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Opinion
Modellers of biological, ecological, and environmental
systems cannot take for granted the maxim ‘simple
means general means good’. We argue here that viewing
simple models as the main way to achieve generality
may be an obstacle to the progress of ecological re-
search. We show how complex models can be both
desirable and general, and how simple and complex
models can be linked together to produce broad-scale
and predictive understanding of biological systems.

Background: model strategies and purposes
An oft-repeated maxim of ecological modelling is that to
achieve general insights, ecologists should favour simple
models. This belief is rooted in the methodological precept
known as Occam’s razor, and in the success of theoretical
physics, where it is often the case that simple models,
expressed in a few equations, are able to provide a coherent
framework for a wide range of phenomena while simulta-
neously making testable predictions (e.g., Maxwell’s equa-
tions for electromagnetism). Holling [1] was the first to
propound this argument in ecology when he made a dis-
tinction between strategic models, which are as simple as
possible to reveal potential explanatory generalities, and
tactical models, which are more complex because they are
designed to predict the dynamics of specific systems (Box
1). May echoed this with his plea for a strategic modelling
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approach that ‘sacrifices precision in an effort to grasp at
general principles. . .to provide a conceptual framework for
the discussion of broad classes of phenomena’ [2]. As well
as inspiring a whole generation of ecological modellers,
May’s heuristic has often been interpreted as ‘simple
means general means good’ and, accordingly, complex
models have been interpreted to be of little use when
attempting to obtain general insights. Consequently, work
based on complex models has been, and still remains, hard
to publish and fund.

Model strategies

The general principles on which Holling’s and May’s strate-
gic models rely are not first principles or mechanisms (such
as natural selection or the law of conservation of energy).
Their use of the term ‘general principles’ refers to concepts or
phenomenological descriptions of processes and interac-
tions. In these cases, a strategic model better fits what Crick
refers to as a demonstration [3] of certain concepts, or what
Roughgarden calls a minimal model for ideas [4], rather
than an attempt to represent any specific ecological system
(Figure 1, Box 1). Because of this confusion, we think that
the term ‘strategic model’ should be best reserved for those
that are based on general principles, such as natural selec-
tion, whereas ‘demonstration’ is more appropriate for mod-
els based on phenomenological descriptions (Figure 1).

Demonstration models are useful because they provide
a toolkit for developing ecological theory. However, one
must realise that they only provide elements of possible
explanations of real systems. Demonstration models, at
best, show that the modelled principles are sufficient to
produce the phenomenon of interest; they do not help
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Box 1. Modelling strategies: definitions and sources

� Strategic models: models made to be as simple as possible to

reveal general explanations. First labelled by Holling in 1966 [1]

and emphasised by May in 1973 [2]. We restrict the use of

‘strategic model’ to one that genuinely encompasses general

principles, such as natural selection or conservation of energy

(Figure 1, main text).

� Tactical models: complex models constructed (‘merely’) to predict

specific system dynamics. These form part of Holling’s 1966

model typology [1].

� Demonstration model: models in which the so-called ‘general

principles’ are in fact concepts or phenomenological descriptions

of processes; first labelled by Crick in 1988 [3].

� Minimal model for ideas: similar to Crick’s demonstration and part

of Roughgarden et al.’s 1996 model typology [4].

� Minimal model for a system: models designed to explain only

certain aspects of a system, with the justification that these might

be the most important ones. Such models form part of Rough-

garden et al.’s 1996 model typology [4]. We include this modelling

strategy within demonstration models but recognise that they are

more likely to be linked to an individual system (see Figure 1 in

main text).

� Synthetic model for a system: tactical models that aim to explain

system dynamics and provide testable predictions; first labelled

by Roughgarden et al. [4].
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decide whether they are necessary. Demonstrations do not
need to be tested against specific data because they repre-
sent concepts rather than systems. However, confusion
arises when demonstration models, which are not designed
to explain specific systems, are nevertheless compared with
data from specific systems, as if they are making predictions
for these systems. In 1925, Volterra made explicit reference
([5] p. 559) to the similarity between the observed changes in
the fish community of the Adriatic after the cessation of
fishing during World War I and the results of his simple
model. Likewise, May and Anderson in 1979 [6] compared
the output of their model with data from real populations
exposed to diseases. They found that ‘some of the theoretical
conclusions can be pleasingly supported by hard data, while
others remain more speculative’ ([6] p. 460). This confusion
of model purposes gives the false impression that simple
demonstration models can provide actual explanations of
specific systems. This is one of the main reasons why the
notion ‘simple means general means good’ has been so
dominant in ecology over the past few decades.

