This study captures the actual routes travelers follow during an eight-week study period using

GPS data detailed GIS road map. The actual routes are then compared with the shortest time

path predicted by the model, showing the gap between the ideal assumption of human route

choice behavior and the actual behavior. Four popular choice set generation algorithms, all of

which are widely used in modeling human route choices, are then evaluated using the identi-

fied routes. Details about the data and the way routes are identified will be presented in the

Materials and Methods section.

Do people use the shortest path?

The identified routes and the shortest time routes are then compared segment-by-segment

using GIS and the results are summarized in Fig 1 for commute and non-commute trips. If two

routes overlap, the difference should be 0. In contrast, if two routes do not overlap at all, they

are 100% different in the graph. By the most strict standard (0% different), about 34% of all

trips (commute plus non-commute) followed the shortest time path. If the standard is relaxed
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to 10% as most previous studies suggest, then about 40% of all trips follow the shortest time

path.

This result may seem high because a large number of short trips do not actually have many

feasible alternatives and thus are more likely to follow the shortest time path. If we only evalu-

ate commute trips which are usually longer, then only 13.5% of trips completely coincide with

the shortest time path. By relaxing the standard to 10% overlapping, 21.7% of trips followed

the shortest time path. Non-commute trips are similar to the overall set of trips as most trips

are for non-work purposes.

Route choice behavior could be constrained by availability of meaningful alternatives. For

example, when the trip is very short, the entire trip could be served by only one straight road

and any alternative route would incur a significant detour. At the other extreme, when the

travel distance is very long, the optimal choice could be to access the freeway at the entrance

closest to the origin and get off at the exit closest to the destination. Therefore, people are more

likely to follow the shortest path at both extremes. Fig 2 shows the percentage of travelers fol-

lowing the shortest time path by different Euclidean distance between the origin and the desti-

nation for that specific trip. As we will discuss later, there is no universally accepted threshold

to define two similar routes as different. Fig 1 showed that 2% could be a natural cut. Therefore,

we classify people who deviate from the shortest time path by less than 2% in length as those

following the shortest time path, although other thresholds could also be used. The results in

Fig 2 are consistent with our previous analysis. Travelers are more likely to follow the shortest

path when the trip is short. The percentage goes down quickly as the trip becomes longer. But

it picks up slightly again when the trip becomes very long. In our case, the percentage reaches

the lowest (around 5%) when the air distance between the origin and the destination is around

20 miles.

Fig 2 further summarizes the length of the portion where actual routes deviate from the

shortest routes normalized by the length of the actual routes. Each bar shows the average per-

centage number for all the routes with the Euclidean distance between trip origin and destina-

tion falling within the corresponding bin. The overall trend is consistent with our hypothesis

Fig 1. Difference between GPS-revealed route and the shortest time route between the sameOD.

doi:10.1371/journal.pone.0134322.g001
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except for the extreme long trips (� 40 km). Due to the low density of the freeway network, the

route choice for long trips could significant deviate from each other if the traveler chooses dif-

ferent initial movement (e.g. first go East vs. go South). It is also complicated by the existence

of the Mississippi River and the limited number of river crossing points (people may prefer dif-

ferent river crossing points, especially after the I-35W collapse). Empirical study on a different

network could help to test these hypotheses.

The theory of Boundedly Rational User Equilibrium argues that people can choose any of

the alternative routes whose travel time does not exceed the shortest time route by an empiri-

cally defined threshold. Therefore, it is interesting to compare the travel time on route people

actually choose and the shortest time route. Fig 3 summarizes the results. For about 50% of the

trips, the actual chosen routes that are less than 30 seconds longer than the shortest time routes.

In almost 90% of cases people choose routes that are less than 5 minutes longer than the short-

est time routes. Commute routes deviate from shortest time routes slightly more in percentage

compared with non-commute routes. The difference between actual routes and shortest travel

time routes for most trips is small, but non-trivial, since 5 minutes represents almost one-fifth

of the average commute time (24 minutes) in the Twin Cities area.

