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ABSTRACT 

Understanding how people use technology remains important, particularly when measuring 

the impact this might have on individuals and society. However, despite a growing body of 

resources that can quantify smartphone use, research within psychology and social science 

overwhelmingly relies on self-reported assessments. These have yet to convincingly 

demonstrate an ability to predict objective behavior. Here, and for the first time, we compare 

a variety of smartphone use and ‘addiction’ scales with objective behaviors derived from 

Apple’s Screen Time application. While correlations between psychometric scales and 

objective behavior are generally poor, single estimates and measures that attempt to frame 

technology use as habitual rather than ‘addictive’ correlate more favorably with subsequent 

behavior. We conclude that existing self-report instruments are unlikely to be sensitive 

enough to accurately predict basic technology use related behaviors. As a result, conclusions 

regarding the psychological impact of technology are unreliable when relying solely on these 

measures to quantify typical usage.   

 

 

 

 

 

 

 

 

 

 

 



1 INTRODUCTION 

1.1 Background 

Despite decades of progress, understanding the overall impact of technology on people and 

society remains a challenge (Shaw, Ellis, & Ziegler, 2018). Perhaps this is because such a 

topic naturally aligns itself with many disparate research questions. Investigations range from 

issues concerning problematic use (e.g., can smartphones disrupt sleep?), to the effects of 

engaging with feedback as part of a behavior change intervention (e.g., does monitoring 

physical activity improve health?) (Ellis & Piwek, 2018). Approaches to date in behavioral 

science have almost exclusively focused on asking people to consider their personal 

experience with a technology in order to better understand its impact (Ellis, Kaye, 

Wilcockson, & Ryding, 2018). This mirrors a general trend within social psychology as a 

whole (Baumeister, Vohs, & Funder, 2007; Dolinski, 2018), but it is perhaps more surprising 

when applied to mobile and pervasive systems that can record human-computer interactions 

directly (Piwek, Ellis, & Andrews, 2016). Smartphones have provided several new 

opportunities in this regard (Miller, 2012). For example, behavioral interactions can be 

measured ‘in situ’ with a variety of applications and those in computer science have been 

measuring these interactions for several years (Jones, Ferreira, Hosio, Goncalves, & 

Kostakos, 2015; Oliver, 2010; Zhao et al., 2016). However, methodological developments 

have had very little impact on how the majority of social science attempts to quantify, 

explain, and understand technology use more generally.  

 

Two common methods are often deployed by social scientists to capture technology usage 

‘behaviors’. The first relies on participants providing estimates of frequency or duration (Butt 

& Phillips, 2008). However, this method has previously been described as ‘sub-optimal’ 

when attempts are made to validate single measures against objective behavior (e.g., Boase & 



Ling, 2013). In addition, the use of multiple technologies simultaneously (e.g., a smartphone 

and a laptop) mean that these estimates have become even more problematic due the level of 

cognitive burden required to quantify many different types of habitual behavior (Boase & 

Ling, 2013; Doughty, Rowland, & Lawson, 2012; Jungselius & Weilenmann, 2018). In 

response to these critiques, a second method utilizes questionnaires that aim to quantify 

technology related experiences. Considering smartphones specifically, an abundance of self-

reported measures have been created in an attempt to capture and predict actual behavior 

(e.g., Bianchi & Phillips, 2005; Billieux, Van Der Linden, & Rochat, 2008; Csibi, 

Demetrovics, & Szabó, 2016; Kwon, Kim, Cho, & Yang, 2013; Rosen, Whaling, Carrier, 

Cheever, & Rokkum, 2013; Sivadas & Venkatesh, 1995; Yildirim & Correia, 2015). 

Following traditional methods associated with scale development, factor analyses ensure that 

such assessments are reliable, but less emphasis has been placed on establishing validity. This 

sets these scales apart from other areas where self-report has been rigorously validated 

against behavioral metrics (e.g., personality) (e.g., McCrae & Costa, 1987; Parker & Stumpf, 

1998). The lack of validation and clarity regarding constructs and measurement is therefore 

detrimental to the sound utilization of these scales in subsequent research (Clark & Watson, 

1995).  

