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Abstract
Background: Multiple logistic regression is precluded from many practical applications in ecology
that aim to predict the geographic distributions of species because it requires absence data, which
are rarely available or are unreliable. In order to use multiple logistic regression, many studies have
simulated "pseudo-absences" through a number of strategies, but it is unknown how the choice of
strategy influences models and their geographic predictions of species. In this paper we evaluate
the effect of several prevailing pseudo-absence strategies on the predictions of the geographic
distribution of a virtual species whose "true" distribution and relationship to three environmental
predictors was predefined. We evaluated the effect of using a) real absences b) pseudo-absences
selected randomly from the background and c) two-step approaches: pseudo-absences selected
from low suitability areas predicted by either Ecological Niche Factor Analysis: (ENFA) or
BIOCLIM. We compared how the choice of pseudo-absence strategy affected model fit, predictive
power, and information-theoretic model selection results.

Results: Models built with true absences had the best predictive power, best discriminatory
power, and the "true" model (the one that contained the correct predictors) was supported by the
data according to AIC, as expected. Models based on random pseudo-absences had among the
lowest fit, but yielded the second highest AUC value (0.97), and the "true" model was also
supported by the data. Models based on two-step approaches had intermediate fit, the lowest
predictive power, and the "true" model was not supported by the data.

Conclusion: If ecologists wish to build parsimonious GLM models that will allow them to make
robust predictions, a reasonable approach is to use a large number of randomly selected pseudo-
absences, and perform model selection based on an information theoretic approach. However, the
resulting models can be expected to have limited fit.

Background
Species distribution models (SDM) [1] are increasingly
used in many fields of ecology and evolution. They have

been used to address fundamental questions such as those
exploring macroecological patterns [2,3] and to address
applied issues such as ecological impacts of climate
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change or biological invasions. These tools relate field
observations to environmental predictor variables, based
on statistically or theoretically derived response surfaces,
for prediction and inference [1]. Two groups of tech-
niques are generally used. Techniques that require data
documenting the species presence only are called "profile
techniques" while those that require both presence and
absence data are called "group discrimination techniques"
[4]. Examples of profile techniques include BIOCLIM [5],
DOMAIN [6], Species-PCA [4], and Ecological Niche Fac-
tor Analysis: ENFA [7]. Their development and use has
been stimulated by the many presence-only data available
in existing natural history collections [8]. Group discrim-
ination techniques are derived from established statistical
approaches and are more numerous than profile tech-
niques. They include classical regression-based
approaches such as generalised linear and additive mod-
els [9,10] but also more recent and robust techniques such
as boosted regression trees (e.g. BRT; [11] or random for-
est:RF [12]). See [13] and [1] for a more exhaustive over-
view of existing approaches.

Among group-discrimination techniques, logistic regres-
sion modelling (LRM), a particular branch of generalized
linear models (GLM) for binary responses, remains the
most widely used so far to predict the potential distribu-
tions of species [10]. Based on a well established body of
statistical theory, it is possible to do all of the following
within the LRM framework: 1) construct a parsimonious
model that strikes a balance between bias and variance
using criteria supported by an established body of statisti-
cal theory, 2) identify the relative importance of the pre-
dictor variables, 3) explore and interpret the response of
the species to each predictor, 4) estimate the uncertainty
associated with parameter estimates, 5) predict the proba-
bility of observing the species (rather than predicting
binary presence-absence) and 6) explore spatially explicit
patterns of uncertainty in predictions.

Fitting models with pseudo-absence data
Despite its numerous advantages, LRM has been pre-
cluded from many studies of species distributions because
it requires absence data, which are frequently unavailable
and often not reliable. This is an acute problem for the
study of poorly documented, cryptic, rare or highly
mobile species [8], many of which may be of special con-
servation interest. In order to facilitate the use of LRM
when absence data were unavailable, a number of studies
have used pseudo-absences in place of real absences [14-
21].

Techniques for generating pseudo-absences
Random pseudo-absences in group discrimination techniques
A basic technique for generating pseudo-absences selects
them at random from the study area. A large international

experiment with robust independent evaluation data [13]
showed that using group-discrimination techniques with
random pseudo-absences out-performs predictions made
by profile techniques (including BIOCLIM and
DOMAIN). Hence, given an adequate set of presence loca-
tions, models generated with random pseudo-absences
can yield useful results. A potential drawback to using ran-
dom pseudo-absences is that pseudo-absences might
coincide with locations where the species actually occurs.
This affects the calculation of probability of presence, and
consequently, models built with random pseudo-
absences are expected to have poorer fit, and lower predic-
tive performance than models built with real absences.