The relevant scale in difference may also provide important empirical evidence. Fig 4 shows

the difference in travel time between the chosen and shortest time route as a percentage of the

shortest path time. About 55% of non-commute and 30% of commute trips follow a route that

is almost as good as the shortest time path (less than 5% longer in time). Although about 80%

of non-commute trips and 70% of commute trips follow a route that has a travel time less than

20% longer than the shortest time path, the number of trips that follow a much longer route

is still significant. People may have different motivations in choosing a route other than the

shortest. For example, they may drop off children or spouse (in ways undetected by our defini-

tion of trips as engine off or being stopped for a sufficiently long time), or stop briefly for a cof-

fee, or simply because they prefer to use a route that possesses other desirable features. The

empirical evidence presented in this paper pointed out such non-optimal choices from traffic

assignment perspective is not trivial either in frequency or in significance. More empirical stud-

ies are warranted to better understand such behavior.

Fig 2. Percentage of trips in which travelers follow the shortest time path and percentage difference in length between the actual route and the
shortest path by Euclidean distance between the origin and destination.

doi:10.1371/journal.pone.0134322.g002
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Route choice set generation

Choice set generation plays an important role in route choice since many existing models

require explicit enumeration of the routes to be considered. Extending previous research (such

as [9, 30]), this study evaluates 4 widely-used route choice set generation (K-shortest path)

algorithms based on the same GPS data as described in previous sections. By using the GPS

Fig 3. Comparison in travel time between actual commute/non-commute trip route and corresponding shortest time route.

doi:10.1371/journal.pone.0134322.g003

Fig 4. Difference in travel time between chosen route and shortest time route as a percentage of the shortest path time.

doi:10.1371/journal.pone.0134322.g004
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data instead of surveys, this study avoids gaps and ambiguity when identifying routes people

actually use. Moreover, many people use more than one route between the same origin and

destination within a time period, which are usually under-reported in a one-day, or even

multi-day, survey. In contrast, this diversity in route choices can be easily captured by GPS

data and applied for testing choice set generation algorithms. Therefore, an evaluation of

choice set generation algorithms based on GPS data should inform travel demand modeling.

To simplify the problem, the current study only looks at home-to-work trips before the

opening of I-35W replacement bridge, when traffic conditions are stable. The same analysis

could also be applied for trips of other purposes and for other time periods. In total, 657 home-

to-work trips made by 95 subjects have been identified during these three weeks. Any home-

to-work trips that included identifiable side stops are excluded from this study. Four algo-

rithms are evaluated here:

1. Link labeling: The labeling approach, originally proposed by Ben-Akiva et al. [52], calculates

paths that maximize different definitions, including shortest travel time, shortest free-flow

travel time, shortest distance, least congestion, etc.

2. Link elimination: The link elimination algorithm [53] generates Kth shortest path by finding

the shortest path after removing all links of the first K − 1 shortest paths from the network.

It stops when no new path can be found because of missing network connectivity. This

study adopts a variant of this algorithm by only eliminating one-third of links (those located

in the middle one-third of the path) during each iteration to avoid premature stopping due

to failures of network connectivity when major junctions are removed.

3. Link penalty: The link penalty approach [54] generates new shortest paths after multiplying

the travel time of each link on the current shortest path by 1.05.

4. Simulation: The simulation approach computes the shortest path for each draw of link

impedances. Many impedance distributions have been tested and three sets of them are

presented:

(a) normal distributions with mean travel time and travel time variance derived from GPS

observations,

(b) normal distribution with mean travel time derived from GPS observation and a variance

equal to 15% of the mean (the optimal parameter with an overlap threshold of 80%), and

(c) normal distribution with mean travel time derived from GPS observation and a variance

equal to 20% of the mean (which has been used in [30]).

A left truncation that is equivalent to a minimal speed of 8 mph (12.9 kmh
− 1) is adopted.

Sensitivity tests to the number of draws are also applied. Table 1 summarizes the percent-

age of routes that are covered by each algorithm again all routes observed through GPS

data. The random draw of the travel time on each link is independent, though there is evi-

dence that strong correlation exists between the travel times on links [55].

To avoid trivial alternatives, overlap thresholds must be defined when comparing different

routes. A wide range of values have been used in literature and no consensus about appropriate

thresholds has emerged. This study tests three different thresholds of the percentage of links in

a path that are identical between the observed and generated route, 100%, 90%, and 80%. The

total number of observed routes increases as we adopt a higher threshold to distinguish differ-

ent routes. Overall, 249 routes have been observed if two routes are only the same when 100%

of their link segments overlap.