 

Many measures are conceptualized around ‘smartphone behaviors’, and are used by many 

researchers to provide a proxy measure of usage (Ellis et al., 2018). Perhaps more 

importantly, research utilizing these assessments tends to use high-scores to correlate 

smartphone usage with a variety of negative outcomes (e.g., depression and anxiety) (e.g., 

Elhai, Dvorak, Levine, & Hall, 2017; Richardson, Hussain, & Griffiths, 2018) and provide 

evidence for the classification of a behavioral addiction (e.g., Tao et al., 2017; Wolniewicz, 

Tiamiyu, Weeks, & Elhai, 2018). This repeats a pattern of research priorities that previously 



focused on the negative impacts of many other screen-based technologies, systematically 

moving from television and video games, to the internet and social media  (Przybylski & 

Weinstein, 2017; Rosen et al., 2014). However, the few studies that have measured behavior 

directly, tend to demonstrate conflicting results. For example, Rozgonjuk et al. (2018) 

observed no association between smartphone use and severity of depression or anxiety. 

Further, higher levels of reported depression correlated with individual’s checking their 

phone less over a week. Therefore, the notion of reducing ‘screen time’ and technology may 

be counter-intuitive, as a sudden reduction in smartphone use may in fact be an early warning 

sign of social withdrawal (Mou, 2016).  

 

1.2 The Present Study 

To date, only a handful of small studies have attempted to validate these scales in small 

samples that focus on single measures with mixed results (Andrews, Ellis, Shaw, & Piwek, 

2015; Elhai et al., 2018; Foerster, Roser, Schoeni, & Röösli, 2015; Lin, Chiang, & Jiang, 

2015; Rozgonjuk et al., 2018; Wilcockson, Ellis, & Shaw, 2018). Here, we attempt to 

compare the human accuracy of ten smartphone usage scales and single estimates against 

objective measures of smartphone behavior. This takes advantage of a recent iOS update 

from Apple, which automatically logs a series of behavioral metrics related to ‘screen time’ 

over a period of seven days. Data available includes the length of time users spend on their 

devices, the number of times the phone is picked up, alongside the number of notifications 

received daily. This allowed for several attempts at validation that includes correlations and 

cluster-based analyses. The latter of which compares the overlap between high-usage groups 

derived independently from self-report scores or behavioral metrics.  

 

 



2 METHOD 

2.1 Ethics 

This study was ethically approved by the University of Bath School of Management (ID: 

2392) and was conducted in accordance with guidelines provided by the British 

Psychological Association (BPS). 

 

2.2 Participants 

Participants were recruited from within affiliated universities (Lancaster, Bath, and Lincoln) 

(23.12%), or using the Prolific Academic platform (76.89%). Participants were paid a small 

sum for their participation via Prolific Academic (£5.34/hr) and provided informed consent. 

238 participants (124 female, mean age = 31.88; SD = 11.19) who owned an iPhone 5 or 

above and had been running the latest version of iOS for at least one week were eligible to 

participate. Our sample size is comparatively larger than other studies that have previously 

attempted to validate these scales and includes data from a comparable time frame (Andrews 

et al., 2015; Elhai et al., 2018; Lin et al., 2015; Rozgonjuk et al., 2018; Wilcockson et al., 

2018). In addition, our sample is similar to studies that utilize these scales when making links 

between smartphone use and other correlates, for example, Wolniewicz et al (2018), N=296 

and Elhai, Levine, Dvorak, and Hall (2016), N=308.  

 

2.3 Procedure and Materials 

All participants were directed to a Qualtrics survey hosted by the University of Lincoln. 