Pseudo-absences from two-step modelling
In an attempt to overcome these drawbacks, two-step
modeling approaches have been implemented to restrict
pseudo-absences to locations expected to have a low hab-
itat suitability according to a preliminary model. For
example Engler et al. [18] used a two step modelling
approach to predict the distribution of a rare plant in Swit-
zerland. In the first step, they used the profile technique
"ENFA" to map potential habitat suitability for the spe-
cies, and then selected pseudo-absences from the areas
predicted to have low suitabilty. They subsequently
included the pseudo-absences in a second logistic regres-
sion model which was used to predict the final species'
potential distribution and prioritize further field work.
The choice of profile method is a potentially critical step
as this can result in very different predictions, and may
have implications for results. Among other reasons, pre-
dictions can vary depending on the way profile methods
(such as BIOCLIM, DOMAIN, ENFA or S-PCA) handle
predictor variables [22]. Some weigh them equally, such
as BIOCLIM or DOMAIN, while others, such as ENFA and
S-PCA weigh the variables according to their fit. Thus two-
step pseudo-absence selection may add noise to the mod-
eling process by introducing additional uncertainty and
bias. We expect that the choice and implementation of
any profile model used to stratify the selection of pseudo-
absences will influence parameter estimates, and weaken
fit and predictions of the subsequent group-discrimina-
tion model.

Testing with a virtual species
It is unclear which pseuduoabsence selection method
should be the most appropriate for modeling species' dis-
tributions. It is also difficult to address this question with
real data due to the complexity of the modeling process
and the potential for introducing noise at each stage. Con-
sequently, a growing number of studies have used virtual
species in real or artificial landscapes to study the behav-
ior of different implementations of predictive distribution
models [23-27]. In a virtual species approach, the species'
distribution is defined a priori, by specifying its ecological
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niche as a simple mathematical relationship to the set of
predictor environmental variables (e.g. in the form of a
multiple logistic regression equation) and projects this
relationship onto a map of the study area to define its
"true" distribution. One can then attempt to recover the
virtual species' known distribution by building models
from samples drawn from the study area and then evalu-
ate the efficacy of different implementations of models by
comparing their parameter estimates and predictions to
the true distribution of the species. Such an approach has
never been used to assess the best way to select pseudo-
absences.

Aims of the study
Using a simulated, virtual species in which a true distribu-
tion is known in a real landscape, we used a robust model
selection framework proposed by Burnham and Anderson
[28] to addresses two main questions: (1) How does the
selection of pseudo-absences influence variable selection,
model fit and predictions of a single simulated species?
(2) Which pseudo-absence strategy yields a prediction
most similar to the predefined real distribution (i.e.
"truth")? We expected the following: True absences will
yield models with the best fit, predictive power, and the
correct model (the one including the correct predictors
and parameter estimates) will be the best-supported by
the data, as indicated by Akaike's information criterion
(AIC). Pseudo-absences selected from a profile model
within a two-step modeling approach (as described
below) should yield the next-best models in terms of
model fit and predictive power. However, due to the noise
introduced by the preliminary profile model the correct
model may not be the best-supported by the data. Ran-
dom pseudo-absences should yield the worst fitting mod-
els with the lowest predictive power, and models that
include uninformative predictors may even be supported
by these data.

Results
LRM models with pseudo-absences and the 3 "correct" 
predictors
Fit of selected models
Adjusted deviance using the 3 correct predictors (based on
methodology summarised in Figure 1) was highest for the
model that used correct (i.e. true) absences (0.987) (Fig-
ure 2). For both two-step pseudo-absence methods (BIO-
CLIM and ENFA), the adjusted deviance declined from
over 80% for the most inclusive pseudo-absence thresh-
olds (e.g. 100th percentile) to below 50% for the least
inclusive thresholds (e.g. 50th percentile) (Figure 2). The
random background pseudo-absence selection strategy
yielded the lowest proportion of adjusted deviance
explained (14%) (Figure 3).