However, tactical models aim not only to explain system
dynamics, but also to provide testable predictions. Rough-
garden et al. [4] called this sort of model a ‘synthetic model
for a system’ (Box 1, Figure 1). Such models contain details
about particular systems and are especially important for
making predictions about the future behaviour of those
systems. Many models of this type are simulation models,
such as individual-based models of forests [7], stream fish
[8], and regional vegetation models [9].

Model purposes

When a model is being developed, the first task is to define
its purpose [10]. This determines what is included in a
model, and what needs to be represented in detail or in a
more aggregated way. The distinction that Holling made
between strategic and tactical models emphasised two
different purposes: (i) understanding and identifying gen-
eral principles, which requires simple, abstract models free
2

of system-specific details; versus (ii) predicting the dynam-
ics of specific systems, which requires models that include
specific factors (e.g., the type of disturbance or environ-
mental stochasticity, and the parameter ranges for the
class of systems under consideration) [1].

Here, we argue that the adage that ‘simple means
general’ needs to be treated with caution. Viewing simple
models as the primary route to generality can obstruct
progress in ecological research. The generality of simple
models is often superficial because they only demonstrate
possible explanations rather than provide actual instances
of explanation (Figure 1). We believe that the implied
necessity of sacrificing predictive ability to achieve gener-
ality is overblown and hinders progress in ecology [11].
Retaining complexity in a model does not necessarily mean
that irrelevant detail has been included, and including
detail is often a necessary step towards a general under-
standing of ecological systems.

In the following sections, we discuss how some model-
ling strategies can bring both explanatory power and
(relative) simplicity to the science. However, we also think
that it is important to keep in mind that models are
constructed for specific purposes, and a single model will
rarely, if ever, be optimal for all the desired criteria. First,
however, we should be clear about what we mean by
‘simple’ and ‘general’.

What is meant by simplicity and by generality?
Although it might seem that the definitions of the terms
‘simple’ and ‘general’ are self-evident and unambiguous,
even a cursory examination of how scientists use these
words shows that this is not the case.

Simplicity

Models vary in the number and complexity of processes
included to describe the system, the way the processes are
described mathematically, and the ease with which the
model can be analysed. This leads to three conceptions of
model simplicity: (i) the number and complexity of entities
and processes represented in a model: a simpler model has
fewer entities characterised by fewer variables, and fewer
and simpler processes; (ii) the brevity of the mathematical
or computational description of the model: a simpler model
has fewer and shorter terms, equations, parameters, and
state variables, and includes fewer stochastic elements;
and (iii) the effort needed to analyse and understand a
model: a simple model is usually easier to understand
because it includes fewer confounding factors and, thus,
can often be fully analysed, which enables greater compre-
hension of its behaviour under all circumstances (however,
see [12]). By contrast, more complex models may require
simulation to provide solutions for specific parameter
combinations. Comprehensive solutions can be gained by
many simulations of different parameter values, but gen-
erally do not provide a complete analysis of the model
because doing so would require simulation of the entire
parameter space.

These three types of simplicity are often positively
correlated, but need not be. For example, a model with a
small number of differential equations may be hard to
analyse and require further simplifying assumptions
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Figure 1. Modelling strategies can be represented as the production of models that vary in complexity but which also aim for different levels of fidelity when compared with

the real world. Here, we display a typology of alternative terminologies on these axes (Holling’s nomenclature is shown in red, Roughgarden et al.’s in green, and Crick’s in

blue). We suggest that modelling strategies mainly lie in the region defined by the ellipse and we place our terminology within it. Examples of models that fit at different

regions of this parameter space (indicated by roman numerals) include: (i) forest-gap models, stream fish models, and regional vegetation models [7–9]; (ii) Andersson and

May host–parasite models and most ecological models [6]; (iii) Lotka–Volterra, Levins’ metapopulation model, and community matrix models [2,5,33]; and (iv) natural

selection and conservation of energy.
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and simulation to achieve a numerical solution (e.g., [13]).
By contrast, a simulation model, described by thousands of
lines of code, may be causally very simple: the dynamics of
an entire forest may be driven by vertical competition
among individual trees for light (e.g., [7]). Moreover, the
classifications ‘simple’ and ‘complex’ can usually only be
evaluated in comparison with other systems, which means
that categorical judgements about whether a particular
model is simple or complex cannot usually be made.