Participants first provided an estimate of how many hours and minutes they spend on their 

iPhone daily. They were also asked to estimate the number of notifications received daily, 

and how many times they pick up their device each day. Next, they completed ten scales that 

aim to asses smartphone usage and/or associated constructs (Table 1). Scales were selected 



based on their popularity and broad range of conceptualizations (e.g., attachment, fears, 

‘addictions’, etc.) and were presented at random within the survey. Finally, participants 

transferred their latest Screen Time capture data from Apple’s Screen Time app to provide 

the actual number of hours and minutes spent on their phone, number of notifications 

received, and number of times they had picked up their device each day for a period of one 

week. Daily averages were calculated for all three behavioral metrics. 

 

Mobile Phone Problem Use Scale (MPPUS)  

(Bianchi & Phillips, 2005) 

The MPPUS is a 27-item scale designed to assess problematic usage of mobile phones, with 

each item scored via a Likert scale ranging from ‘Not true at all’ (1) to ‘Extremely true’ (10). 

Higher scores denote increased levels of problematic usage.  

 

Nomophobia Questionnaire (NMP-Q)  

(Yildirim & Correia, 2015) 

The NMP-Q is a 20-item designed to assess nomophobia. This is defined as a phobia of being 

separated from one’s smartphone. Each statement is scored using a 7-point Likert scale from 

‘Strongly disagree’ (1) to ‘Strongly agree’ (7). Higher scores correspond to higher 

nomophobia severity, where scores of <20 denote an absence of nomophobia, >20 - <60 

denotes mild nomophobia, >=60 - <100 denotes moderate nomophobia, with scores >= 100 

suggesting severe nomophobia.  

 

Possession Incorporation in the Extended Self  

(Sivadas & Venkatesh, 1995) 



This scale comprises of 6-items that aims to determine the extent possessions have become 

incorporate into an ‘extended self’ originally defined by Belk (1988). Statements are scored 

using a 7-point Likert scale ranging from ‘Strongly disagree’ (1) to ‘Strongly agree’ (7). We 

used the specific-possession incorporation version, where the items were phrased as follows: 

‘x helps me achieve the identity I want to have’, with x substituted as ‘my smartphone,’. 

Higher scores denote an increased integration of a smartphone an identity. 

 

Attachment Scale 

(Sivadas & Venkatesh, 1995) 

The attachment scale contains 4-items, which aims to assess the attachment to an object, in 

this case a smartphone, for example, ‘I am emotionally attached to my smartphone’. This 

used a 7-point Likert scale ranging from ‘Strongly disagree’ (1) to ‘Strongly agree’ (7). 

Higher scores correspond to higher levels of attachment to the object in question.  

 

Smartphone Addiction Scale (SAS)  

(Kwon et al., 2013) 

The SAS is a 33-item scale designed to measure smartphone ‘addiction’, with each statement 

scored via a 6-point Likert scale from ‘Strongly disagree’ (1) to ‘Strongly agree’ (6). It 

consists of six factors: daily life disturbance, positive anticipation, withdrawal, cyberspace-

orientated relationship, overuse, and tolerance. These can be combined to provide a single 

score. Higher scores correspond to higher smartphone usage and ‘addiction’. 

 

Smartphone Application-Based Addiction Scale (SABAS)  

(Csibi et al., 2016) 



We used the English version of the SABAS scale, which comprises of 6-items, with each 

item scored using 6-point Likert scale from ‘Strongly disagree’ (1) to ‘Strongly agree’ (6). It 

aims to assess application-based addictions associated with smartphones. Higher scores 

correspond to higher smartphone (application) usage and ‘addiction’. 

 

Problematic Mobile Phone Use Questionnaire (PMPUQ) 

(Billieux et al., 2008) 

The PMPUQ aims to assess actual and potential problematic usage of mobile phones. We 

used a short 15-item version, which concerned mobile phone usage when driving, forbidden 

use of mobile phones, and use of mobile phones in dangerous situations. The scale is 

traditionally a 4-item Likert scale from ‘Strongly disagree’ (1) to ‘Strongly agree’ (4), 

however, we also included an additional ‘Not Applicable’ (5) for those who did not drive in 

our sample (coded as 0). Higher scores correspond with increased levels of problematic 

usage. 