Model predictive power
AUCs for predictions resulting from one-step profile
methods (BIOCLIM and ENFA), were lower than those
obtained from LRMs. The LRM that used correct (i.e. true)
absences achieved the highest AUC, and lay well above
the 95% confidence intervals of the other methods. AUC
for the completely random pseudo-absence strategy was
clearly better than using pseudo-absences from any two-
step approach from BIOCLIM and also better than most
two-step approaches using ENFA. Among the two-step
approaches, the least inclusive thresholds (e.g. 100th per-
centile thresholds for ENFA and BIOCLIM) exhibited the
lowest AUC values. The GLMs that included the incorrect
predictors yielded AUC values higher than those that
included only the 3 correct predictors. (Figure 4)

Relationship between explanatory and predictive power
AUC values and adjusted deviance values were not posi-
tively correlated (Figure 4). Typically, models that had
high adjusted deviance had lower AUC values based on
independent data. One particular exception is the model
that used correct (i.e."true") absences. Both its adjusted
deviance and AUC were near one. (Figure 4)

LRMs including 3 correct predictors and "noise" 
predictors: ranking models based on AIC
The correct model (i.e. the one that included only the 3
true variables) did not have the lowest (i.e. best) AIC
value, even when true absences were used (Table 1). When
true absences were used, the true model was ranked sec-
ond after the best model, and also received considerable
support by the data (delta AIC = 1.31). Nevertheless, the
Akaike weights were very small for all the candidate mod-
els, indicating high model selection uncertainty. The true
model was ranked seventh in the experiment that used
random pseudo-absences, and this model also received
considerable support by the data (delta AIC = 1.47).
Whenever a two-step modelling approach was used, the
true model was only weakly supported by the data, as AIC
values were never 2.0 or less.

Discussion
On the use of simulated data
The primary goal of this paper was to determine how the
choice of pseudo-absence strategy influences variable
selection, model fit, and the discriminatory power of pre-
dictions on independent sites in a virtual species where
the "true" (i.e. correct) distribution is known. Evaluating
so many aspects of model's behaviour and performance is
facilitated through use of a virtual species, because a real
species' "true" relationship to environmental variables is
never known. In the real world, sufficient amounts of reli-
able, completely independent, presence and absence data
are rarely available to evaluate the predictive power of
complex models in a controlled manner. Our virtual spe-
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cies' distribution was defined exclusively by a limited
number of climatic factors and was not complicated by
spatial auto-correlation, biotic interactions or history.
This ensured that variability in model performance
resulted from pseudo-absence selection, and not by omis-
sion of important predictor variables into the model (i.e.
missing explanatory variables for capturing autocorrela-
tion, biotic, or historical influences).

Profile methods versus group discrimination techniques
Although, profile models using BIOCLIM and ENFA still
performed reasonably well in terms of AUC, they were
outperformed by the multiple logistic regression models
using random pseudo-absences. This is in line with recent
results showing that profile techniques (BIOCLIM,
DOMAIN and LIVES) did not perform as well as group
discrimination techniques (including GLM and several
other regression-based methods) when evaluated on
robust independent data [13].

BIOCLIM models that included 3 predictors performed
better than those that included 6 predictors, possibly
because the noisy variables constrained the bioclimatic
envelope too much, resulting in an underprediction of the
species' distribution. ENFA models built with 3-predictor
showed somewhat lower discriminatory power than 6-
predictor ENFA models, which is likely to result from add-
ing noisy variables that are correlated with the correct (i.e.
true) variables and explain some additional variance
through spurious effects, a situation likely to occur also
with real species.

A large body of statistical literature suggests that parsimo-
nious models, including a small number of predictor var-
iables, should have greater predictive power to
independent samples than models including more predic-
tors ([29-32]. Neither ENFA nor BIOCLIM are based on
this principle (i.e. they do not incorporate way to select
predictors), and both showed somewhat lower predictive
power in terms of AUC than group discrimination models

Chart summarizing methodsFigure 1
Chart summarizing methods.

1. Define Define virtual species’ distribution from model including tree cover, 
treecover2, temperature, temperature2, IAV-NDVI and IAV-NDVI2 virtual 

species 

Select 130 presence records  (points)  
from the virtual distriubiton  
(e.g. shaded area) 
 

3.1 - Select 
”true” absences 
(control 
experiment) 