Generality

Just as there is a range of notions of simplicity and its
converse, complexity, there are several conceptions of
generality. Most ecologists view the generality of a model
as being proportional to the number of biological systems
(such as species or environmental conditions) that a model
can capture or to which its conclusions can be applied. As
with simplicity, generality is best understood as a com-
parative notion. In most cases, all one can claim is that one
model is more (or less) general than another model [14]
and then only if one uses the same standards for compar-
ing model output to data. This is how we approach gener-
ality below.

Are simple models always more general?
An ecologist in search of models to explain broad ecological
phenomena may wish to model just a few fundamental
processes, ones that are likely to be found in many systems.
This seems to be the original (strategic) interpretation of
the ‘simple means general’ argument, and what May [2]
had in mind (Figure 1). Of course, such simplicity comes at
a cost. Very general models with only one or two causal
factors will not have an especially good fit to any particular
system [15]. Thus, the generality of strategic models is of a
particular sort: they potentially inform about phenomena
that exist in many systems, but may not necessarily make
good predictions about any individual system. For exam-
ple, consider a standard model that demonstrates density-
dependent growth: the logistic equation. This is a single
difference map that represents the negative feedback
3
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between population growth rate and population size. In-
vestigation of this model reveals the existence of a range of
attractors in phase space, which could correspond to the
resilience of the modelled population to disturbances. Such
attractors could perhaps be found in many ecological sys-
tems. However, subsequent analysis may reveal that, al-
though this insight holds for many systems, the extent to
which it describes real populations depends on the stan-
dards of fidelity for the model. Environmental change and
variability, spatial heterogeneities, and demographic dif-
ferences between individuals will lead to quantitatively or
qualitatively different dynamics from those suggested by
the simple model [16]. Simple, strategic, or demonstration
models illustrate how phenomena could be produced; they
may inform biologists about many systems, but will not
apply to any particular system with a high degree of
fidelity. They will not be useful at predicting the behaviour
of specific systems and, thus, cannot be empirically tested
against data from a particular system.

The other consideration in any discussion of whether
simplicity begets generality concerns the assumptions that
are made to create a model. All models are only as good as
their underlying assumptions, and both simple and com-
plex models can be based on unrealistic assumptions.
However, in many cases, simple models require higher
levels of idealisation than do complex models and, thus,
are more likely to be biologically unrealistic [17]. As a
result, simple models may lead to theory that cannot apply
to any real biological system.

Simple–general trade-off

If it were always true that simple models were more
general than were complex models, a preference for simple
models might be justified. However, we argue that there is
usually a trade-off between simplicity and generality, such
that simpler models are, all other things being equal, less
general than are complex models. For example, a nonlinear
population growth equation such as dN/dt = aN + bN1+a

represents a large family of models, the members of which
correspond to the constant parameters a and b being set to
particular values (whereas a can take any value). If b is set
to zero, we obtain a simpler linear equation, dN/dt = aN.
Obviously, the nonlinear equation includes the linear one
as a special case. Thus, the more complex equation repre-
sents a larger family of models than the linear ones and,
therefore, is more general. It can pick out all the real
systems that are described by the linear equation plus a
range of others. This is an illustration of the observation
that, when dealing with related equations lacking numeri-
cally quantified parameters (called ‘uninstantiated’ models
by [14]), simplicity decreases generality.

We suggest that ecologists should be concerned about
the simplicity versus generality trade-off that results in
simple models being less general than complex models.
However, despite its existence, many ecologists believe
that simple models really are more general. One reason
why this adage is believed to be true is because, in ecology,
simple models are often assumed to be strategic (sensu
Holling [1], Figure 1) without their purpose being critically
examined. As soon as models move away from the exami-
nation of general principles towards making predictions for
4

specific systems, then increasing complexity will usually
increase generality.