 

Media and Technology Usage and Attitudes Scale (MTUAS)  

(Rosen et al., 2013) 

The complete MTUAS comprises of 66-items that aims to assess technology and media use 

more widely. However, here we used 9-items from a subscale, which focuses on smartphone 

use (items 9-17). Each item is scored on a 10-point scale from ‘Never’ (1) to ‘All the time’ 

(10), where the mean measure is taken for each participant. Higher means correspond to 

higher smartphone usage. 

 

Smartphone Use Questionnaires (SUQ-G&A)  

(Marty-Dugas, Ralph, Oakman & Smilek, 2018) 



SUQ-G&A seeks to distinguish general smartphone usage and absent-minded smartphone 

usage. This provides scores from two 10-item scales: general (SUQ-G) and absent-minded 

(SUQ-A). Both use a 7-point scale from ‘Never’ (1) to ‘All the time’ (7). SUQ-G focusses on 

specific uses, e.g., ‘How often do you check social media apps such as Snapchat, Facebook, 

or Twitter’, and the SUQ-A asks questions regarding mindless usage, e.g., ‘How often do you 

find yourself checking your phone without realizing why you did it?’. Higher mean scores 

correspond to higher smartphone usages (general or absent-minded). 

 

2.4 Analysis Plan 

Scores for each scale were calculated (as detailed above), with manipulations for reversed 

items as necessary. Tables 1 and 2 provide descriptive statistics for all self-reported and 

behavioral metrics. Pearson’s Correlations (Table 3) were calculated between all self-

reported measures, single estimates, and objective behavioral metrics. While we note that the 

average number of notifications is not strictly a behavioral measure, it is included here to 

provide context regarding how often a person may be expected to pick up or check their 

phone as notifications act as a request for user attention. Therefore, this provides an 

additional validity check as we expect to observe a positive correlation between the number 

of notifications and the amount of time a person spends on their phone. The overall 

performance of each self-report measure was derived from the mean correlation across all 

three objective behavioral measures (Figure 1). For example, the mean score for a single 

duration estimate was based on mean of three correlations between the estimate and 

behavioral averages of (1) hours use, (2) pickups, and (3) notifications. Finally, a series of k-

means algorithms considered overlaps in classification when participants were clustered 

using only self-report or objective behavior (Figure 2).  

 



3 RESULTS 

3.1 Self-Reported Measures 

Table 1 reports the means, standard deviations, and internal consistency measures 

(Cronbach’s Alpha (α) for all self-reported measures.   

 

[Table 1. Descriptive Statistics (means (M) and standard deviations (SD)) for single estimates 

and self-report assessments. Highest and lowest possible scores for each measure are 

provided for reference.] 

Self-report measures Items Min-max M SD α 
Single time estimate (minutes) (TEst) 1 - 226.6 128.37  

Single pickup estimate (PEst) 1 - 45.69 42.16  

Single notification estimate (NEst) 1 - 39.09 42.46  

Mobile phone problem use scale (MPPUS) 27 27–270 111.90 43.12 .94 

Nomophobia scale (NS) 11 20–140 82.57 25.76 .96 

Possession incorporation in the extended self (ES) 6 6–42 21.53 8.99 .93 

Smartphone attachment scale (SAt) 4 4–24 17.02 6.05 .87 

Smartphone addiction scale (SAS) 33 33–198 94.20 30.17 .95 

Smartphone application-based addiction scale (SABAS) 6 6–36 15.83 5.89 .81 

Problematic mobile phone use questionnaire (PMPUQ) 15 15–60 27.54 5.85 .72 

Media and technology usage and attitudes scale (MTUAS) 9 9–90 6.24 1.33 .84 

Smartphone use questionnaire (general) (SUQ-G) 10 10–70 48.45 8.89 .78 

Smartphone use questionnaire (absent minded) (SUQ-A) 10 10–70 45.60 14.37 .95 

 

