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abstract: Most male mammals produce far more spermatozoa on a daily basis than is strictly necessary for reproduction and females have
evolved mechanisms that prevent all but a small minority from reaching the vicinity of their oocytes. One potential explanation for the stringent
selection is that females have developed these mechanisms as a way of avoiding polyspermy as well as exercising post-copulatory choice over the
characteristics of the fertilizing spermatozoon. Relatively little is knownabout how these processes would operate, but here we use evidence from
biochemical, molecular and genetic studies of sperm transport in support of a hypothesis proposing that the female reproductive tract can read
and interpret a spermatozoon’s ‘molecular passport’ or genetic signature. Such a signature would permit only a highly selected sperm population
to reach and fertilize the oocyte. Moreover, the selection criteria might not only be concerned with successful fertilizing ability, but could also be
tailored to suit the genetic qualities of individual females.
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Introduction
In the early 1970s, Parker formally proposed (Parker, 1970) the hypoth-
esis that because females of many species frequently accept matings by
more than one male, rivalry between males, and between their ejacu-
lates, would lead to sperm competition. In this scenario, the ability to
produce and ejaculate larger numbers of spermatozoa than competing
males represents an advantage in terms of breeding success. In principle,
this is similar to a raffle, where the probability of winning is increased by
purchasing more tickets. Unlike a fair raffle, however, the outcome of
sperm competition can be biased if males develop specific behaviours
that reduce the effectiveness of their rival’s mating ability (Parker et al.,
2010). Thus, the last male to mate with a particular female might
possess an advantage in terms of sperm transport within the female re-
productive tract (Jones et al., 2002), especially if the last male is able to
remove previous ejaculates from the female reproductive or inactivate
their spermatozoa. Sperm competition has impacted upon the evolution
of phenotypic traits of spermatozoa such as head shape, midpiece
volume (Anderson et al., 2005) and flagellar length (Bauer and Breed,
2006; Kleven et al., 2008), with consequential effects on swimming vel-
ocity (Lupold et al., 2009) and ability to fertilize oocytes (Fitzpatrick
and Lupold, 2014; Ramm, 2014; Ramm and Scharer, 2014). As sperm
shape, size and the rate of sperm production can only change by

modifying the process of spermatogenesis, sperm competition has ex-
erted an important evolutionary pressure on testis size and function
(Hosken and Ward, 2001). It therefore follows that the complex
mechanisms controlling spermatogenesis must, unarguably, have been
affected by sperm competition (White-Cooper and Bausek, 2010).
Indeed, molecular evidence shows that genes involved in spermatogen-
esis are among the most rapidly evolving of the reproductive axis
(Swanson et al., 2001; Swanson and Vacquier, 2002; Good et al., 2011;
Carnahan-Craig and Jensen-Seaman, 2014; Dhole and Servedio, 2014).

The strong evolutionary influence of sperm competition is countered
to some extent by the evident post-copulatoryabilityof females to ‘choose’
whichspermatozoaareallowedtoreachand fertilize theoocyte (Fitzpatrick
and Lupold, 2014). This ability, widely known as ‘cryptic female choice’
(Birkhead, 1998), may involve selecting between different spermatozoa
from an individual male (Immler, 2008) or between spermatozoa from dif-
ferent males. These scenarios imply that the female reproductive tract
employs molecular recognition mechanisms to obtain information about
the individual spermatozoon, or the individual male, otherwise selective
processes would not function. The existence of cryptic female choice
in diverse species of insects, birds, reptiles and mammals has been
widely researched and recognized (Bloch Qazi, 2003; Hosken and
Stockley, 2003; Jennions and Petrie, 2000; Bussiere et al., 2006; Briceno
and Eberhard, 2009), but, the mechanistic basis for sperm selection in
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mammals is still obscure. Our purpose in writing this review is to examine
this topic in the light of emerging evidence about sperm–female tract
interactions in mammals. This mechanistic approach aims to comple-
ment widely studied and reviewed evolutionary implications of cryptic
female choice, and provide insights about ‘how’ the choices are made
(proximate explanations, sensu; Ramm, 2014) rather than why the
choices are made.

