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Abstract

Comparative public health research makes wide use of self-report instruments. For example, research

identifying and explaining health disparities across demographic strata may seek to understand the

health effects of patient attitudes or private behaviors. Such personal attributes are difficult or

impossible to observe directly and are often best measured by self-reports. Defensible use of self-

reports in quantitative comparative research requires not only that the measured constructs have the

same meaning across groups, but also that group comparisons of sample estimates (eg, means and

variances) reflect true group differences and are not contaminated by group-specific attributes that

are unrelated to the construct of interest. Evidence for these desirable properties of measurement

instruments can be established within the confirmatory factor analysis (CFA) framework; a nested

hierarchy of hypotheses is tested that addresses the cross-group invariance of the instrument’s

psychometric properties. By name, these hypotheses include configural, metric (or pattern), strong

(or scalar), and strict factorial invariance. The CFA model and each of these hypotheses are described

in nontechnical language. A worked example and technical appendices are included.
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1. INTRODUCTION

Fundamentally, comparative research seeks to identify similaritiesand differences as well as

explain differences across known population groups. Comparative investigations are often

quantitative, raising concerns about whether instrumentation provides a valid basis for making

group comparisons.1–4 When measurements are provided by self-report or other fallible

methods, concerns about instrumentation are often exacerbated. This is especially true when

measurements target attributes that are not directly observable such as attitudes and beliefs,

intentions and motives, mood states, or behaviors that occur in private settings.

Often, such attributes are measured using multi-item self-report instruments. Each item is

considered an imperfect measure of the attribute of interest but, as a whole, a set of similar

items is hoped to provide valid indirect assessment of the targeted attribute. Responses to items

that are believed to represent a single shared attribute are usually summed to form a composite

measure, which under reasonable circumstances will be more reliable.5 Because the attributes
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of interest are not directly observed, they are referred to as latent variables or, in the jargon of

factor analysis, common factors.6,7

The confirmatory factor analysis (CFA) framework provides a means to test the construct

validity of item sets, ie, whether item sets are indirect measures of hypothesized latent variables.
8 Furthermore, CFA can test whether evidence of construct validity is invariant across 2 or

more population groups as well as whether group comparisons of sample estimates reflect true

group differences and are not contaminated by group-specific attributes that are unrelated to

the construct of interest.1,2,9–15 Available tests form a nested hierarchy defining several forms

of factorial invariance. This hierarchy of tests provides increasing evidence of measurement

invariance.2,12 The results of these tests help to determine which types of quantitative group

comparisons are defensible.

The various factorial invariance hypotheses and the required CFA methodology to test them

have been discussed in the literature.1,2,9,11,15–19 Even so, factorial invariance hypotheses

are tested relatively infrequently. When they are tested, investigators have predominantly

focused on invariance of construct validity.19 Applications testing whether comparisons of

group means are defensible increasingly appear in the literature, but they are still rare and

scattered across substantive domains.19–28

Why is factorial invariance testing relatively rare? One possibility is that many investigators

lack the requisite technical skills, although several accessible articles explain the mechanics

of factorial invariance testing.1,15–19 Perhaps a more fundamental possibility is a lack of

awareness in the scientific community. Many investigators may not understand that lack of

measurement invariance can take many forms, each with specific threats to substantive

quantitative group comparisons, but again, these issues have been discussed in the articles cited

previously. A related possibility is that many investigators do not have an intuitive

understanding of how the various forms of factorial invariance logically defend specific

quantitative group comparisons. In support of this possibility, most explanations of these

logical underpinnings have been technical in nature. Meredith’s landmark theoretical work was

written in theorem/proof format.2 Steenkamp and Baumgartner, although mathematically less

rigorous than Meredith, referenced matrix-based regression equations when explaining the

rationale underlying important factorial invariance concepts.15 Other articles did not report

tests of some important factorial invariance hypotheses and therefore did not discuss them.
16,18 Vandenberg and Lance provided a thorough review of the practice and mechanics of

factorial invariance testing, but the authors did not explain how specific factorial invariance

conditions support various substantive group comparisons.19 This article addresses each of

these possibilities but emphasizes nontechnical explanations intended to provide an intuitive

understanding of the logic underlying the various factorial invariance hypotheses.

Section 2 includes a brief conceptual introduction to common factor models. In section 3, the

primary forms of factorial invariance are described in nontechnical language. An example CFA

analysis testing factorial invariance hypotheses as well as substantive group comparisons is

presented in section 4. The discussion is in section 5. Technical details are included in 3

appendices.

2. CONCEPTUAL INTRODUCTION TO LATENT VARIABLES AND THE

COMMON FACTOR MODEL

There are many definitions of latent variables reflecting different philosophical orientations.
29–31 In all definitions, latent variables are not directly observed and, in some cases, they are

inherently unobservable (eg, mental constructs such as patient health beliefs). One type of

latent variable is an unobserved causal mechanism (or common factor) that influences
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responses to a corresponding set of directly observed variables. Observed variables are also

known as items or manifest variables.