3.2 Behavioral Metrics 

Table 2 presents means and standard deviations from objective behavioral measures. Data 

were available for the previous seven days, however, the day of data collection is naturally 

incomplete, so all behavioral metrics are based on an average from six complete days of data 

from each participant. Previous research has suggested that identical smartphone usage 

collected for a minimum of five days will reflect typical weekly usage, with habitual 

checking behaviors (pickups) requiring a minimum of two complete days of collection 

irrespective of weekday (Wilcockson et al., 2018). A series of one-way ANOVAs confirm 



that no weekday differences were present in any of our behavioral data (all p’s > .2). Finally, 

we note that participants, on average, pickup their phones fewer times when compared to the 

number of notifications received (1:1.05 ratio of pick ups to notifications).  

 

[Table 2. Descriptive Statistics for Behavioral Measures (means (M) and standard deviations 

(SD)). These are in line with previous research considering smartphone behaviors in smaller 

samples (e.g., Andrews et al., 2015).]  

Behavioral Measure M SD 
Time (minutes) 232.66 119.44 

Pick ups 85.84 53.34 

Notifications 90.13 88.86 

 

3.3 Correlations 

Pearson’s correlation coefficients were calculated across single estimates, self-reported 

scales, and behavioral data (Table 3). All self-reported scales positively correlated with 

objective time spent on a smartphone (ObjT). These varied from .40 to .13. However, a single 

estimate of time (TEst) was a better predictor than any self-report scale [r =.48].  

 

Average number of objective pickups (ObjP) modestly correlated with the Smartphone Usage 

Questionnaire - General (SUQ-G) [r =.31] and Smartphone Usage Questionnaire – Absent 

Minded (SUQ-A) [r =.30]. Weak correlations were observed between the Smartphone 

Addiction Scale (SAS) [r =.22], Mobile Phone Problem Use Scale (MPPUS) [r =.18], and 

Media and Technology Usage and Attitudes Scale (MTUAS) [r=.15]. Again, a single 

estimate of pickups (PEst) was a superior predictor in comparison to any self-report 

instrument [r =.32].  

 



Average number of notifications (ObjN) weakly correlated with most self-reported scales 

(exceptions are the Extended Self (ES), Smartphone Application Application-Based 

Addiction Scale (SABAS), and the Problematic Mobile Phone Use Questionnaire (PMPUQ)). 

These varied from .28 to .15. A single estimate of daily notifications received (NEst) 

correlated moderately with the objective counterpart (ObjN) [r=.53].  



[Table 3. Pearson’s correlations between single estimates, self-reported scales, and objective behavior.]  

  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
1. Age                 
2. TEst -.22**          

      
3. PEst -.10 .22**         

      
4. NEst -.15* .30** .32**        

      
5. MPPUS -.08 .28** .14* .06       

      
6. NS -.03 .22** .08 .06 .74**      

      
7. ES .14* .14* .07 .00 .53** .56**     

      
8. SAt .02 .21** .04 .03 .46** .54** .69**    

      
9. SAS -.08 .29** .09 .06 .82** .75** .62** .59**   

      
10. SABAS -.03 .21** .13 .05 .77** .68** .55** .52** .76**  

      
11. PMPUQ -.04 .27** .17** .14* .55** .46** .38** .37** .56** .48**       
12. MTUAS -.26** .28** .24** .22** .36** .38** .23** .32** .34** .25** .37**      
13. SUQ-G -.28** .36** .14* .24** .56** .54** .39** .41** .57** .43** .42** .60**     
14. SUQ-A -.26** .24** .14* .04 .66** .58** .35** .40** .62** .53** .47** .45** .69**    
15.ObjT -.20** .48** .10 .13* .33** .32** .21** .32** .40** .26** .27** .26** .34** .36**   
16. ObjP -.32** .23** .23** .32** .18** .16* -.01 .10 .22** .12 .15* .24** .31** .30** .39**  
17. ObjN -.35** .27** .13* .53** .14* .19** .05 .15* .18** .08 .12 .22** .28** .21** .37** .66** 
 