Sperm selection as a response to
polyspermy
While relatively few spermatozoa may, strictly speaking, be needed to
effect fertilization, a certain minimum quantity has to be inseminated
to ensure that sufficient will pass through the cervix and uterine horns
in order to reach the oviducts and ultimately interact with the oocytes.
Studies of artificial insemination in various species, including humans,
cattle, pigs and sheep, have established that there are minimum thresh-
olds for the quantity of spermatozoa inseminated (Den Daas et al., 1998;
Achard et al., 2005), and have shown that conception rates typically in-
crease with higher sperm doses, eventually reaching a maximum
where further increases have no further influence. In a study of human
fertility (Achard et al., 2005), the conception rate fell from 40 to 24%
per cycle when fewer than 1.5 million spermatozoa were inseminated.
Similarly, the achievement of maximum calving rates in dairy cattle
requires the insemination of between 1 and 11 million spermatozoa
(Den Daas et al., 1998); lower numbers usually result in significantly
poorer fertility. Artificial insemination outcomes in pigs are minimal
unless sperm numbers exceed 1 billion (Flowers and Esbenshade,
1993; Flowers, 1997), also reflecting the need for a minimum number
of functionally competent spermatozoa. These observations set the
scene for a consideration of sperm selection processes in mammals,
which clearly have to operate against a background that involves a high
rate of loss of inseminated spermatozoa. It seems likely that these initially
high numbers of spermatozoa are required in order for sufficient
numbers to reach the vicinity of the utero-tubal junction (UTJ) prior to
entering the oviducts.

The cervix and UTJ present spermatozoa with physical, chemical and
anatomical barriers that control their progress (Martyn et al., 2014; Yaniz
et al., 2014) and most spermatozoa (.99%) in an ejaculate fail to breach
these obstacles (Fig. 1). Blind-ended cervical crypts can block sperm
transport, but conversely may also allow cohorts of live spermatozoa
to be stored for several days before continuing. The potential duration
of fertile life of stored spermatozoa has been estimated as 5 days in
humans (Croxatto, 2002) and 6–9 days in domestic dogs (Concannon
et al., 1983; England et al., 2006). Because the physical nature of the cer-
vical mucus is under hormonal control during the reproductive cycle, it
can both facilitate and inhibit sperm transport towards the uterus and
oviduct. In fact, functional incompatibility between spermatozoa and cer-
vical mucus can be an important cause of infertility; this has been widely
recognized in human clinical medicine where the ‘post-coital’ test has
been widely used to test for pathological incompatibility between sperm-
atozoa and mucus (Barratt et al., 1992).

Paradoxically, if the female reproductive tract allowed too many
spermatozoa to reach the oviduct, there would be a heightened risk of
polyspermy (where individual oocytes are simultaneously penetrated
by two or more spermatozoa) and embryonic death would ensue. The

female reproductive tract has consequently developed at least three
mechanisms for the prevention of polyspermy. These involve: (i) select-
ively preventing the passage of spermatozoa through the UTJ unless they
express certain membrane proteins on their surfaces (calmegin, calreti-
culin, ADAM1a, 2, 3 and angiotensin-converting enzyme, among others)
(Cho et al., 1998; Ikawa et al., 2001, 2011; Shen et al., 2013); (ii) harden-
ing the zona pellucida through the action of oviductal proteins (e.g.
oviduct-specific glycoprotein and heparin-like glycosaminoglycans),
making it resistant to hydrolytic enzymes and turning it into a selective
barrier that inhibits sperm progress towards the oolemma (Coy et al.,
2008; Coy and Aviles, 2010); and (iii) deploying intracytoplasmic hydro-
lytic enzymes sequestered in cortical granules situated beneath the
oocyte plasma membrane to harden the zona pellucida still further
after entry of the first, fertilizing spermatozoon (Puppo et al., 2008;
Gadella and Evans, 2011).