Figure 1 graphically displays a generic 2-factor model of 4 items in 2 independent population

groups (eg, blacks and whites). Common factor models represent a set of linear regression

equations: each item is an outcome, the common factors are the explanatory variables, and

there is one regression equation per item.7,8,32–34 In Figure 1, the ovals represent common

factors, rectangles represent items (ie, observed or manifest variables), and triangles represent

means and intercepts ( x̄ and “1,” respectively). Single-headed arrows represent values of

regression parameters (ie, factor loadings; λ11, λ12, … λ42), common factor means (κ11, κ12,

κ21, and κ22), and intercepts (τ11, τ12, …τ42). Double-headed arrows represent common factor

variances (φ11, φ12, φ21, and φ22) and co-variances (φ (1,2)1 and φ (1,2)2) as well as item residual

variances (θ11, θ12, …θ42). For each parameter, the first subscript indexes the common factor

or item and the second subscript indexes group membership. Thus, λ32 is the factor loading

for item 3 in group 2.

In this example, each item is associated with a single common factor. Such models are known

as congeneric common factor models. The common factors have normal distributions by

assumption and their univariate distributions are described by mean (eg, κ11) and variance (eg,

φ11) parameters. Within each population group, the common factors can covary (eg, φ(1,2)1),

but the common factors are uncorrelated across population groups because in this cross-

sectional model, the groups are independent. As in ordinary bivariate linear regression,

associated with each equation are a regression parameter (ie, factor loading), an intercept, and

residuals with zero-mean and constant variation (eg, λ11, τ11, and φ11, respectively, for item 1

in group 1). Conditional on the common factors, the items are uncorrelated. That is, the model

specifies that within a population group, interitem correlations are fully explained by the

common factors. Additional details are given in Appendix A.

What largely distinguishes the common factor model from a set of ordinary linear regression

equations is that the explanatory variables—the common factors—are not directly observed.

Because they are unobserved, common factors have no inherent scale of measurement; given

the observed data, their means and variances are assigned by constraints placed on the model.
8,35 Often this includes constraining the value of one loading per common factor to equal unity

and the corresponding item intercept to equal zero (eg, λ11 = λ31 = λ12 = λ32 = 1 and τ11 =

τ31 = τ12 = τ32 = 0). Alternative model identifying constraints are possible. Importantly,

however, although the scales of the common factors are arbitrary, under appropriate

circumstances that are described subsequently, meaningful group differences in common factor

means and variances can be estimated.

3. A HIERARCHY OF FACTORIAL INVARIANCE CONCEPTS

In this section, we discuss the primary forms of factorial invariance: dimensional, configural,

metric (or pattern), strong factorial (or scalar), and strict factorial invariance.2 These types of

factorial invariance form a nested hierarchy primarily represented by increasing levels of cross-

group equality constraints imposed on factor loading, item intercept, and residual variance

parameters. Initially, each invariance concept is described in its “full” form. In a later section,

the concept of partial invariance is addressed.

Cross-sectional factorial invariance concerns the invariance of corresponding parameters

across independent population groups. Longitudinal factorial invariance concerns the

invariance of corresponding parameters across time within a population group.36 We only

address cross-sectional factorial invariance.
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Dimensional Invariance: Is the Same Number of Common Factors Present in Each Group?

Dimensional invariance simply requires that an instrument represents the same number of

common factors across groups. Note that this form of invariance is only concerned with the

number of factors in each group, not the specific configuration of items and factors. Clearly,

instruments measuring the same number of factors across groups are desirable in quantitative

comparative research. Logically, if an instrument represents differing numbers of factors across

groups, then the meanings of one or more common factors must qualitatively differently across

those groups.

The number-of-factors “problem” has a longstanding history in the psychometric literature.

Within the exploratory factor analysis (EFA) framework, proposed solutions include those

based on inspection of the eigenvalues of the item correlation matrix37,38 and a χ2 test of

whether the number of extracted factors is sufficient (ie, whether the common factor model

reproduces the item correlation matrix, within measurement error).6,39–43 The same test can

be performed within the CFA framework, but rarely is.34,44 Regardless of the tools used for

selecting the number of factors, the decision should not be based solely on empirical criteria.

It is at least as important to consider theory, practical significance, parsimony, and past

empirical results in the decision process.

The common factor model in Figure 1 is dimensionally invariant across groups. That is, the

model for each group has 2 common factors. Dimensional invariance is desirable, but it does

not provide evidence that quantitative group comparisons are defensible.

Configural Invariance: Are Common Factors Associated With the Same Items Across

Groups?

Assuming dimensional invariance, configural invariance requires that each common factor is

associated with identical item sets across groups. If an instrument measures the same common

factors across groups, it logically follows that the item sets associated with each factor will be

identical across those groups. Note that configural invariance does not require invariance of

any parameter estimates across groups; it only requires that the item clusters are identical.

Traditionally, this form of invariance was more or less subjectively established by visually

comparing rotated factor pattern matrices across group-specific EFA solutions; support for

configural invariance was established when corresponding items had “substantial” loadings on

the same common factor(s) across groups and “trivial” loadings on any other modeled factors.

In CFA models, the item clusters are explicitly specified and a formal test of the configural

invariance hypothesis is available. Therefore, CFA provides the superior framework for testing

configural invariance. If a model with specified item clusters fits well in all groups, then

configural invariance is supported. It is also worth noting that because no formal cross-group

comparisons of parameter estimates are involved, any single-sample CFA replication of a

previously supported factor model constitutes evidence of configural invariance.

The common factor model in Figure 1 is configurally invariant across groups. In each group,

items 1 and 2 are associated with one common factor, whereas items 3 and 4 are associated

with the other. Configural invariance is better than dimensional invariance, but it is not

sufficient to defend quantitative group comparisons.