3.2 - Randomly 
select 10,000 
pseudo-
absences 

3.3 - BIOCLIM 
selection of 
pseudo-
absences 

3.4 - ENFA 
selection of 
pseudo-
absences 

2. Sample 
presence 
data 

3. Sample 
absence 
data 

4. Fit LRM 
4. 4. 4. 4.

LRM with 3 initial predictors; without model selection 
with 3-
predictors 

5. Fit LRM 5. 5. 5. 5.
LRM with 3 initial predictors + 3 extraneous predictors; model selection wth 6-

predictors 
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Percent adjusted deviance explained by models developed using 2 step and random pseudo-absence strategies (see bottom left corner of plot)Figure 2
Percent adjusted deviance explained by models developed using 2 step and random pseudo-absence strategies 
(see bottom left corner of plot). Each model included the same three predictors used to define the virtual species distribu-
tion (tree cover, IAVNDVI, and minimum average temperature) along with their quadratic expressions.
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based on pseudo-absences. Real species' response shapes
to explanatory variables are likely to be better represented
by unimodal or even skewed functions than by rectilinear
envelopes [33], and our virtual species was defined to
have non-linear relationships to predictors. BIOCLIM and
ENFA cannot incorporate quadratic relationships to pre-
dictors, so this may be another reason the GLM methods
performed better.

The response curves from GLM, including simple polyno-
mial expansions as we have included here, also offers a
more flexible representation of species' ecological niches,
and thus of their associated geographic distributions. Pro-
vided that data are sufficient to adequately describe these
relationships correctly, they should, in theory, yield more
realistic models. Indeed, with small datasets, models for
which complexity is calibrated for sample size, such as
MAXENT ([34] have better predictive power than models

that use complex response shapes regardless of sample
size (Wisz et al. 2008).

All of our predictions achieved high AUC scores. This was
expected due to the fact that the three variables used to
generate the virtual species' distribution were present in
all the models, and deliberately entered in the same order
as the "true" model. Thus, our results confirm the impor-
tance of careful selection of predictor variables [28].
Another factor that may have contributed to the high pre-
dictive power is that our records were randomly scattered
throughout the range of the species, which may have pro-
vided adequate sampling across the range of habitats
where it occurs. Random stratified samples may have
improved this further, as they typically result in models
that predict with higher accuracy [25] however these are
infrequently used in practice [35,36].

ROC-AUC values assessing model discriminatory power for each pseudo-absence threshold from 3- predictor models (cor-rect predictors) including (tree cover, IAVNDVI, and minimum average temperature) along with their quadratic expressions (a-b), plus 6 predictor models that included these plus 3- incorrect predictors including minimum NDVI, seasonality of precipita-tion, and elevational range (c-d)Figure 3
ROC-AUC values assessing model discriminatory power for each pseudo-absence threshold from 3- predictor 
models (correct predictors) including (tree cover, IAVNDVI, and minimum average temperature) along with 
their quadratic expressions (a-b), plus 6 predictor models that included these plus 3- incorrect predictors 
including minimum NDVI, seasonality of precipitation, and elevational range (c-d). Model selection was performed 
using model averaging based on AIC (c-d).
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Influence of pseudo-absence selection
Through the use of a simulated species we confirmed that
although randomly selected pseudo-absences yield mod-
els with lower fi to the training data, they outperform
models developed from two-step methods in terms of pre-
dictive power and variable selection. Thus randomly
selected pseudo-absences may be a reasonable alternative
when real absences are unavailable.

Consistent with our predictions, our findings confirm that
true absences outperform any pseudo-absence selection
strategy. The most parsimonious model based on true
presences and absences had the best fit to the data and the
highest AUC scores. Because of the simplicity of our vir-
tual species example, we were able to show that a two-step
pseudo-absence selection approach does not improve a
models' discriminatory power over random pseudo-
absence selection, and that both can provide rather high
model evaluation results. This contrasts with the findings

by [18], who reported lower AUC scores and maximum
kappa for randomly selected pseudo-absences than for
pseudo-absences selected using ENFA. However, because
their approach was applied to a rare species, using a very
limited number of available occurrences and no knowl-
edge of the true distribution, they needed to assess the dis-
criminatory power on the same data set used to develop
the model. As they pointed out, this is a less rigorous test
of the model's predictive performance than using a com-
pletely independent dataset of real presences and
absences, as done here. The better fit of their two-step
model is therefore not surprising, as corroborated by our
results. We also found that two-step pseudo-absences
result in models that fit the data better than random
pseudo-absences, however we also found that two step
pseudo-absences result in models with weaker predictive
power because they lead to overfitting. An overfit model
will always have a higher value of adjusted deviance than
a simpler model nested within it, but its predictive power

ROC-AUC (discriminatory power) for models built only with the 3 correct predictors versus adjusted deviance explained (i.e. model fit)Figure 4
ROC-AUC (discriminatory power) for models built only with the 3 correct predictors versus adjusted deviance 
explained (i.e. model fit). Model fit and discriminatory power are not always inversely correlated. The model built with 
"true" absences achieved high values for both. Thus ROC-AUC and adjusted deviance measure very different aspects of a 
model's performance and one should never be used as a surrogate for the other.
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to an independent sample will be lower because the
model losses generality.