Do People Use the Shortest Path?
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As Table 1 shows, no single label performs well in predicting routes people actually use. The

coverage provided by the least time approach (9% with an overlap threshold of 90%) is consis-

tent with previous analysis on the percentage of commuters who follow the shortest path. The

coverage is lower than that found by Prato and Bekhor [30] based on data collected in Turin,

Italy (about 27%). However, the Turin network only contains 1,427 links, while the Twin Cities

network contains 22,477 links. The extra complexity introduced by network size makes it

harder to generate routes people actually use on the Twin Cities network. Most travelers prefer

using freeways to local streets. And travel time is in general a better impedance measure than

distance. When combining all five labels together, the labeling approach can only generate 37%

of all observed routes with an overlap threshold of 80%.

The link elimination algorithm generates between 29 and 58 unique routes (with an overlap

threshold of 90%) for subjects. However, it could eliminate crucial links of observed routes in

the first few iterations, preventing us from replicating those routes through an iterative path

searching process. Therefore, it is not surprising to find a very low coverage rate (11%) for the

link elimination algorithm.

Table 1. Coverage: Percentage of generated routes which are observed using alternative route choice
set generation algorithms based on GPS data and Twin Cities regional planning network.

Overlap threshold (%)

Algorithm description and parameters 100 90 80

Labeling approach

Least time 2 9 16

Least free-flow time 6 16 23

Least distance 2 5 9

Maximize freeways path 4 12 19

Minimize(Freeway + 2Expressway + 4Arterial + 4Local) Time

Minimize freeways path 1 2 3

Minimize(4Freeway + 2Expressway + Arterial + Local) Time

All labels combined 9 25 37

Link elimination for Least Time path 3 11 25

(eliminate 33% of middle links)

Link penalty 15 unique routes 6 24 44

Link penalty 40 unique routes 7 28 50

Link penalty 80 unique routes 8 28 50

Minimize simulated time, observed σ2, 12 draws 4 13 25

Minimize simulated time, observed σ2, 24 draws 6 15 28

Minimize simulated time, observed σ2, 48 draws 7 18 33

Minimize simulated time, σ2 = 15% of mean, 12 draws 2 13 31

Minimize simulated time, σ2 = 15% of mean, 24 draws 4 20 39

Minimize simulated time, σ2 = 15% of mean, 48 draws 5 23 44

Minimize simulated time, σ2 = 15% of mean, 96 draws 10 30 59

Minimize simulated time, σ2 = 15% of mean, 192 draws 12 39 63

Minimize simulated time, σ2 = 20% of mean, 12 draws 2 10 28

Minimize simulated time, σ2 = 20% of mean, 24 draws 4 16 39

Minimize simulated time, σ2 = 20% of mean, 48 draws 5 23 46

Minimize simulated time, σ2 = 20% of mean, 96 draws 10 33 57

Minimize simulated time, σ2 = 20% of mean, 192 draws 15 44 60

Total number of observed routes (counts) 249 189 163

doi:10.1371/journal.pone.0134322.t001
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The link penalty algorithm performs better in general. However, increasing the required

number of unique routes before the algorithm stops does not significantly improve the cover-

age rate (from 24% to 28% when required unique routes increase from 15 to 40 (the number of

routes is consistent with that used in Bekhor et al. [9])). The algorithm could have continued to

identify similar routes with relatively small differences. Choosing an appropriate penalty factor

could be crucial for improving efficiency of the algorithm, which presents an interesting topic

for future research.

The simulation approach outperforms its deterministic counterparts. The coverage rate is

only about one-third if we generate travel time from observed travel time distributions. By

choosing a travel time distribution with relatively large variance (observed σ
2 is on average

3% of the mean on freeway links and 14% of the mean on arterial links), we can generate as

many as 63% of routes observed through the GPS study in 192 iterations. A variance which is

too large will also result in a lower coverage or hit ratio. A variance equal to 15% of the mean

provides the highest coverage or hit ratio at a 80% overlap threshold, or a small number of

draws at a 80% overlap threshold. However with more draws and at the 90% overlap thresh-

old, a different variance may have a higher hit ratio. We can expect higher coverage through

more iterations. However, the marginal benefit of doing so diminishes as the number of

iterations increases. In addition to its advantage in explicitly generating choice set, the simula-

tion approach can also be applied on network loading, which defined the feasible choice set

implicitly. For example, Mirchandani and Soroush [56] applied the simulation approach to

solve the generalized traffic equilibrium with profitabilities link travel time and heterogenous

perceptions.