Note: *Correlation is significant at a .05 level (2-tailed) **Correlation is significant at a .01 level (2-tailed)                                                                                                                                                                        
 
TEst = Single time estimate, PEst = Single pick-up estimate, NEst = Single notification estimate, MPPUS = Mobile phone problematic use scale, 
NS = Nomophobia scale, ES = Possession incorporation in the extended self, SAt = Smartphone attachment, SAS = Smartphone addiction scale, 
SABAS = Smartphone application-based addiction scale PMPUQ = Problematic mobile phone use questionnaire, MTUAS = Media and 
technology usage and attitudes scale, SUQ-G = Smartphone use questionnaire (general), SUQ-A = Smartphone use questionnaire (absent 
minded), ObjT = Objective average daily screen-time, ObjP = Objective average daily number of pickups, ObjN = Objective average daily 
number of notifications.



In order to assess which estimates or measures performed the best when predicting behavior 

in general, we calculated the average correlation from all three objective measures (average 

time spent on their smartphone, average number of pickups, and average number of 

notifications), for each self-reported measure, and the three single estimates. From this, we 

note that the notification (NEst) [r =.33] and time (TEst) [r =.33] estimates had the highest 

average correlation with the three objective behavioral measures, closely followed by the 

Smartphone Usage Questionnaire – General (SUQ-G) [r =.31] and Smartphone Usage 

Questionnaire – Absent Minded (SUG-A) scales [r =.29] (Figure 1). 

 

[Figure 1. Average r value for each subjective measure across all three objective behavioral 

measures. Error bars illustrate standard error. Red indicates a single behavioral estimate. 

Dotted line represents mean correlation across all measures. Refer to Table 1 for 

abbreviations.] 

 
 



3.4 Cluster Analysis 

Many conceptualizations of smartphone use focus on a binary classification whereby 

‘addiction’ or ‘problematic’ usage are either present or absent. This is also important from a 

clinical standpoint as these scales are often referred to as having a (potential) diagnostic 

ability (Lin et al., 2016). Therefore, our final analysis considered if behavioral and self-report 

measures could classify identical participants. While several unsupervised methods can 

cluster participants, k-means is widely used in behavioral analytics (e.g., Arazy et al., 2017; 

Jackson, Østerlund, Maidel, Crowston, & Mugar, 2016; Wang, Brede, Ianni, & Mentzakis, 

2018) because it can handle a variety of dataset sizes and produce straightforward outputs 

(Wu et al., 2008). The unsupervised nature of such an approach also removes any researcher 

bias.  

 

Participants were clustered into two groups (high and low) twice with different input 

variables used for each classification. The first cluster analysis used only the three objective 

behavioral measures (time spent, notifications, and pickups). As expected, fewer participants 

scored highly in all three objective behavioral measurements. Figure 2 illustrates the means 

of high and low clusters for the objective behavioral measures (supplementary materials 

report the mean scores across all self-report scales for each cluster). 

 

[Figure 2. Means of high (N=92) (cluster 1) and low users (N=146) (cluster 2) derived from 

objective data following a k-means cluster analysis.] 

 



 

A second cluster analysis used only self-reported scales (excluding single estimates) to make 

a similar distinction. Classifications for each participant were then compared. A large level of 

agreement between self-report and behavior would lead to identical participants being 

classified as high in both analyses. However, when comparing classifications between the 

two data-sets, only 52 of 92 (56.52%) participants identified as high users based on behavior, 

were also classified as high-users from self-report data.  

 

As expected, the behavioral cluster analysis identified a large percentage (38.66%) of our 

sample as ‘high’ users. However, this may lack any meaningful specificity given that 

comparatively few participants are likely to demonstrate exceptionally high usage patterns 

(Wilcockson et al., 2018). As a result, research relying on self-report alone has considered 

non-binary approaches by adopting a three-cluster approach (Lepp, Li, Barkley, & Salehi-

Esfahani, 2015). We therefore replicated our previous procedure with a three-cluster solution 



(k=3), which separated users into low, medium, and high usage groups. Again, we compared 

clustering decisions derived from self-report and objective behavior. In this instance, the 

overlap of high users appearing in both clusters fell to 32.36% (10 out of 31). Here, we 

observe that moving away from a binary classification does not improve performance. 