Nevertheless, our results confirm a different finding of
Engler et al. [18]: pseudo-absence selection clearly influ-
ences model fit as measured by the percent of deviance
explained. We expect this result to be continuously sup-
ported in future work, because randomly selected pseudo-
absences cannot be prevented to fall in locations that are
ecologically extremely similar to presence locations,
which makes it more difficult for regression algorithms to
estimate the model parameters.

Variable selection based on an information theoretic approach
In our model selection experiment, the true model
received considerable support by the data in a comparison
of delta AIC values, but was not selected as the AIC best
model when ranked against all other candidate models.
We believe this is because although the "true" model in
our list of candidate models consisted of the correct pre-
dictor variables, its parameters had to be estimated using
maximum likelihood methods from 130 presence records
and 10,000 absences balanced using case weights, both of
which probably affected the model coefficients By sam-
pling only a limited amount of presences we introduced
bias, which probably explains why the true model was not
fully recovered. However, using real absences, the "true"

model was ranked second and had a delta AIC value of
1.13, indicating considerable support by the data. The top
ranked model only differed by missing the quadratic term
for temperature, which had a very low value in the initial
model (0.0001). It is likely that the sampling of a limited
number of species occurrences (n = 130) contributed to
decrease the fit of this predictor.

Conclusion
Approaches that combine logistic regression in an infor-
mation theoretic framework [30] facilitate the exploration
of relationships between the probability of species' occur-
rence and individual predictor variables in parsimonious
models that account for uncertainty in parameter esti-
mates and model selection. This offers clear advantages
over methods that do not incorporate parsimony or allow
for such rigorous quantification of uncertainty. Logistic
regression methods have not been widely used in many
ecological contexts because they require absence data
which are usually not available. Our results confirm that
robust models can be generated with logistic regression
using randomly selected pseudo-absences, and that such
models outperform profile techniques and two-step mod-
elling approaches that use intermediate models to select
pseudo-absences. Moreover, using a virtual species in a
real landscape, we confirm that simulated data represent
a powerful approach to provide unambiguous answers to

Table 1: AIC-based calculations for the various pseudo-absence strategies.

Pseudo-absence Selection 
strategy

Ranking of true model out 
of 726 candidate models 
based on Akaike weights 
(wi)

Delta AIC (ΔAIC) of the 
true model

Akaike weight (wi) of the 
true model

Akaike weight (wi) of the 
top ranking model

ENFA

100 9 3.604723 0.023729 0.143891
90 42 6.920832 0.004007 0.127529
80 16 3.882684 0.018746 0.130621
70 14 3.845144 0.021403 0.146365
60 13 3.863541 0.021315 0.14711
50 12 3.737772 0.025063843 0.162440578

Bioclim

100 55 9.80294298 0.001365089 0.183588
90 22 3.599437 0.013378 0.080906
80 33 3.027241 0.009334 0.042406
70 38 3.581413 0.007646 0.045825144
60 26 3.146754 0.0108 0.052088
50 33 3.708884 0.008264 0.052791
Random 7 1.474885235 0.034985305 0.073139658
True absences 2 1.130481 0.104319 0.183588

For each pseudo-absence strategy we fit 726 candidate logistic regression models using 131 presence records and 10,000 pseudo-absences. (ΔAIC) 
values less than 2 indicate considerable support, > 2 but < 10 indicate substantially less, and > 10 indicate essentially no support by the data. Akaike 
weights (wi) can be interpreted as the percent of times we would expect a candidate model to be the one most strongly supported by the data if the 
experiment were repeated on a different sample.
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methodological questions. In cases where sufficient real
absence data are not available in real ecological datasets,
our results encourage further use of randomly generated
pseudo-absences with logistic regression analysed within
an information theoretic framework.

Methods
Methodological overview
First, we simulated a virtual species whose geographic dis-
tribution and relationship to 3 explanatory variables was
defined a priori. Next, we built and compared multiple
logistic regression models (LRM; i.e. GLM with binary
response) fitted using: 1) true absences (as a control
experiment), 2) completely random pseudo-absences,
and 3) pseudo-absences selected from two-step
approaches where unsuitable habitat was defined a priori
from a profile method (BIOCLIM or ENFA). Finally, we
repeated this procedure using extraneous (i.e. noise) pre-
dictor variables along with the true predictors, and used
an AIC-based model-selection approach to evaluate how
different pseudo-absence selection strategies affected the
selection of candidate models (Figure 1)

Analytical steps
There were 5 main steps in our analytical approach. Spe-
cific statistical details are provided in the following sec-
tion.