Running time for the link elimination, link penalty, and simulation approaches are similar,

while minimizing one label for the labeling approach takes much less time (a few seconds). The

link elimination approach stops in 1636 seconds. The link penalty approach with a stop crite-

rion of 80 unique routes for each OD takes 2248 seconds. The simulation approach finishes

192 iterations in 1291 seconds (all tests are conducted on a Power Mac G5 3.00GHz). Consid-

ering the number of observed routes each approach can generate, the simulation approach

exhibits significant advantage.

Conclusions

This study empirically tests, and rejects, the shortest-path assumption which has been widely

applied in both research and practice. The results show that about two-thirds of the subjects do

not use the shortest travel time path during a three week study time period. No subjects fol-

lowed the shortest distance path unless it also coincided with the shortest travel time path.

None of the existing route choice set generation algorithms provides satisfactory results in

generating a choice set. Most of these algorithms rely on evaluation of shortest time paths.

However, travelers clearly have other preferences when making their route choices. There-

fore, a better understanding of people’s route preferences could also inform the development

of choice set generation algorithms. Clearly, a choice set that includes all alternative routes

would in turn contribute to improvement in the accuracy of individual route choice model-

ing. The GPS-based approach developed in this study reveals people’s day-to-day route

patterns with an accuracy that cannot be achieved through conventional surveys. The multi-

plicity of routes between the same origin and destination becomes obvious when using GPS

data over a long period of time, which poses new challenges for choice set generation algo-

rithms. The coverage rates provided by all algorithms evaluated in this study are consistently

low. To cover most routes that people may choose, a wide spectrum of preference labels

should be considered. Although simulation approaches do not directly address diversity in

Do People Use the Shortest Path?

PLOS ONE | DOI:10.1371/journal.pone.0134322 August 12, 2015 10 / 18



route preferences, they may actually reflect imperfections of network knowledge and ran-

domness in behavior. Consistent with previous studies, this study finds that simulation

approaches provide an efficient way to generate alternative routes and outperforms many

deterministic route generation algorithms.

In most circumstances, people choose routes that are less than 5 minutes longer than the

shortest time routes. However, we have observed some trips that represent a significant detour

from the shortest time path. Since trips in this study are defined based on the engine-on and

engine-off activities or dwell time, we cannot exclude the situations when people detour for

purposes such as dropping off passengers. These side trips could help to explain the occasional

unusually long detours observed in our data, especially for commute trips. GPS data alone can-

not provide information about trip purpose. More advanced analyses that combine GPS data

with land use data to identify trip purposes can be used [57].

Materials and Methods

This study has been reviewed and approved by the Institutional Review Board (IRB Code Num-

ber 0806S34983) of the University of Minnesota. All participants have been informed about the

study, and been asked to read and sign the consent form before their participation. This material

is based in part upon work supported by the National Science Foundation under Grant No.

0825768, BRIDGE: Behavioral Response to the I-35WDisruption: Gauging Equilibration; Min-

nesota Department of Transportation project Traffic Flow and Road User Impacts of the Col-

lapse of the I-35W Bridge over the Mississippi River; Oregon Transportation Research and

Education Consortium for the project Value of Reliability; and the University of Minnesota

Metropolitan Consortium. No additional external funding received for this study.

GPS Data

GPS data utilized in this study was collected during a 13-week long study targeting behavioral

reactions to the I-35W Bridge reopening on September 18th, 2008. Recruiting occurred via

announcements on craigslist, City Pages online and newspaper (a local free weekly), flyers at

grocery stores and local libraries, postcards handed out in downtown parking ramps, and email

to more than 7000 University of Minnesota staff (excluding students and faculty). People inter-

ested in participating in the study completed an on-line survey, providing background infor-

mation about demographics, driving habits, job and residential locations, and commute routes

before and after the I-35W bridge collapse. Participants were randomly selected among those

who 1) were between 21 and 65 years old, 2) commute alone, 3) have a valid drivers license, 4)

are likely to be affected directly or indirectly by the opening of the new I-35W Bridge according

to their usual commute routes. Either a logging Global Positioning System (GPS) devices