In summary, our discussion so far shows that the wide-
spread acceptance of the maxim that simple models are
always more general is at best misleading and may often be
untrue, especially when attempts are made to relate mod-
els to systems to make predictions, including those in-
volved in model validation. Unlike in physics, where
general models have to make testable predictions, ecology
has embraced an approach where models claiming gener-
ality are untestable in any real system. It made sense
during the 1960s for Holling and others to foster the
development of simple models to achieve more generality,
because complex models were then not very tractable due
to their structural, conceptual, and computational limita-
tions. However, these limitations no longer apply after half
a century of scientific and technological development, and
there is a danger that progress in ecology is being impaired
by the rejection of more complex forms of models that can
be related to real systems. We now turn to some of these
newer developments.

Explanatory focus
A key decision that modellers face is to determine which
aspects of the dynamics of real systems should be
explained, and which ignored or ‘built in’. There are no
hard and fast rules about how such decisions are made, but
a common strategy is to identify the background processes
that are not known in detail or are not of theoretical
interest for current purposes, and to impose these on the
model with parameters. Thus, attention can be focused on
the ecological processes that are deemed to be of more
interest. Mortality, for example, can be modelled as a
mixture of a constant background mortality and mortality
emerging from processes such as starvation, predation, or
disturbances [10].

The ‘simple means general’ heuristic can lead to an
overemphasis on the imposition and abstraction of partic-
ular structures that are believed to be important. For
example, including a density-dependence term in an eco-
logical model, on the assumption that this process has a
role in population dynamics, gives the theorist no under-
standing of the mechanisms underlying density depen-
dence. By contrast, representing the resources of the
environment, and the ways that organisms use those
resources, can show how density dependence arises. Such
cases illustrate that simple models often lack realism, or
require especially complex justifications to reconcile these
models with reality [18].

Simple models may demonstrate that particular pro-
cesses could influence dynamics and may apply generally,
but still may not strongly inform any real biological sys-
tem. For example, dynamical chaos can arise in simple
deterministic systems and could be an explanation of many
complex population dynamical patterns. Yet, despite being
a strong focus of research in population biology for 25
years, good examples of chaotic population dynamical
systems are rare and often still controversial. Explana-
tions of ‘chaotic’ population dynamics now usually invoke
stochastic processes interacting with deterministic dynam-
ics [16]. In these cases, a simple model (chaos arising from



Box 2. Rabies and the economic and social costs of relying

on simple models

Practical applications of modelling include guiding the development

of large-scale, long-term projects, such as disease control and

conservation strategies. The amount of system-specific detail

incorporated in such models can affect the conclusions drawn from

the models and, thus, impact substantially on the outcome of the

projects.

An example of this is the control of rabies, a serious disease that

kills tens of thousands of humans a year. Substantial amounts of

money are spent annually on rabies prevention (e.g., in the USA

approximately US$300 million per annum [33]). Since the early

1980s, large-scale oral vaccination campaigns have been used in

Europe to immunise red foxes (Vulpes vulpes) against rabies. The

critical question is ‘what level of immunisation needs to be achieved

to eradicate the disease?’ Anderson et al. [34] produced ‘a simple

mathematical model for the overall dynamics of the interaction

between fox populations and rabies’. It suggested that, at fox

densities typical of central Europe, a vaccination rate of 70% of the

fox population needed to be achieved to eradicate rabies success-

fully, and the rabies eradication programmes over Europe over the

past 30 years have been designed to achieve this level of

vaccination.

However, data from some populations in which rabies had been

successfully eradicated suggested that the percentage of immu-

nised animals was as low as 50% [35,36]. To re-examine the issue,

Eisinger and Thulke [37] created a complex, spatially explicit

individual-based model [38]. In this model, infected foxes mostly

infect other individuals in their own or neighbouring social groups,

whereas in the Anderson et al. [34] model, an infected fox can

potentially infect any susceptible fox in the population however

distantly separated.

Eisinger and Thulke’s [37] model suggested that rabies would be

eradicated from the population if 60% (rather than 70%) of the foxes

were immunised. If they changed local transmission to global

transmission, and removed spatial heterogeneity in vaccination, the

predictions of the modified model matched the 70% figure of the

Anderson et al. [34] model.