Step 1 – Generating the virtual species' niche and distribution
We generated a simple ecological niche for our virtual spe-
cies in a real landscape using a seven-term model consist-
ing of an intercept plus three linear environmental
variables (x) and their quadratic expressions (x2). The real
landscape used in this study is the same portion of Sub-
Saharan Africa as applied in continental scale macroeco-
logical work [3]

We used the formula for a binary logistic regression model

where P is the probability of observing the virtual species,
and

where treecover is the percent tree cover estimated by the
MODIS satellite [37] across sub-Saharan Africa, produc-
tivity is the inter-annual variability of NDVI estimated
across 17 years, and temperature is the coldest month
mean temperature. Throughout the rest of this paper, we
will refer to this set of 3 predictors as "correct" variables.
We then projected this formula, which defines the species'

niche, onto geographic space to obtain, after inverse-logit
transformation, the true virtual species' distribution map
on a probability scale (0 to 1). This map of continuous
probability values was then converted into a binary map,
by applying an arbitrary threshold of 0.5, to mimic a real
presence/absence pattern.

Step 2 – Selecting presences to fit the models
From the virtual species distribution generated in Step 1,
we randomly selected 130 presence records, as this
number borders on typical for some moderately well-
known species in many of the databases we have worked
with. It is also in keeping with the recommended bench-
mark sample size for regression analyses containing 13
terms in a model. Typically, the number of predictor terms
should not exceed n/10 in regression analysis, where n is
the least represented category in logistic regression with a
binary response variable [28,38].

Step 3 – Selecting absences and pseudo-absences
Four different types of absences were sampled to fit the
models as follows:

3.1 – As an experimental control, we selected 10,000
"true" absences from outside the species' known range.

3.2 – We selected 10,000 pseudo-absences randomly from
the map of the study area. Here, pseudo-absences were
allowed to fall within the true distribution of the species,
but did not overlap with the 130 presence sample points

3.3 – We fitted a BIOCLIM model using the 130 presence
records selected in Step 2 and the same three linear predic-
tors used to generate the virtual species. The resulting pre-
diction map was then used to stratify pseudo-absence
selection from the least suitable locations. We converted
these continuous predictions to binary presence-absence
maps by applying a threshold before drawing the pseudo-
absences. As this step can have a strong influence on fur-
ther results, multiple thresholds were tested. For BIO-
CLIM, they corresponded to the percentiles: 100th, 90th,
80th, 70th, 60th and 50th. For example, to select pseudo-
absences for the 90th percentile, all of the pseudo-absence
were selected from outside the 90% bioclimatic envelope
(i.e. the tightest-fitting envelope in environmental space
that contained 90% of the observed presences).

3.4 – As 3.3, but using ENFA instead of BIOCLIM as pre-
dictive technique to select pseudo-absences from areas
predicted to have the lowest habitat suitability score for
the species. With ENFA, six habitat suitability thresholds
were identified that included different percentages of the
130 presence locality records: 100%, 90%, 80%, 70%,
60% and 50%. In this case, the 90% threshold was that

P
e z

=
+ −

1

1
(1)

Z = − + − +4 2300 0 0170 0 0020 37 14302. . * . * . *treecover treecover IAVNDVVI

IAVNDVI temperature temperature

−

+ +

49 0430

0 0090 0 00012

. *

. * . * 22

(2)
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which included 90% of the locality records that had the
highest ranking predicted suitability.

Step 4 – Fitting 3-predictor logistic regression models (LRM)
4.1 – Using the 130 true presences and the 10,000 true
absences (weighted to ensure equal prevalence with pres-
ences), we fitted a LRM including the 3 "correct" predictor
variables (see Equation 2). No model selection was
involved in this step. Results of this step show how a ran-
dom sample of true presences and true absences affects
model fitting and predictions.

4.2 – Same as 4.1, but using random pseudo-absences
obtained in step 3.2.

4.3 – Same as 4.1, but using BIOCLIM pseudo-absences
obtained in step 3.3.

4.4 – Same as 4.1, but using ENFA pseudo-absences
obtained in step 3.4.