(QSTARZ BT-Q1000p GPS Travel Recorder powered by DC output from in-vehicle cigarette

lighter) or a real-time communicating GPS device (adapted from the system deployed in the

Commute Atlanta study ([58]) was installed in the vehicle of study participants. The GPS

device is non-intrusive and unlikely to affect the behavior of participants. No instructions were

given and participants were free to make travel choices. In total, 190 subjects participated in

this study. However, only 143 GPS records were recovered due to the failure of devices (the

data from GPS loggers could only be checked at the end of the study. Some of them failed

because of power supply problems, such as being disconnected by subjects).

The logging GPS devices accurately monitored the travel trajectories of each probe vehicle

at a frequency of one point per 25 meters up to 13 weeks, about 3 weeks before the reopening

of the bridge and between 8 and 10 weeks after it. The real-time communicating GPS device

recorded the position of instrumented vehicles for every second. The geographic location and
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time stamps of each point were documented and projected onto a GIS map for post-processing.

The GPS data were then matched to The Lawrence Group (TLG) Twin Cities network, a detailed

network conflated to the real road geometry, using ArcGIS [59].

An algorithm was developed and applied to ensure all points have been snapped to the near-

est link which

• is directly connected to the upstream link previously identified,

• is consistent with the travel direction of nearby GPS points, and

• is connected to the downstream link which is also consistent with travel direction of down-

stream GPS points.

This algorithm rules out the possibility of incorrectly snapping the GPS point to the link on

the opposite direction and on crossing directions. The high resolution of one point every 25

meters (the real-time communicating GPS provided an even higher resolution) reduces the

possible of holes and discontinuity in identified routes to a minimum. In rare cases of data

losses due to the communication difficulties with satellites, the shortest time path was used to

connect the different segments of the same trip. This algorithm, combined with accurate GIS

files, ensures that the right links will be identified for each trip. It also helps to ensure that the

speed estimated from vehicle trajectories will later be assigned to the link through which travel-

ers passed. A visual check was conducted for all trips of two random subjects during the entire

study period, and confirmed the accuracy of the algorithm.

Link Speed Estimation

The speed with which the probe vehicle traversed a link along its trajectory could be estimated

by comparing the spatial and temporal distances between points at each end of the link. The

average link speed could be estimated from all probe vehicles passing this link during a defined

time period. There has been a large body of literature discussing the minimal number of obser-

vations required to ensure reliable speed estimates. For example, Cheu et al. [60] concluded

that ten probe vehicles must pass though a link within the sampling period to achieve an accu-

racy within a 95% confidence interval. The number of observations required for a reliable travel

time estimate depends on speed variance on each link and the desired confidence level. For this

study, a link speed estimate was regarded as valid only if more than 10 samples were available

during that time period.

The large number of GIS equipped vehicles act as probe vehicles for the purpose of measur-

ing travel speed on the network. The long study period allows us a large number of observa-

tions not only on freeway links, but also on major arterial links and local streets in downtown

(see Fig 5). The latter is very important since it represents a significant chunk of total traffic

and is unavailable in previous studies relying upon freeway loop detectors. Speed samples on

arterial roads in the outer suburbs are generally low. However, road density in those areas were

low and the traffic was unlikely to vary much due to scattered demand. Therefore, speed on

roads with insufficient samples were assumed constant through the study and equal to the

average speed on all the links of the same functional class defined by the US Census Bureau in

their TIGER files [61]. The data can be downloaded from http://www.datafinder.org

Two major network changes occurred during this study time period: the replacement I-

35W bridge was opened on September 18, 2008 and a section of the fourth lane westbound on

the I-94 Bridge between the interchange with I-35W and Highway 280, a major mitigation

measure implemented after the bridge collapse in 2007, was closed on October 12, 2008 and

returned to operation as a bus-only shoulder lane.
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Parthasarathi and Levinson [62] investigated the speed pattern for the Twin Cities based on

both travel survey and loop detector data, and concluded that the morning and the afternoon

peak periods (when congestion is sufficient to affect speed) are 6:00 am to 9:00 am and 2:00 pm

to 7:00 pm, respectively. Combining the three time-of-day periods, Morning Peak, Middle of

the Day, and Afternoon Peak, with the three phases, August 26th—September 18th, September

18th—October 12th, and October 12th—November 30th, 9 study periods were defined. All

speed observations during non-holiday weekdays were pooled for each time period accordingly

and average speed for each link with more than 10 samples was estimated. Because of their

minor role in traffic analysis and the small number of observations available, two other time

periods, Before Morning Peak and After Afternoon Peak, were ignored in this study.