Metric Invariance: Do the Common Factors Have the Same Meanings Across Groups?

Assuming configural invariance, the metric invariance model requires corresponding factor

loadings to be equal across groups. In Figure 1, this would require that λ11 = λ12, and λ21=

λ22 and λ31 = λ32, and λ41= λ42. This level of invariance provides evidence that corresponding

common factors have the same meaning across groups. This interpretation has intuitive appeal.

Gregorich Page 4

Med Care. Author manuscript; available in PMC 2007 March 2.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



After all, if common factors with identical meanings were operating in each group, we would

expect identical relationships between the factors and the responses to a common set of relevant

items. Conversely, it is difficult to imagine how metric invariance could hold if the common

factors had different meanings across groups, especially if the factor loadings were substantial.

Metric invariance is also known as pattern invariance stemming from the fact that the full set

of factor loadings is known as the factor pattern matrix.

Within the EFA framework, ad hoc methods for testing metric invariance are based on

correlating the estimated factor loadings across independent samples; the level of correlation

indicates, more or less, the level of factor loading invariance across groups.6 Multisample CFA

methods are superior because they allow for simultaneous estimation of factor loadings across

groups and provide a statistical test of the equal-loadings hypothesis. Metric invariance is tested

by imposing equality constraints on corresponding factor loadings and fitting the factor model

to sample data from each group simultaneously. If this model fits well, it suggests that the

equality constraints are supported by the data. Metric invariance can also be tested by

comparing the relative fit of 2 nested models: the fit of the configural and metric invariance

models are compared and any significant worsening of fit suggests that the equal factor loadings

hypothesis is not supported. Examples of both tests of metric invariance are provided in section

4.

If the metric invariance hypothesis is supported, then quantitative group comparisons of

estimated factor variances and covariances are defensible. These comparisons are defensible

because (1) the meanings of corresponding common factors are deemed invariant across groups

and (2) the CFA model decomposes total item variation into estimated factor (ie, “true” score)

and residual components. Therefore, group differences in common factor variation and

covariation are not contaminated by possible group differences in residual variation. In

contrast, metric invariance does not support group comparisons of observed (item or summed

composite) variances and covariances, because observed measures confound common factor

and residual variation. That is, assuming metric invariance, group differences in observed

variation and covariation do not necessarily reflect group differences in common factor

variation and covariation.

If metric invariance is not supported, then 2 interpretations are possible. The first is that one

or more of the common factors, or at least a subset of the items, have different meanings across

the population groups. A second possibility is that a subset of the factor loading estimates for

one or more groups are biased resulting from so-called extreme response style (ERS), which

can take 2 forms.9,45 High ERS is a tendency to use extreme response options (eg, the “never”

and “always” options of a 5-point ordered response set). This response style may occur in

population groups whose members value decisiveness or certainty. Low ERS is the tendency

to avoid extreme responses, favoring middling response options, and may be found in

population groups that value humility and refraining from judgment. ERS affects response

variation; if ERS does not uniformly influence responses to all items within a population group,

then item correlations and factor loading estimates will also be affected. Under some

circumstances, the empirical distributions of item responses may strongly suggest ERS. More

often, subjective judgment will guide decisions about whether a metric invariance hypothesis

failed because of differential factor (or item) meanings or differential ERS across groups.

Strong Factorial Invariance: Are Comparisons of Group Means Meaningful?

When the metric invariance hypothesis is supported and the common factors are interpreted to

have invariant meanings across population groups, another threat to measurement invariance

should be considered: differential additive response bias, also known as differential

acquiescence response styles.9,45 Forces that are unrelated to the common factors such as

cultural norms may systematically cause higher- or lower-valued item response in one
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population group compared with another. Unlike ERS, this response style is additive; it affects

observed means but does not affect response variation. If these additive influences are not

equivalent across groups, then they will contaminate estimates of group mean differences.

In the CFA model, item intercepts reflect these systematic, additive influences on responses

to corresponding items that are constant in each group and are unrelated to the common factors.

Assuming metric invariance, strong factorial invariance additionally requires that regressions

of items onto their associated common factors yield a vector of intercept terms that is invariant

across groups. In Figure 1, this would require that τ11 = τ21, τ21 = τ22, τ31 = τ32, and τ41 =

τ42. Strong factorial invariance is also known as scalar invariance.

Evidence that corresponding factor loadings and item intercepts are invariant across groups

suggests that (1) group differences in estimated factor means will be unbiased and (2) group

differences in observed means will be directly related to group differences in factor means and

will not be contaminated by differential additive response bias. To simplify matters further, it

helps if we assume that all factor loadings are positive and the CFA model parameters have

been rescaled so that the loadings associated with each common factor sum to unity within

each group. The latter rescaling of model parameters is admissible because common factors

are unobserved and have no natural scale of measurement. Given these assumptions, the

expected group differences in composite means will equal the group differences in factor

means; in this sense, when strong factorial invariance holds, we consider group differences in

composite means to be unbiased estimates of group differences in corresponding factor means

(Appendix A, equation A2). An essential point is that when corresponding item intercepts are

invariant across groups they will cancel each other when group differences in observed means

are estimated.

We present an example using a simple linear equation to clarify how strong factorial invariance

can support defensible group mean comparisons. Suppose that mean observed patient weights

are to be compared across 2 medical practices. The following equation relates mean observed

patient weight to mean true body weight,

meanobservedweight = τ + λ × mean trueweight.