Ensuring that sufficient competent spermatozoa reach the vicinity of
the oocyte, while simultaneously restricting the numbers and preventing
polyspermy requires delicate balancing mechanisms, but also provides
scope for females to exercise a degree of choice. Compelling evidence
for the existence of mechanisms that provide such choice has been pro-
vided by the use of heterospermic artificial inseminations. Heterosper-
mic insemination (HI) outcomes can be highly skewed even when all of
the males involved are known to produce good quality spermatozoa
that are highly fertile when inseminated on their own. Controlled experi-
ments conducted mainly on farm animals have demonstrated unequivo-
cally that the female reproductive tract can significantly skew the
outcome of artificial inseminations carried out by inseminating females
with mixed semen samples containing balanced sperm numbers taken
from two or more males (Robl and Dziuk, 1988; Dziuk, 1996). This ap-
proach to fertility estimation eliminates female effects, such as the timing
of insemination relative to ovulation, and also eliminates the influence of
relative sperm numbers. In some studies, the skewed fertilization rates
are as high as 97% in favour of one semen sample over another (Kasima-
nickam et al., 2006). In this particular study of bovine fertility, total pro-
gressive motility was positively correlated with the degree of skew, but
none of the other usual measures of sperm quality was significantly cor-
related. In a similar vein, a heterospermic study carried out with semen
from two boars (Stahlberg et al., 2000) found a 70 to 30% ratio of embryo
paternity (95 embryos from 11 females were tested for paternity). When
the same semen samples were used for homospermic inseminations,
there was no difference in the fertilization rates. It is of interest,
however, that the skewed fertilization outcome of the HIs in this study
was mirrored by the relative mean numbers of accessory spermatozoa
associated with zonae pellucidae after homospermic insemination
(21.8 versus 52.4). This indicates that the skew was caused by differences
in the relative ability of spermatozoa to access the oocytes, implicating
selective sperm transport as the likely limiting factor.

Evidence of this nature implies that sperm selection in vivo is based on a
complex molecular dialogue between the spermatozoa and the female
reproductive tract. In this article, we propose that this idea, which we
term the ‘molecular sperm passport hypothesis’, has some merit in
explaining some of the reproductive skews (including sex ratio skews)
that occur under natural, as well as experimental, mating conditions
(Clutton-Brock and Iason, 1986; Clutton-Brock et al., 1986; Berger,
1995).

Reproductive skews that arise through the intrinsic genetic properties
of single spermatozoa are pertinent to this discussion. Detailed studies of
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the mouse t-haplotype (Olds-Clarke and Johnson, 1993; Olds-Clarke,
1996) have revealed that genetically distinct spermatozoa produced
within a single testis can engage in a form of competition that results in
the non-Mendelian inheritance of one genotype. This model, which
has been reviewed extensively (Olds-Clarke, 1996), concerns the well-
established observation that sperm motility is severely compromised
in homozygous mice carrying t-haplotypes on both alleles of chromo-
some 17. In contrast, the heterozygous mice, which are identical in all
other respects, produce spermatozoa with superior motility while wild-
type spermatozoa show normal motility. Experimentally, it has been
shown that spermatozoa from homozygous mice are virtually incapable

of reaching the oviduct (Olds-Clarke, 1991), but that spermatozoa from
the heterozygotes can, in fact, enter the oviduct and fertilize oocytes.
These observations have been explained on the basis that there are
two tightly linked, and post-meiotically expressed, genetic factors
known, respectively, as the T-complex transmission ratio distorters
(TCD) and the T-complex responder (TCR). The TCD causes the de-
fective flagellar action and the TCR rescues flagellar action within the
same cell, and moreover confers a selective fertilization advantage to
the t-haplotype spermatozoa (Herrmann et al., 1999).

These observations call into question the widely accepted dogma that
intercellular bridges, which form cytoplasmic connections between

Figure 1 While artificial insemination was still being developed as a practical tool for breeding agricultural species, researchers evaluated the efficiency of
sperm transport within the female reproductive tract. Several important studies tracked the time course of sperm transport through the complex anatomy
of the female reproductive tract. Such studies typically involved the experimental insemination of oestrous females with known numbers of spermatozoa;
the females were slaughtered at intervals after insemination whereupon the reproductive tracts were flushed and the different anatomical regions were
examined for the presence of spermatozoa. Data from sheep (summarized in Fig. 1) and pigs showed that only about 1:10 million of the inseminated sperm-
atozoa managed to reach the oviducts (First et al., 1968; Hawk et al., 1978) forming a functional sperm reservoir. Similarly, human studies have revealed that
there are �1000 spermatozoa within the Fallopian tube 8–15 h after coitus (Croxatto, 2002). The sperm reservoir is established during the first few hours
after insemination, declines after ovulation (Rodriguez-Martinez et al., 2005; Rodriguez-Martinez, 2007; Hunter, 2012; Rijsselaere et al., 2014) and contains
a highly selected sperm population.
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spermatocytes and spermatids during spermatogenesis, allow unre-
stricted sharing of post-meiotically expressed transcripts between
daughter cells. In the presence of unrestricted transcript sharing, the
TCR would rescue motility in all of the spermatozoa formed within a
single clonal syncytium of spermatids, but this is not the case. Two
lines of evidence (for review, see Ellis et al., 2011) support the hypothesis
that transcripts are confined within individual spermatids, possibly by
linkage to cytoskeletal proteins. Véron et al. (2009) demonstrated that
transcripts are retained within individual spermatids by mRNA-tethering
rather than being shared among members of the post-meiotic syncytium.
Furthermore, Martin-DeLeon et al. (2005) showed that in males carrying
different alleles of the Spam1 hyaluronidase gene, transcript com-
partmentation within spermatids produced biochemically and function-
ally different sperm populations, and resulted in transmission ratio
distortion. The experimental confirmation that transcripts are not
always shared across intercellular bridges suggests that this is highly
likely to be a conserved process, responsible for non-Mendelian inherit-
ance across species. Taking this argument a step further suggests that this
mechanism could be important in sperm selection, sexual selection
(whereby it might exert significant influence on cryptic female choice)
and ultimately in the evolutionary history and future of a species.