The TLG network contains 290,231 links and 113,864 nodes for the Twin Cities Metropoli-

tan area. Although it provides great accuracy, it dramatically slows down the path search algo-

rithm. Moreover, the amount of observed data on suburban streets are low and trip variation

in these regions is also low due to low road density. Therefore, the metropolitan planning net-

work, which contains 22477 links and 8618 nodes and has been widely used in regional traffic

analysis, has been used in the analysis. Speed estimation derived on the TLG network was

transferred to the overlapping link from the planning network. Both networks have been

Fig 5. The number of speed observations on each link during the entire study period.

doi:10.1371/journal.pone.0134322.g005
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conflated to the same geometry and overlapped accurately. Bovy [13] and Schuessler et al. [63]

discuss network simplification.

Commute and non-commute trips based on GPS Data

By following the steps described in the second section, links are identified along the vehicle

trajectories, which are then divided into trips. A trip is defined between one engine-on and

engine-off event, or when the vehicle failed to move more than 25 meters within 5 minutes

(dwell time), or when the vehicle deviates from street center lines for more than 20 meters

during 5 minutes, whichever comes first. The length of dwell time used to define trip ends in

previous studies varies from 45 seconds to 300 seconds (e.g. 45s [64], 120s [65, 66], 300s [67]

or multiple values [68]). The upper bound has been chosen in this study because 1) the ramp

metering system in the Twin Cities area generates queues with a maximum delay of 4 minutes

at freeway on-ramps; 2) a typical cycle length at signal-control intersections is 180s and it is

possible to wait more than 1 cycle during peak periods; 3) the accuracy of the GIS map has

helped to identify short off-street stops. Other filtering criteria such as circuity [69] and head-

way change. Du and Aultman-Hall [68] have also been suggested. However, the effectiveness

of these criteria depend on the characteristics of the GPS data and need to be validated against

detailed travel diary data. Therefore, this study did not adopt these more context-specific

rules.

All participants in this study were frequent commuters. A large number of trips could be

observed. This is important because it increases the chance to identify the commute routes that

are seldom used but do exist in the consideration set, which cannot be revealed by reported

habitual routes used in previous studies. We separate commute routes and non-work routes

because they are likely to differ in time pattern; further commute trips usually have a targeted

arrival time while non-work trips tend to be more flexible.

Home-to-work trips are defined as any trips starting within a 600 m radius from home and

ending in a 600 m radius from the work location during a work day, without any stop longer

than 5 minutes. The work-to-home trips are defined similarly. The threshold of 600 meters

represents approximately 4 city blocks, which is chosen by observing parking and work places

for a subset of subjects.

The GPS data provide the origin, destination, departure time and arrival time of each trip.

These data, combined with the speed map we developed in the early section, allow us to evalu-

ate the actual route choice and shortest time and distance routes (see Fig 6 for example). Both

travel time of the actual route and shortest time path are evaluated based on the speed corre-

sponding to the departure time of each trips. Any trips starting before 6:00 am or after 7:00

pm are excluded from this study because we do not have enough speed data to support such

analysis.

In total 25,157 trips conducted by 143 of the study’s subjects have been identified by apply-

ing filtering criteria discussed in this section. Among them, 6,059 are commute trips. It should

be pointed out that if people stopped for more than 5 minutes on their way home or to work,

these trips are broken into two trips and no longer treated as commute trips. While this treat-

ment is consistent with our definition of trips, their impacts should be carefully evaluated in

future study.

For each OD pair, the shortest distance and shortest time route have been estimated by

using the speed estimation during the corresponding time of the day and time periods.

These speeds are averages of the direct observations obtained from the trajectory of probe

vehicles, which distinguishes this study from previous studies exclusively based on assign-

ment models.
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