Here, τ is the intercept and λ is the parameter describing the relationship between true and

observed body weight. By definition, the patient residual mean equals zero and drops out of

the equation. Under optimal circumstances, the equation would equal,

meanobservedweight = 0 + 1 × mean trueweight,

where the intercept term equals zero and there is a one-to-one relationship between true and

observed weight. In this case, observed weights equal true body weights. Real-life

circumstances are rarely optimal. Suppose that in one practice, patients are weighed in their

street clothes, but in the other practice, they wear examination gowns. Under these

circumstances, the equations would differ across practices. Assuming all scales are accurate

and that patient clothing and examination gowns average 1.2 and 0.2 kg, respectively, the

resulting set of equations would be,

(practice 1)
mean observedweightp1 = 1.2 + 1 × mean trueweightp1, and

(practice 2)
mean observed weightp2 = 0.2 + 1 × mean true weightp2.
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This example conceptually generalizes to the case in which metric invariance holds but strong

factorial invariance does not. The mean true weights correspond to practice-specific common

factor means, the parameter λ = 1 corresponds to an invariant factor loading, and the average

weights of street clothes and examination gowns correspond to practice-specific intercept

terms. (Note that strong factorial invariance can hold when λ ≠ 1.) Although the scales used in

each practice are equally valid instruments, procedural differences have introduced differential

additive bias in weight measurements across practices. Consequently, differences in observed

patient weights do not accurately reflect differences in true patient weights.

Consider possible implications of this differential additive bias. For mean true weights equaling

69 and 70 kg in practices 1 and 2, respectively, the mean observed weights would equal 70.2

in both practices. On the other hand, if the mean true weight equaled 70 kg in both practices,

the mean observed weights would equal 71.2 and 70.2, respectively. Thus, differential additive

bias can function to make observed mean differences smaller or larger than the true difference.

This includes the possibility that no difference is observed when a real difference exists.

This example focused on differential additive bias introduced by procedural differences in

taking weight measurements. Other sources of additive bias are possible. For example, norms

within groups defined by race/ethnicity, culture, gender, age, period, or birth cohort may

systematically act to raise or lower self-report item responses in ways that are unrelated to

respondents’ common factor scores. If such group-specific response tendencies exist, cross-

sectional comparisons of observed means will be subject to differential additive response bias

and are not readily interpretable—even if the measured common factors have the same meaning

in each group.

Whereas tests of dimensional, configural, and metric invariance require fitting CFA models of

covariance structures, testing strong factorial invariance requires modeling both mean and

covariance structures. Mean and covariance structure models are less familiar to the general

research community and this may partially explain why reported psychometric applications

have tested strong factorial invariance relatively rarely. The strong factorial invariance model

imposes equality constraints on corresponding factor loadings and item intercepts and fits the

common factor model to sample data from each group simultaneously. Good fit suggests that

the model constraints are consistent with the data. Strong factorial invariance can also be tested

by comparing the fit of the metric and strong factorial invariance models. Any significant

worsening of fit suggests that the equal item intercepts hypothesis is not supported.

Strict Factorial Invariance: Are Comparisons of Group Means and Observed Variances

Defensible?

In typical applications, the common factor model decomposes the total variance of each item

into 2 uncorrelated components: common factor and residual variation (Appendix A). If a goal

is to compare observed variance estimates across population groups, the comparison should

entirely reflect differences in common factor variation rather than being contaminated by

differences in residual variation. Meaningful group comparisons of item or composite score

variance estimates require an additional form of factorial invariance: residual invariance.

Assuming metric (not strong factorial) invariance, residual invariance additionally requires

that corresponding item residual variances are invariant across groups. When corresponding

item residual variances are invariant, their effects will cancel in cross-group comparisons of

observed variance estimates.

By itself, residual invariance does not support meaningful comparisons of group means.

Because group mean comparisons are almost always of interest, residual invariance is of limited

practical value. For defensible comparisons of both observed mean and variance estimates

across population groups, evidence of strict factorial invariance should be obtained.2 The strict
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factorial invariance model imposes cross-group equality constraints on corresponding factor

loadings, item intercepts, and item residual variances. In other words, the strong factorial

invariance model is further restricted so that corresponding item residual variances are invariant

across groups. In Figure 1, this requires the following additional equality constraints: θ11 =

θ12, θ21 = θ22, θ31 = θ32, and θ41 = θ42.

If the strict factorial invariance model holds, and the model parameters are scaled as described

in the previous section, then expected group differences in composite means and variances will

equal corresponding group differences in factor means and variances (Appendix A, equations

A2 and A4). In summary, when corresponding item intercepts and residual variances are

invariant across groups, they will cancel each other when group differences in observed means

and variances are estimated.

Summary of Factorial Invariance

Table 1 summarizes the factorial invariance hypotheses as well as associated cross-group

constraints and defensible substantive quantitative group comparisons. Group comparisons of

observed or factor means, variances, and covariances are substantive in nature; these

comparisons do not test measurement invariance hypotheses.2,46,47 Instruments should be

sensitive to group differences in construct means and variation. Examples of testing group

differences in factor and observed means and variances are provided in section 4.