Step 5 – Fitting 6-predictor logistic regression models (LRM) with 
selection
5.1 – LRMs were fitted by relating true presences and true
absences to the three original predictors plus three extra-
neous (noise) predictors: seasonality, elevation range, and
productivity during the driest month. Correlations
between these predictors are presented in Table 2. We
entered the terms for the three true predictors first into the
models, in the same order as they were used to define the
virtual species' distribution, subsequently adding the
three noise predictors in the formula.

5.2 – Same as 5.1, but using random pseudo-absences
obtained in step 3.2.

5.3 – Same as 5.1, but using BIOCLIM pseudo-absences
obtained in step 3.3.

5.4 – Same as 5.1, but using ENFA pseudo-absences
obtained in step 3.4.

Statistical details
BIOCLIM modelling
In BIOCLIM, all explanatory variables are assigned an
equal weight in the analysis, and the value of each envi-
ronmental variable at the location of a species' occurrence
record is used to calculate a percentile distribution for
each environmental variable. For example, the 90th per-
centile contains the central 90% of the observations for all
variables. The 10% of values outside that limit (i.e. the
tails of the distribution) are mapped outside the 90%
environmental envelope [5]. BIOCLIM output typically
consists of four groups: outside the observed distribution,
and the 100, 95 and 90 percentiles. To increase the sensi-
tivity of our analysis, we mapped these as well as the 80,
70, 60, and 50 percentile scores using an Avenue script for
ArcView 3.2.

ENFA modelling
Ecological niche factor analysis (ENFA; [7] is a profile tech-
nique that apportions a weight to each explanatory varia-
ble according to its explanatory power, and computes a
habitat suitability value for each grid cell in the study area
that is proportional to the distance between their position
and that of the species centroid in a multidimensional
environmental space. We performed all ENFA modelling
using Biomapper vers. 2.1 software [39] after normalizing
the environmental layers through a recommended Box-
Cox transformation [7]

Logistic regression modelling (LRM) and model selection
Model selection, the process of selecting predictors and
parameter estimates in a model, is considered one of the
most crucial steps in a model building procedure [40],
and model selection in logistic regression can be per-
formed in a variety of ways. Stepwise variable selection
procedures are widely used [41], but they are known to be
very sensitive to small perturbations of the response data,
which can lead to the selection of vastly different variables
as the data are subsetted [40]. This introduces noise
through model selection uncertainty [29]. An alternative
to stepwise procedures is a widely used tool rooted in the
principal of parsimony and uses Akaike Information Cri-
teria (AIC; [42]) to rank the quality of models by a quan-
titative measure of model fit and number of parameters.

Table 2: Spearman rank correlation coefficients (r) of the predictors. 

IAV-NDVI Minimum Temperature Seasonality of Precipitation Mimimum NDVI Elevational Range

Percent Treecover 0.12 0.32 -0.62 0.79 0.03
IAV-NDVI 0.08 -0.2 -0.05 0.19
Minimum Temperature -0.10 0.12 -0.01
Seasonality of Precipitation -0.66 -0.24
Mimimum NDVI 0.16

The first three predictors (percent tree cover, IAV-NDVI, and minimum temperature, in bold) were used to define the distribution of the virtual 
species.
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Within a set of candidate models, those with relatively
low AIC values are the most parsimonious and strike a
better balance between bias and variance of model predic-
tions. AIC is a measure of the information lost in using a
particular candidate model to approximate a model that is
theoretically true.

Information-theoretic approach
Information-theoretic methods of model selection rely on
the calculation of the Akaike Information Criteria (AIC)
[42] as a model selection tool. Within a set of candidate
models, models with relatively low AIC values are the
most parsimonious and strike a balance between bias and
variance of model predictions. AIC is a measure of the rel-
ative Kullback-Leibler information lost in using candidate
model i to approximate truth j.

where loge(�(θ|data)) is the value of the maximized log-
likelihood over the estimated parameters given the data
and the model, and K is the number of parameters in can-
didate model i.

When n/K is less than 40, where n is sample size and K is
number of parameters, Burnham and Anderson [28] rec-
ommend using a small sample size corrected version of
AIC called AICc.

For each of the candidate models, we calculate AIC (or
AICc) and then rescale these values to calculate AIC differ-
ences (Δi) so that the model having the lowest AIC (or
AICc) value has a Δi value of 0, i.e.

where AICi is the AIC (or AICc) value of the ith model,
and minAIC is the AIC (or AICc) value of the model with
the lowest AIC (or AICc) value. Thus, the model with a
(Δi) = 0 is the Kullback-Leibler best approximating model
in the candidate set. The larger the value of (Δi), the less
plausible is the fitted model i as being the best approxi-
mating candidate model. Typically, models with (Δi) val-
ues between zero and two have strong support. Models
with (Δi) values between two and ten have considerable
support, and models with (Δi) values larger than ten have
essentially no support [28].