 

4 DISCUSSION 

To date, no systematic approach has attempted to behaviorally validate the growing number 

of psychometric instruments, which aim to capture technology related behaviors and 

experiences. Here, we demonstrate that smartphone related assessments are no better than 

single duration estimates when predicting subsequent behavior. However, as observed 

elsewhere, even single-item measurements fail to explain much of the variance associated 

with comparable behaviors (Boase & Ling, 2013). This has wide-ranging consequences for 

the vast number of studies that rely on these self-reported measures as a proxy measure of 

behavior.  

 

Every psychometric scale correlated with at least one objective measure, but the strength of 

these relationships is far from convincing. Existing smartphone ‘addiction’ scales, for 

example, correlated poorly with the ‘rapid checking’ behaviors that one would associate with 

a behavioral addiction (Andrews et al., 2015; Rozgonjuk et al., 2018). As these scales 

struggle to capture simple behaviors, it remains questionable as to how they could effectively 

measure habitual, atypical, and more complex behavioral patterns. Further, combining 

multiple scales did not assist in the identification of participants with high usage patterns 

derived from behavior alone. As a consequence, our results have implications for studies that 

attempt to understand the impacts of smartphones and other screen-based technologies on 

health and wellbeing. These issues extend to research that has attempted to link a variety of 



individual differences (e.g., personality) with technology use (e.g., Butt & Phillips, 2008; 

Horwood & Anglim, 2018; Takao, Takahashi, & Kitamura, 2009). Errors of measurement 

here are so large that small effects detected in large-scale research involving estimates may 

be a component of statistical noise or a weak proxy for other psychological constructs (Ellis, 

2019). 

 

While the scales under investigation were developed in an effort to capture specific 

constructs (e.g., addiction or nomophobia), they are frequently used to quantify usage in the 

general population. This appears to be in direct conflict with a conceptual framework that 

problematizes usage without considering how typical these behaviors are within the general 

population. However, recent conceptualizations of usage perhaps hold some promise. The 

Smartphone Usage Questionnaires (SUQ) (Marty-Dugas & Ralph, 2018), provided the 

strongest correlations across the board. These consider everyday smartphone use in the 

context of attentional lapses and mind wandering instead of conceptualizing everyday 

behavior as ‘addictive or ‘problematic’, which demonstrates the strength in focusing on 

cognition directly (e.g., attention to and distraction via technology) rather than addiction. 

These findings also align with recent theoretical models, which argue that technology use 

over time becomes habitual and more ‘absent-minded’ (Shaw et al., 2018). Indeed, a growing 

body of evidence now supports the notion that psychology should start to move away from a 

behavioral addictions framework when studying technology use (Panova & Carbonell, 2018).  

 

Broadly speaking, technology usage assessments, which vary from television, to internet, 

online gaming, and more recently, smartphones, rely on extraordinarily similar scales or 

estimates – substituting device for device as required (Rosen et al., 2014). This similarity 

problem can also be considered within smartphone usage scales specifically. Despite being 



developed years apart and around different frameworks or conceptualizations of use (e.g., 

fear, attachment, or problematic use, etc.), they appear to, in many cases, measure almost 

identical constructs. The majority of smartphone usage scales by their very nature likely 

overlap with higher levels of anxiety and depression rather than smartphone usage, as the 

item’s wording tends to be conceptually similar to that of depression and anxiety scales. One 

future study may wish to compare how these measures correlate with anxiety assessments 

and objective behavior. Our results suggest that the correlation would be far stronger with the 

former than the latter. 