Sperm recognition mechanisms
within the female reproductive
tract
Although some mammalian species are able to interbreed with closely
related species, an experiment aimed at investigating whether the UTJ
is able to impede transit of ‘foreign’ spermatozoa suggested that this
is the case. When female hamsters were artificially inseminated with
live and motile rat, mouse, guinea pig and rabbit spermatozoa, as well
as immotile hamster spermatozoa, all types could pass through the
UTJ, but only in small numbers compared with live hamster spermatozoa
(Smith et al., 1988). Similarly, experiments in threespecies of vesper mice
(Calomys; Rodentia, Cricetidae) (Roldan et al., 1985) showed that hom-
ologous inseminations were more successful at producing embryos than
heterologous inseminations. Discrimination of spermatozoa by the UTJ
on the basis of their head shape and motility is also important in the
control of sperm transport (Krzanowska et al., 1995).

A novel experimental study of sperm transport in the red spotted
newt (Notophthalmus uiridescens) (Hardy and Dent, 1986) demonstrated
that entry of spermatozoa into the spermathecae is a selective process.
These researchers placed rabbit spermatozoa into the cloacal regions
of four female newts and compared the outcomes with parallel ex-
periments undertaken with newt spermatozoa. Interestingly, the rabbit
spermatozoa were unable to enter the spermathecae, despite displaying
vigorous motility, while the conspecific spermatozoa were able to do so.
Despite the highly unusual experimental design, this experiment clearly
showed that entry into spermathecae must be controlled by recognition
systems operated by cell–cell interactions involving the spermatozoa
and the spermathecal cells.

The extent of skew in cattle HI experiments was highly and negatively
correlated with the DNA fragmentation rate (%DFI) in the semen
samples (r ¼ 20.87: P , 0.005), while plasma membrane integrity
(%PMI) was positively correlated (r ¼ 0.87: P , 0.005) with the extent
of skew (Kasimanickam et al., 2006). This study is of interest because it

highlights the possibility that the female reproductive tract rejects
membrane-damaged spermatozoa, but is then able to discriminate
between the remaining intact cells on the basis of their DNA integrity.
If this is true, it implies that membrane-intact spermatozoa somehow
express membrane surface information about their DNA status. Evi-
dence that human cervical mucus acts as a filter capable of reducing
the proportion of spermatozoa carrying fragmented DNA (Bianchi
et al., 2004) supports the idea that the sperm surface mirrors sperm
DNA status. Of itself, DNA fragmentation status would provide a rather
crude estimate of genetic quality because it is primarily a measure of
DNA damage. However, eliminating spermatozoa because their DNA
had been damaged during spermatogenesis or maturation in the epididy-
mis seems eminently sensible because the defective cells might neverthe-
less possess the capacity to reach and fertilize oocytes, resulting in poor
quality embryos. In fact, some direct cell-by-cell correlations of human
sperm morphology (Mangiarini et al., 2013) and DNA fragmentation
have indicated that poor morphology is correlated with poor DNA status.