This revised model has economic consequences [37]. To achieve

70% immunisation requires 20 baits per km2, whereas to achieve

60% requires approximately one-third fewer. This would generate

substantial cost reductions, estimated in multination regions as ca.

s15 million annually for bait alone. Thus, the results of a simple,

unrealistic model led to considerably higher costs for the rabies

eradication programme.
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purely deterministic processes) has been supplanted in
favour of a more complex model (stochasticity interacting
with deterministic processes). This may be an example of
where biologically unreasonable assumptions led to the
development of simple models that proved to be unhelpful
guides to the way the world operates.

Because of the cost of simplicity, and the difficulties
associated with constructing hyper-realistic models, many
contemporary ecological models adopt a middle ground
[19], attempting to explain phenomena in some detail,
while ignoring many characteristics of the real system in
the hope they are not essential (e.g., [20,21]). Models of this
type are close to what Roughgarden et al. [4] refer to as
minimal models for a system. These models are less purely
demonstrations than are minimal models for ideas but are
more abstracted than tactical models (Figure 1). Thus, in
our view, Roughgarden et al.’s minimal models can be
regarded as different types of demonstration model, useful
for elucidating or illustrating ideas but not helpful in
generating testable predictions.

Roads to generality
Complex models have been fruitfully developed for both
theoretical and practical ecological problems (e.g., see over-
views in [22–26], Box 2). Crucially, such complex models
can, if they encompass relevant mechanisms, make pre-
dictions for new conditions and represent the properties of
highly variable phenomena, as is needed when studying
the effects of changes to the environment [27]. Therefore,
they can help to solve practical ecological problems, such as
those in conservation biology and resource management
[24,25,27] (Box 2).

Simulation experiments as exemplars

The price for complexity is that such models usually need
to be tied to data from specific systems. We are still left
with the problem of how to generate general insights from
models that are tied to specific systems. A key strategy
currently used to solve this problem is the use of simulation
experiments [28,29]. Such experiments are performed on
models, but parallel the kinds of experiment performed on
laboratory systems. Techniques include analysing con-
founding factors, such as heterogeneities and stochasticity,
changing the number of types of entity and process consid-
ered in the system [30], and systematically varying the
parameters and variables of the model to determine
whether its predictions are strongly or weakly influenced
by changing values and, thus, which processes are more or
less important dynamically. Utilising such simulation
experiments requires the systematic consideration of pos-
sible (but not actually occurring) scenarios to understand
the scope and limits of the model in question [31]. An
approach that might be usefully applied here is numerical
bifurcation theory, which is a powerful approach to model
analysis that does not require analytical solutions but can
yield results that are more robust than those obtained by
simulation.

This sort of analysis might help to extract key ecological
processes, or even principles as discussed above, that
strongly influence certain ecological phenomena or pat-
terns. Processes that have been excluded in the course of
analysis can be understood as less important, or only
important for a few specific systems. In some cases, sim-
plification may result in the creation of an analytically
tractable model, but this is not an absolute requirement.
This dynamic of modelling captures important aspects of
the interplay between simple and complex models.

Concluding remarks
The maxim ‘simple models are more general than complex
models’ often misleads modellers. The statement may be
true for those strategic models that are based on first
principles (Figure 1), but such models are rare in ecology.
In other instances, simple models can help identify broad-
scale and widespread phenomena. We have called these
instances ‘demonstration models’. We recognise that sim-
ple models have great utility both in acting as demonstra-
tions of particular phenomena and in acting as submodels
of more complex models. However, in most cases, models
must be relatively complex to make predictions about real
ecological systems. These are the models we have labelled
‘tactical’ (Figure 1, Box 1).
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By depending on an approach that detaches prediction
from generality, ecology has developed in a way that is
distinctly different from the physical sciences. Complex,
system-specific models are needed to provide the ability
to predict the current and future behaviour of systems.
These models need to incorporate all relevant processes
and then be tested, perhaps by simulation, to assess
which processes most influence the predictions of the
model; those that are less influential can be removed
[32]. A dynamic approach to ecological modelling empha-
sises the separate and combined roles that simple models
and complex models have in ecological explanation. We
do not propose a new adage to replace ‘simple means
general’. Instead, we have outlined guidelines for ecologi-
cal modelling that will make future efforts to manage the
complexity of ecological systems more comprehensive,
predictive, and useful.
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