Partial Factorial Invariance

So far, we have discussed only the “full” version of each form of factorial invariance (eg, for

metric invariance, all corresponding factor loadings are invariant across groups). Any one of

the “full” forms of invariance described previously can be relaxed to obtain partial factorial

invariance (eg, partial configural invariance, partial strong factorial invariance). As an

example, in a one-factor model with 4 items, 3 of 4 factor loadings may be invariant, whereas

the fourth differs across groups; this is known as partial metric invariance. Byrne et al first

formally described partial invariance within the CFA framework.16 Steenkamp and

Baumgartner developed the concepts further.15 According to those authors, a finding of partial

invariance suggests that the substantive group comparisons associated with the corresponding

“full” invariance hypotheses, as summarized in Table 1, are defensible. Essentially, only the

subset of items meeting the metric, strong, or strict factorial invariance criteria are used to

estimate associated group differences. For example, in a partial strong factorial invariance

model, only those items meeting strong factorial invariance criteria actually contribute to

estimates of group differences in factor means15; if observed means are to be compared, only

those items meeting strong factorial invariance criteria are included in composite measures.

4. APPLICATION

Data

The example data are responses to the Center for Epidemiologic Studies Depression scale

(CES-D)48 collected as part of the National Health and Nutrition Examination Survey

(NHANES) 1982–1984 Epidemiological Follow-up.49,50 The CES-D is a self-report 20-item

measure of depressive symptoms. Respondents indicate the degree to which they experienced

each symptom during the prior week using 4 ordered response options (“0” rarely or none of

the time, less than 1 day; “1” some or a little of the time, 1–2 days; “2” occasionally or a

moderate amount of time, 3–4 days; “3” most or all of the time, 5–7 days). The CES-D is

commonly believed to measure 4 factors. We only consider items from the Somatic and

Retarded Activity factor with factor loadings greater than 0.40 in Radloff’s original report48

(items 1, 2, 7, 11, and 20; Appendix B) and the 248 black and 2004 white men over age 50

with complete data on these 5 items.
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Modeling Approach

Multisample single-factor CFA models were fit to the data from black and white men using

maximum likelihood (ML) estimation with LISREL 8.5451(Fig. 2). To identify the CFA

model, one factor loading per racial/ethnic group was fixed to unity and the corresponding

intercept set to zero. Item responses were treated as continuously distributed. The empirical

item distributions were nonnormal, which was expected to yield inflated ML χ2 goodness-of-

fit test statistics and underestimated parameter standard errors.52–54 Therefore, the Satorra-

Bentler (SB) scaled χ2 and robust parameter standard errors were estimated, which help correct

these biases.55 The clustered sampling design of the NHANES was not modeled. However,

the scaled χ2 and robust standard errors mitigated the impact of intracluster response

dependency on goodness-of-fit tests and standard error estimates.56 Sampling weights were

not available in the public use data.

Multisample CFA models fit to the data included the configural, metric, strong, partial strong,

and partial strict factorial invariance models as well as the equal factor means and equal factor

variances models. In addition to testing the overall fit of each model, we tested the relative fit

of nested models; the difference in ML χ2 statistics (Δχ2) and difference in model degrees of

freedom were computed and compared with a central χ2 distribution. In each case, the χ2
difference tested whether the more constrained model (ie, that model imposing more cross-

group equality constraints) resulted in a significant worsening of fit. To simplify presentation,

corresponding comparisons of SB scaled χ2 test statistics were not reported.57 Additional fit

indices included the root mean square error of approximation (RMSEA),58 the expected cross-

validation index (ECVI),59 and the comparative fit index (CFI).60 RMSEA values below 0.05

and CFI values above 0.95 are commonly considered rough indicators of approximate model

fit.59,61 In a set of competing models fit to the same data, relatively lower ECVI values suggest

models that are more likely to replicate in independent samples of the same size.

When exploring partial factorial invariance models, 2 approaches to empirical model

modification were considered. First, the traditional approach was used: consult so-called

modification indices (or Lagrange multiplier tests) to determine which cross-group equality

constraint, if any, most significantly contributed to lack of fit; free that constraint; reestimate

the model; and reiterate this process as needed. Second, the method of Cheung and Rensvold

was considered, which tests the cross-group invariance of parameters associated with each pair

of items.17 As an example, a one-factor model with 3 items has 3 within-group pairs of factor

loadings: those for items 1 and 2, items 1 and 3, as well as items 2 and 3. In this example, 3

separate CFA models test the cross-group invariance of the factor loadings associated with

each pair of items; in each model, the factor loadings for the remaining item would be freely

estimated within each group. Afterward, test results are examined to determine whether one

or more (possibly overlapping) item sets emerge with evidence of invariant factor loadings

across groups. If such multiple item sets exist, the investigator may prefer one over the others;

the choice of item set could be based on several criteria: the highest sum of squared factor

loadings, the largest item set, the “best” face validity, and so on. Cheung and Rensvold17

focused on partial metric invariance models, but their method naturally extends to investigation

of partial strong and strict factorial invariance. The Cheung and Rensvold17 approach is an

improvement over the traditional method because it more easily allows identification of

potential multiple item sets with invariant parameter estimates.