From the Akaike differences (Δi), one can derive the
Akaike weights (wi) for each of the r candidate models.

Akaike weights (wi) approximate the probability that a
given candidate model will be the Kullback-Leibler best
model (best approximating model in the set of candidate
models) if the analysis was repeated on a different sample
drawn from the population. These weights are scaled
between zero and one, and represent the evidence for a
particular model as a proportion of the total evidence sup-
porting all of the models. Therefore, all Akaike weights
sum to one, and a model with a Akaike weight of 0.9 is
expected to be the Kullback-Leibler best model in 90% of
all possible samples. The candidate model with the largest
Akaike weight is the most parsimonious model and has
the most support among the specified candidate models,
given the data.

However, more than one model may be supported by the
data. In such a case it is possible to calculate a composite
model that is a weighted average of all the candidate mod-
els. In such an instance we can compute new parameter
estimates for each term in the global model by weighting
them by the Akaike weights

Where  is the model averaged parameter estimate based
on all R models, (wi) is the Akaike weight for a given can-

didate model i, and  is the parameter estimate for a term

in a given candidate model. The parameter estimate for
terms that do not feature in a candidate model but are
present in the global model is taken to be zero.

Model selection including correct and incorrect variables
Truth is unknown except in simulation studies, such as
ours employing a virtual species, but a property underpin-
ning of the theory of AIC is that it should select the model
in the set of candidates that is closest to "truth" [42]. As an
alternative to stepwise procedures, which would have
introduced unmanageable noise into our analyses by
introducing model selection uncertainty, we computed
AIC for each of 726 multiple logistic regression candidate
models. These models represented all possible combina-
tions of the 3 linear predictors and their quadratic forms
(determinants) used to define the virtual species distribu-
tion (percent tree cover, inter annual variability of NDVI,
and minimum temperature), plus the 3 incorrect predic-

AIC = − +2 2log ( ( | ))e data Kθ (3)

AICc 2log ( (  | ))e= − + +
− −
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tors (i.e. those not use to define the virtual species' distri-
bution) and their quadratic expressions. Each candidate
model included an intercept. For each candidate model,
we computed Akaike's Information Criterion for small
sample size (AICc), Delta AIC (ΔAIC) and Akaike Weights
(wi), and an average model where the parameter estimates
were calculated as an average of all candidate models
weighted by each wi, which was then used for spatial pre-
diction. Calculations were made in S-plus using a set of
custom model averaging functions that we developed
based on theory presented in Burnham and Anderson
[28].

Comparing model fit and predictive performance
We estimated model fit of the final LRM models using the
percent adjusted deviance explained, which is a sample
size-adjusted measure the goodness of fit of a GLM. We
also evaluated how well the model could distinguish
between presence and absences (model discriminatory
power) using calculations of the Area Under the Curve
(AUC) of a Receiver Operating Characteristic Plot [43].
We calculated AUC for all BIOCLIM, ENFA and all LRM
models by comparing their predictions to 5000 randomly
selected presence/absence locations throughout the vir-
tual species range. These 5000 records were not used to
build any of the models, but represent a set of independ-
ent locations for testing the models' predictions. AUC is
an appropriate metric for evaluating classification accu-
racy in species distribution models because it estimates
the percentage of locations where the species is observed
to be present that are expected to have a higher predicted
probability of occurrence than places where the species is
absent [43]. An AUC score of 0.8 indicates that in 80% of
all locations being evaluated the model predicts higher
where the species is present than where it is absent. More-
over, AUC is a threshold independent metric, which
means it assesses classification accuracy across the entire
range of predicted probabilities, and not just for a speci-
fied probability threshold. Recent work has called atten-
tion to problems associated with using AUC to compare
models derived for multiple species though it remains a
valid measure for comparing models developed for the
same species in a fixed study area [44], such as ours. We
calculated AUC and its 95% confidence intervals using an
S-plus script modified from existing codes [45].

Abbreviations
AIC: Akaike's Information Criterion; AUC: Area Under the
Curve (Receiver operating characteristic curve); ENFA:
Ecological Niche Factor Analysis; GLM: Generalised Addi-
tive Model; IAV-NDVI: Inter-Annual Variability in NDVI
(a vegetation index); LRM: Logistic Regression Model.
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