Clues about the relationship between sperm surface characteristics
and sperm quality are available from human clinical research, where la-
boratory techniques aimed at selecting the best, most fertile spermato-
zoa are used to maximize fertilization outcomes for infertile couples. A
recent systematic review (Said and Land, 2011) of such methods is in-
formative because the discriminatory properties of the sperm surface
were examined in the context of other sperm properties, including
DNA fragmentation status. A selection method based largely on electro-
phoresis and electronegative charge was found to produce sperm popu-
lations enriched in DNA-intact spermatozoa in the three cited studies
that employed DNA assessment (Ainsworth et al., 2005; Chan et al.,
2006; Razavi et al., 2010). The main source of negative charge on the
sperm plasma membrane has been attributed to a specific GPI-anchored
glycoprotein, CD52 (Schröter et al., 1999), which contains highly sialy-
lated polylactosamine-containing carbohydrate chains. Increased sperm
surfacenegative charge is acorrelateof spermmaturation in the epididymis
and therefore this selection method is likely to be acting as a filter for
mature versus immature spermatozoa. Moreover, since chromatin
cross-linking and nuclear stabilization is another correlate of epididymal
sperm maturation (Calvin and Bedford, 1971), the negativecharge seems
to be further useful source of information about sperm quality. Ability to
interact with hyaluronic acid is also a markerof sperm maturation that has
been correlated with sperm DNA integrity (Yagci et al., 2010) and is used
as a laboratory method for sperm selection. Hyaluronic acid is found ex-
tensively in the female reproductive tract, including cervical mucus, ovi-
ductal fluid and the cumulus cells that surround the oocyte. A recent
study (Liu et al., 2014) has shown that human spermatozoa expressing
the hyaluronic acid receptor (CD44) display better plasma membrane
structure, mitochondrial membrane potential, fertilizing potential and
maturation characteristics than their counterparts that lack CD44.
Thus, CD44 is a putative signal of sperm quality that is displayed on
the sperm surface and is available to be read by other cells in the
female reproductive tract. These considerations strongly suggest that
the female reproductive tract is capable of using information available
on the cell surface to accept or reject individual spermatozoa during
their progress towards the oocytes. Such a sophisticated level of discrim-
ination is not unprecedented in other taxonomic groups.

Hyaluronic acid has been also been found to assist with the formation
of the oviductal sperm reservoir (Rodriguez-Martinez et al., 2001;
Liberda et al., 2006); this is of particular interest because the sperm
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reservoir is a site that collects spermatozoa that have already traversed
the UTJ, then selectively releases them so they can continue their pro-
gress towards the oocyte. Once the spermatozoa gain access to the ovi-
ductal isthmus, they exert some control over their own environment.
This was first noted in experiments (Ellington et al., 1993) showing that
if cultured oviductal epithelial cells are co-incubated with spermatozoa,
the epithelial cells respond by the de novo synthesis of proteins. Several
follow-up studies in mice and pigs (Fazeli et al., 2004; Georgiou et al.,
2007; Yeste et al., 2014) have lent support to these findings. Heat-shock
proteins (HSPs) are prominent among the proteins up-regulated by
spermatozoa (Elliott et al., 2009; Holt and Fazeli, 2010). While HSPs
are usually found within the cell cytoplasm, oviductal cells secrete
them into the luminal fluid where they are then able to interact with
the sperm surface and exert some control over their membrane proper-
ties. Extracellular HSPA8 induces fluidization of the sperm plasma mem-
brane (Moein-Vaziri et al., 2014), enhances the oviduct-binding ability of
exposed spermatozoa and even reduces polyspermy in pig IVF. These
findings support the concept that having initially selected a sperm popu-
lation that is suitable for fertilization, the female reproductive tract has
also developed mechanisms to ensure that the spermatozoa can be
stored until they are needed.

If sperm qualities are only viewed in terms of plasma membrane bio-
chemistry, they fail to emphasize the importance of dynamic sperm sig-
nalling responses. During their journey from the cervix through the
uterine horns, towards the oviduct and ultimately to the oocyte, the
spermatozoa must travel through fluids of varying viscosity and different
ionic and hormonal composition, and encountering different collections
of macromolecules. Many of these molecules in the environment have
the capacity to interact with specific sperm receptors and modulate
the different cell signalling pathways that control the physiological state
of the spermatozoa (Tapia et al., 2012). Capacitation status is controlled
by signalling pathways that modulate intracellular pH and calcium con-
centration; bicarbonate controls sperm motility (Holt and Harrison,
2002) and membrane lipid architecture (Harrison, 2004), while hyperac-
tivated motility is modified by the presence of progesterone (Armon and
Eisenbach, 2011; Arnoult et al., 2011; Lishko et al., 2011; Strunker et al.,
2011).