Tests of Factorial Invariance Hypotheses

Multisample CFA analyses tested the factorial invariance hypotheses. First, a one-factor model

of mean and covariance structures was simultaneously fit to the data from black and white

men. This model imposed no equality constraints on parameter estimates across samples. With

a one-factor model, dimensional and configural invariance are identical. The model fit

Gregorich Page 9

Med Care. Author manuscript; available in PMC 2007 March 2.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



suggested reasonable evidence for dimensional/configural invariance, SBχ10
2 = 18.08,  P =

0.04 (Table 2). Furthermore, models fit separately for each racial/ethnic group produced a

nonsignificant SB χ2, suggesting the model fit well in both groups. The next model constrained

corresponding factor loadings to be equal across groups and provided evidence of metric (or

pattern) invariance, SBχ14
2 = 18.99, nonsignificant (NS) and Δχ4

2 = 0.45,  NS. The third model

tested strong factorial (or scalar) invariance by additionally imposing equality constraints on

corresponding item intercepts. This model was rejected, SBχ18
2 = 35.79,  P < 0.01 and

Δχ4
2 = 20.59,  P < 0.001. Modification indices suggested that the cross-group equality

constraint on the intercept for item 7 (“effort”) contributed most strongly to the lack of fit. The

fourth model freely estimated this parameter in both groups and provided evidence of partial

strong factorial invariance, SBχ17
2 = 23.64, NS and Δχ3

2 = 46.4,  NS. The fifth model tested

partial strict factorial invariance by imposing additional cross-group equality constraints on all

corresponding item residual variances except those for item 7. This model was also rejected,

SBχ21
2 = 34.20,  P < 0.05 and Δχ4

2 = 18.62,  P < 0.001. The modification indices suggested

freely estimating the residual variance for item 2 (“appetite”), resulting in a well-fitting partial

strict factorial invariance model, SBχ20
2 = 21.68,  NS and Δχ3

2 = 1.02,  NS. The method of

Cheung and Rensvold17 resulted in identical partial strong and partial strict factorial invariance

models; LISREL code implementing the Cheung and Rensvold approach to assess partial

strong factorial invariance is provided in Appendix C.

Comparisons of Factor Means and Variances

The partial strict invariance model was chosen as the basis of the models testing equality of

factor means and variances. The seventh and eighth CFA models suggested evidence for

equality of factor means, SBχ21
2 = 22.30,  NS and Δχ1

2 = 0.50,  NS, and factor variances,

SBχ22
2 = 21.46,  NS and Δχ1

2 = 0.08,  NS. Note that because its intercept was freely estimated

in each group, item 7 did not contribute to the estimated group difference in factor means.15

Finally, the RMSEA, ECVI, and CFI suggested that the equal factor means and equal factor

variances models offered the best fit.

The final model is depicted in Figure 2. The parameter estimate subscripts identify item number

and sample membership (ie, “B” or “W”). Parameter estimates constrained to be equal across

samples have second subscripts equal to “·” and are in bold type. Standardized factor loadings

are in parentheses. Model-identifying constraints are underlined.

Comparisons of Observed Means

The previously mentioned results suggested that all 5 CES-D items measured the same

construct in both samples, ie, metric invariance was supported. However, metric invariance

does not guarantee that group mean comparisons will be unbiased. To explore this further, we

compared the observed means of all 5 items (Table 3). Black men had higher mean response

levels on all items, except “restless.” The largest difference was for “effort,” but the previous

analysis suggested this item was subject to differential additive response bias, invalidating

group mean comparisons. We next computed composites by summing all 5 items as well as

the 4 strong factorial invariant items (ie, removing “effort”). The 5-item composite suggested

that black men reported significantly higher levels of somatic symptoms than did white men.

However, the 4-item composite suggested no significant group difference and this result

corresponded to the findings from the seventh CFA model, which tested equality of factor

means across groups.
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Comparisons of Observed Variances

Comparisons of item variances suggested no group differences among the 3 strict factorial

invariant items. The remaining items “appetite” and “effort” had higher levels of response

variation in the black sample, but the CFA models suggested group comparisons of observed

response variation for those items would contaminate common and residual variation,

essentially leading to meaningless comparisons. Variances of corresponding 5- and 3-item

composites were also compared. In neither case did the group composite variances significantly

differ. However, the group difference was larger for the 5-item composite; for the 3-item

composite group levels in response variation were almost identical. This mirrored the result

from the eighth CFA model, which tested the equality of factor variances across groups.

5. DISCUSSION

Quantitative comparative research places higher demands on instrumentation than single-

group research. Single-group research can fare well with valid and reliable measures.

Comparative research requires that instruments measure constructs with the same meaning

across groups and allow defensible quantitative group comparisons. The example application

demonstrated how measures can have the same meaning across population groups, but do not

necessarily support defensible quantitative group comparisons. A group comparison of the 5-

item composite measure suggested that black men reported significantly higher levels of

somatic symptoms. However, the evidence suggested that this apparent racial disparity was

spurious and was largely the result of differential additive response bias affecting the “effort”

item.

From a quantitative comparative perspective, strict factorial invariance is universally desirable.

Practical experience suggests that a finding of strong factorial (scalar) invariance is a more

readily attainable goal that allows for defensible group comparisons of both observed and factor

means as well as factor variances and covariances. Instruments that, at minimum, do not

demonstrate partial strong factorial invariance may be counterproductive in comparative

research. However, if focus is restricted to comparing the strength of corresponding regression

parameters across groups, then metric invariance is sufficient if one of the following holds: (1)

the regression model corrects for measurement errors in explanatory variables (eg, a structural

equation model with latent variables) or (2) the reliabilities of corresponding explanatory

variables are invariant across groups. (For a congeneric factor model, the combination of

invariant factor loadings, residual variances, and factor variances is a sufficient, but not

necessary, condition for equal item and composite reliability across groups. A less restrictive

sufficient condition for equal item and composite reliability is metric invariance plus invariance

of corresponding factor variance to residual variance ratios across groups.)