 

Given the complexities associated with studying the impact of technology on people and 

society, there is an urgent need for basic research to consider what this means for different 

individuals, devices, contexts, and in the case of smartphones, specific types of app usage 

(Jungselius & Weilenmann, 2018). The discipline may need to consider a paradigm shift, 

which would also help drive theoretical development and encourage a systematic shift away 

from the repetitive development of self-report assessments (Billieux, Maurage, Lopez-

Fernandez, Kuss, & Griffiths, 2015). However, this may already be changing as Apple and 

Google are providing more of this data directly to all users, which provides a simple way to 

capture basic measures of objective behavior. We anticipate that this alone will lead to many 

other researchers making use of data derived from these screen time applications in the 

future. All this is not to suggest that there is no place for self-report or psychometric 

assessment in this domain of research at all. However, psychometric tools should be built 

around a concrete understanding of what (a) such measures can accurately assess and (b) 

what specific questions they can answer. For example, while functions of addiction can go 

beyond use (e.g., craving), the consumption of technology continues to be frequently 

referenced as a key metric by researchers in this domain (Dowling & Quirk, 2009). There are 



also certainly more specific behaviors, which might better map onto these psychometric 

scales, but research to date typically focuses on time spent on a device overall rather than 

specific sub-sets of behavior (Ellis et al., 2018). This has further implications for smartphone 

‘addiction’ if it were to ever be included as part of the World Health Organization’s ICD-11 

(2018) alongside gaming disorder, as any diagnostic criteria will almost certainly have to 

focus on objective behavior, as well as thoughts, attitudes and feelings towards a technology 

(Lin et al., 2016).  

 

4.1 Limitations 

There are some limitations to note. First, while the behavioral measures utilized here are 

limited (e.g., this study uses daily tracking rather than finer grain temporal measurements 

based on hourly patterns of usage), we would argue that actually exploring interactions with 

technology directly provides a more suitable pathway moving forward. A second limitation 

concerns our specific use of Apple’s Screen Time because this system allows participants to 

view their own data in real-time, which may partly explain why self-reported estimates 

correlated more favorably with objective behavioral measures. For example, self-reported 

pickups have previously not shown a relationship with objective behavior in a smaller sample 

(Andrews et al. (2015). However, the consistency of our results coupled with reminding 

participants to not look at their devices when providing estimates suggests that an alternative 

explanation is unlikely. A related issue may concern the omission of Android users, and 

previous research has suggested that behaviors and personalities differ between iPhone and 

Android platforms (Shaw, Ellis, Kendrick, Ziegler, & Wiseman, 2016). However, Andrews et 

al. (2015) reported an almost identical number of daily smartphone pickups (84.68) with a 

small number of Android users, demonstrating that regardless of operating systems, the 

average number of pickups reported in our sample remain remarkably similar. Perhaps more 



importantly, our findings echo earlier validation concerns albeit on a larger scale (Andrews et 

al., 2015; Elhai et al., 2018; Lin et al., 2015; Rozgonjuk et al., 2018; Wilcockson et al., 

2018).  

 

5 CONCLUSIONS 

Here we attempted to validate smartphone usage scales against a handful of behavioral 

metrics. Our results suggest that the majority of these self-report smartphone assessments 

perform poorly when attempting to predict objective smartphone behaviors. Researchers 

should therefore be cautious when using these measures to link technology use with 

outcomes concerning health and psychological well-being. They also provide weak evidence 

to support the development of any diagnostic criteria (e.g., Lin et al., 2016; Tran, 2016). The 

issues highlighted here feed into a growing consensus that while psychology has 

acknowledged a problem with replication, the discipline also needs to address similar issues 

within measurement (Flake & Fried, 2019). Across psychological science, many self-reports 

remain insufficient for researchers who continue to make large claims, particularly those 

which pertain to the impact of technology on public health (Boyd & Pennebaker, 2017; 

Twenge, Joiner, Rogers, & Martin, 2017). We would encourage other researchers where 

possible, to complement these with objective measures of behavior in order to better 

understand the impact of technology on people and society more generally.   
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