Investigations of chemotactic mechanisms that guide spermatozoa
towards the oocyte(s) have identified progesterone as a significant mo-
lecular signal that modifies sperm flagellar activity (Oren-Benaroya et al.,
2008; Teves et al., 2009; Armon and Eisenbach, 2011; Blengini et al.,
2011; Guidobaldi et al., 2012). The action of progesterone is elicited
via its receptor, CatSper (Arnoult et al., 2011; Lishko et al., 2011; Strun-
ker et al., 2011), and the consequent modulation of intracellular calcium
concentrations that change flagellar activity (Kaupp et al., 2008). Two
recent studies (Zuccarello et al., 2011; Caballero-Campo et al., 2014)
have demonstrated that sperm chemotaxis is modulated not only by pro-
gesterone but also via chemokine–receptor interactions involving
factors produced by oocytes, granulosa cells and endometrial cells.
One of the studies (Zuccarello et al., 2011) focused on the interaction
between CXCR4 (chemokine CXC motif receptor 4) present in
human spermatozoa and SDF1 (chemokine stromal cell-derived
factor-1), a member of the CXC chemokine family also known as
CXCL12. It is of specific interest in the context of this review that
,30% of live human spermatozoa express CXCR4 (Kim et al., 1999;
Zuccarello et al., 2011), meaning that �70% of spermatozoa would be
unresponsive to chemical signals emanating from granulosa cells and

oocytes. The other study (Caballero-Campo et al., 2014) identified
CCR6, a chemokine receptor common to several chemoattractant pep-
tides (Yang et al., 1999), in human and mouse spermatozoa and also
noted that the protein was not detected in every cell. Moreover, it was
observed that CCR6 expression on the sperm surface was more
intense after capacitation. The existence of this chemotactic interaction
mechanism, together with differential expression of appropriate recep-
tors between spermatozoa, is compatible with the concept of a molecu-
lar passport for spermatozoa based on between-sperm differences. That
chemotaxis is stimulated by several different mechanisms is, however,
something of a puzzle: do the separate mechanisms operate synergistic-
ally or do they perhaps indicate the existence of an exceedingly sensitive
and discriminatory sperm selection system? Interactions between che-
mokine receptors and one specific b-defensin (DEFB126), which is dis-
tributed along the human sperm surface (Tollner et al., 2011) and
together with CD52 contributes much of the sperm surface sialic
acids, have recently also been implicated for their importance in the pro-
gression of spermatozoa through viscous media, widely used as substi-
tutes for cervical mucus (Dorin and Barratt, 2014). Despite having
normal semen parameters and sperm motility, spermatozoa from men
with the DEFB126 mutation showed 84% reduction in the rate of pene-
tration through hyaluronic acid gel, coupled with lowered conception
rates.

Sperm penetration through the zona pellucida becomes more difficult
once oocytes have been in contact with oviductal fluid (Coy et al., 2002,
2008), emphasizing the importance of sperm hyperactivation for devel-
oping the degree of mechanical thrust needed to penetrate the hardened
zona pellucida. In terms of sperm selection, the principle that every com-
ponent of a signalling pathway has to be present within the spermatozoon
is even valid at the final stages of oocyte activation, once zona and oolem-
mal penetration has occurred. Recent research into oocyte activation
has revealed that unless the fertilizing spermatozoon transfers a cytoplas-
mic form of phospholipase C z into the oocyte, embryo development
does not occur normally because the requisite periodic and characteris-
tic calcium waves are not generated within the zygote (Swann and Lai,
2013; Nikiforaki et al., 2014). Viewed in this way, it is apparent that if
spermatogenesis is defective, the resultant molecular errors are likely
to prevent an individual spermatozoon from ever reaching the oocyte.