A common question concerns the limits of partial factorial invariance: Given a set of items

hypothesized to represent a single common factor in 2 or more groups, how many items with

invariant parameters are required to make valid quantitative group comparisons? There is little

guidance on this matter. When faced with partial invariance, there are 3 broad options for how

to proceed listed here by increasing conservativeness: (1) allow group comparisons on all items,

regardless of any evidence for lack of measurement invariance; (2) restrict group comparisons

to those items with appropriate invariant parameters; and (3) avoid group comparisons on any

and all items identifying the factor. Millsap and Kwok62 carefully considered how use of

composite measures under option 1 affects selection. Focusing on the 2 more conservative

options, there are algebraic and qualitative perspectives on this question, which are sometimes

at odds. Option 2 represents an algebraic perspective in which items with varying loadings,

intercepts, or residual variances are simply ignored; such items are treated as nuisances and

are algebraically excluded from appropriate estimates of group differences. For example, a

byproduct of the CFA partial strong factorial invariance model is that items with intercepts
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that vary across groups do not contribute to estimates of group differences in factor means.
15 If, on the other hand, observed means are compared, such items would be excluded from

composite measures, effectively assigning them zero weight. From this perspective, at least 2

items with appropriate invariant parameters are required for defensible quantitative group

comparisons. Technically, a single item with appropriate invariant parameters is sufficient for

valid group comparisons. However, because of the required model-identifying constraints, tests

of metric (and strong factorial) invariance require cross-group equality constraints on the factor

loadings (and item intercepts) of at least 2 items. (Note that if the model-identifying constraints

include fixing the factor loading and intercept for one item to equal unity and zero, respectively,

in each group, then these represent cross-group equality constraints on the loadings and

intercepts for that item.) Of course, larger numbers of items with invariant parameters will lead

to more reliable estimates of group differences.

A qualitative perspective focuses on the meaning of common factors and, therefore, the

invariance of factor loadings. From this perspective, any item with a factor loading that varies

across population groups suggests that the factor has different meanings across those groups,

and excluding such items from group comparisons ignores, but does not resolve, those

qualitative differences. In its strict implementation, this perspective rejects quantitative group

comparisons based on any and all items if at least one of them has varying factor loadings

across groups (option 3).

The important contrast between the 2 perspectives is how they regard items with factor loadings

that vary across groups. The algebraic perspective essentially treats such items as nuisances

that can be ignored, whereas the qualitative perspective holds that such items signal qualitative

group differences that render quantitative group comparisons as meaningless. Assuming at

minimum that full metric invariance is supported, both the algebraic and qualitative

perspectives allow items with varying intercepts or residual variances to be ignored in

quantitative group comparisons, ie, under this circumstance, the 2 perspectives converge.

Some limitations of the example application are worth noting. We made reasonable

methodological attempts to address the nonnormal distribution of the sample data and the

clustered sampling design used to collect the data. Other methodological options can address

these issues. For example, within the extended CFA framework, the item responses could have

been modeled as ordinal rather than continuous.63 A serious threat to the analyses reported in

section 4 concerns the use of post hoc model modifications. Making such data-driven model

modifications requires caution and invalidates probability values associated with subsequent

χ2 tests; the reported findings are provisional and require replication.64,65 Nevertheless, the

configural through the strong factorial invariance models were specified a priori.

The body of comparative research using self-report measures has been inadequately supported

by appropriate psychometric evaluation. CFA applications testing factorial invariance

hypotheses have typically focused on metric invariance, leaving open questions about the

validity of quantitative group comparisons of means and observed variation. As an example,

the psychometric properties of the CES-D have been studied relatively extensively. However,

we know of no previously reported investigation testing any CES-D items for strong factorial

invariance across black and white men. Other issues remain. Instruments that have been

evaluated thoroughly in one or more population groups may eventually be administered in

additional groups for which there is no supporting psychometric assessment. Furthermore,

population groups are fluid. For example, results from NHANES data collected in 1984 do not

necessarily generalize to black and white men sampled in 2006 or beyond. Period and cohort

effects need to be considered. Statistical methodology has outpaced research practice in this

arena.
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APPENDIX A: STRONG AND STRICT FACTORIAL INVARIANCE

The Common Factor Model

The general common factor model in one group can be expressed as,

xij = ∑
k=1

q
λikξ jk + sij + εij + αi; i = 1 to p items;

j = 1 toN respondents; k = 1 to q factors; N > p > q,

where xij are the scores on p items or observed variables for each of N respondents, λik are the

regression coefficients or factor loadings of the items on each of the q common factors, ξjk are

the common factor scores for each of the respondents, sij are the scores on the specific factors

for each of the respondents, ɛij are random errors of measurement, and α1 are intercepts from

the regression of each item onto the common factors. The model assumptions include (1) the

ξk, si, ɛi are normally distributed, each with constant variance; (2) the ɛi are errors of

measurement as defined by classical true score theory66; (3) the correlations among the ξk and

si are zero; (4) the correlations among the si are zero. Meredith and Teresi describe further

details.12

Throughout the remainder of this appendix, we consider a correctly specified single common

factor model with positive factor loading values for all items (positive manifold). Because

common factors are unobserved, they have no natural scale of measurement. Therefore, it is
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admissible to further assume that the parameters of the factor model have been rescaled so that

the sum of the factor loadings within each group equals unity.

Mean Structure

We initially take an item-wise perspective. The means of the items, μ, can be expressed as μi

= λiκ + (vi + αi), where κ is the common factor mean and the vi are the specific factor means.

In most single-sample applications, only one mean parameter on the righthand side of the

equation will be identified. Multisample applications allow estimation of additional mean

parameters.13,14 The parameters vi and αi are placed in parentheses because in typical

multisample designs they cannot be estimated separately. By convention, we substitute τi for

the quantity (vi + αi), resulting in μi = λiκ = τi.

A model with a single common factor decomposes the mean of each item into the product of

a common factor mean and factor loading plus an intercept term. The population item mean

vector is expressed as M = Λκ + T, where Λis the vector of common factor loadings and T is

the vector of item intercepts.

Covariance Structure

The variance of each item, σi
2,  can be expressed as σi

2 = λi
2φ + (υi + ωi),  where φ is the

common factor variance, υ;i are specific factor variances, and the ωi are random error variances.

The parameters υi and ωi are placed within parentheses because in typical multisample designs,

they cannot be estimated separately. For convenience, we substitute θi for the quantity (υi +

ωi), yielding σi
2 = λi

2φ + θi. In this model, the variance of an observed variable is decomposed

into 2 components: the product of the common factor variance and a squared factor loading

plus residual variation. Consequently, for a one-factor model, the covariance structure of all

items is expressed as Σ = ΛφΛ′ + Θ, or alternatively Σ = ΛΛ′φ + Θ, where Θ is a diagonal

matrix of item residual variances.

Mean and Covariance Structures in Multisample Applications

In multisample applications, models are fit simultaneously to data from 2 or more samples.

Questions naturally arise regarding the invariance of corresponding parameters across groups

and the associated implications for comparative research. Here we consider a 2-group design

and denote group membership by a subscript, g.

Comparing Observed Means Across Groups

The multigroup mean structure for a single-factor model can be written as, Mg = Λgκg + Tg.

When, at minimum, Λ = Λ1 = Λ2 and T = T1 = T2 (ie, strong factorial invariance), differences

in item means will be proportional to the difference in common factor means,

M1 − M2 = Λκ1 + T − (Λκ2 + T)

= Λ(κ1 − κ2).
(A1)

Interest generally lies in computing composite scores for each respondent within in each group,

cjg, by summing observed scores on items associated with the common factor and assessing

the composite mean group difference. Given a single common factor model, it follows from

equation 1 that

Gregorich Page 16

Med Care. Author manuscript; available in PMC 2007 March 2.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



E (c̄1 − c̄2) = sum(M1 − M2)

= sum(Λ)(κ1 − κ2)

= κ1 − κ2,

(A2)

where the c̄g represent group composite means, E(.) is the expectation operator, sum(.) sums

the elements of a matrix or vector, and sum(Λ) = 1, by stated assumption, and therefore drops

out of the equation. In this case, the expected difference in group composite means equals the

difference in common factor means.

Comparing Observed Variation Across Groups

Assuming a single common factor model, the item covariance structures in multiple groups

can be expressed as, Σg = Λg Λg′φg + θ g. When both Λ = Λ1 = Λ2 and θ = θ1 = θ2 (ie, either

residual or strict factorial invariance holds), it follows that group differences in item variation

and covariation are proportional to group differences in common factor variation. In this case,

a comparison of item covariance matrices across 2 groups can be expressed as

Σ1 − Σ2 = ΛΛ′φ1 + θ − (ΛΛ′φ2 + θ)

= ΛΛ′(φ1 − φ2).
(A3)

Again, interest generally lies in computing composites by summing item scores and assessing

group differences. If, at minimum, residual invariance holds, then the expected group

difference in composite variation is expressed as,

E (σ̂1
2 − σ̂2

2) = sum(Σ1 − Σ2)

= sum(ΛΛ′)(φ1 − φ2)

= sum(Λ)2(φ1 − φ2)

= φ1 − φ2,

(A4)

where σ̂g
2  is a group-specific composite variance estimate and sum(Λ)2 = 1, by stated

assumption. Thus, under residual or strict factorial invariance and the stated assumptions, the

expected value of observed group differences in composite variation equals the group

difference in common factor variation.
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APPENDIX B: LISREL Code for testing factorial invariance hypotheses
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APPENDIX C: Lisrel code implementing the cheung and rensvold17 method

to assess partial strong factorial invariance
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FIGURE 1.

Generic 2-factor model in 2 groups.
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FIGURE 2.

Partial strict factorial invariance model.
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TABLE 1

Summary of Factorial Invariance Testing

Invariance Hypothesis Invariance Test Defensible Substantive Quantitative Group
Comparisons

Dimensional Invariant no. of common factors None
Configural + Invariant item/factor clusters None
Metric (pattern) + Invariant factor loadings Factor variances/covariances
Strong factorial (scalar) + Invariant item intercepts + Factor and observed means
Strict factorial + Invariant residual variances + Observed variances/covariances
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