The subtlety of sperm selection
While it may be relatively straightforward to convey information about
sperm maturation status and DNA integrity, it seems that females
might be rather more sophisticated in their selection criteria. As an ex-
tension to our molecular passport hypothesis, we suggest that females
could be searching for male gametes that best match their own genetic
attributes, or that suit environmental conditions pertaining at any given
time. A recent study (Ghaderi et al., 2011) provides a link between
sexual selection and immune function in humans. Human sperm surfaces
lack a specific form of sialic acid (N-glycolylneuraminic acid; Neu5Gc),
but humans nevertheless produce circulating antibodies against
Neu5Gc that enter the female reproductive tract and inactivate any in-
compatible spermatozoa. This exemplifies the principle that females
can target paternal antigens and use the immune system to facilitate se-
lection (Dorus et al., 2012). Immunological studies of sperm transport
have also shown that once a cohort of spermatozoa reaches the
uterus, they induce the ‘post-mating inflammatory response’ which
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prompts an influx of neutrophils into the uterine lumen (Schuberth et al.,
2008). This provides another level of sperm selection mediated by direct
cell–cell interactions.

The major histocompatibility system (MHC) has been widely
researched for its relevance to reproduction and it is likely that mechan-
isms exist to identify and select the best match between maternal and pa-
ternal MHC characteristics (Ziegler et al., 2005; Milinski, 2014).
Mammalian species, including humans (Wedekind and Furi, 1997;
Wedekind and Penn, 2000), are known to use olfactory cues to distin-
guish MHC-genotypes in the context of mate choice, but it is not yet
clear whether MHC sensing also operates at the gametic level in
mammals and birds. Recent studies in Jungle fowl (Gillingham et al.,
2009) have shown that males increase the size of their ejaculate when
mating with MHC-dissimilar females. Moreover, further investigations
revealed that under natural mating conditions, the number of spermato-
zoa reaching the oocyte surface (the perivitelline envelope) was affected
by the male–female MHC combination; sperm numbers were higher
when female MHC genotype differed from that of the males (Lovlie
et al., 2013). The authors attributed these effects to physiological
mechanisms operating after copulation and thereby affecting cryptic
female choice. Interestingly, the effects of MHC on differential sperm
transport were not detectable in parallel experiments conducted using
artificial insemination, possibly indicating that females relied upon male
phenotypic and behavioural cues to influence sperm transport. Similar
effects have been noted in sand lizards (Olsson et al., 2004) and experi-
ments in mice have shown that seminal plasma components significantly
improve a female’s immune tolerance to ‘foreign’ spermatozoa by their
actions on uterine physiology (Robertson et al., 2009).

Spermatozoa within all ejaculates from individual males are already
known to differ genetically in one fundamental respect. There are two
equally sized populations of mammalian spermatozoa, each carrying dif-
ferent sex-determining chromosomes (X and Y), and although it is widely
known that females can bias the sex ratio of their offspring (Clutton-
Brock and Iason, 1986; James, 2009), no satisfactory mechanistic explan-
ation for this has yet been discovered. A recent study in pigs provided an
important mechanistic insight into this phenomenon by demonstrating
that the sperm-induced gene expression patterns within the oviduct dif-
fered significantly according to whether the inseminated sperm popula-
tions contained the X- or Y-chromosome (Almiñana et al., 2014). In this
study, sex-sorted X- and Y-bearing spermatozoa were inseminated sep-
arately into the right and left oviducts of the same females. Gene expres-
sion responses by the oviductal cells were examined using microarrays
and it was found that 501 of 24 123 probes were significantly changed
by the presence of Y-bearing spermatozoa in relation to the X-bearing
sperm population. Of the 501 transcripts, 271 (54.1%) were down-
regulated and 230 transcripts (45.9%) were up-regulated when the Y
chromosome-bearing spermatozoa were present in the oviduct. Al-
though this was an artificial and experimental study, these findings dem-
onstrate that oviductal cells can distinguish between sperm genotypes,
presumably using mechanisms that involve reading information from
the sperm surface.

Although the mechanisms responsible for such differential and pro-
found responses to sperm phenotype remain largely unknown, there
are many potentially relevant and accessible candidates that might be re-
sponsible. These include responses to external signalling molecules, the
presence of cell surface markers such as ubiquitin (Sutovsky et al., 2001)
and the complex arrays of carbohydrates that constitute the ‘glycome’

(Kuo et al., 2009; Pang et al., 2009; Kadirvel et al., 2012; Silva et al.,
2014). Some important sperm surface modifications are attributable
to post-translational mechanisms that modify the existing proteins. Phos-
phorylation has been extensively studied in spermatozoa and has been
shown to regulate multiple processes, including motility and capacitation
(Visconti, 2009), and numerous human sperm proteins have been iden-
tified as targets of nitrosylation (Lefievre et al., 2007). Sumoylation,
whereby sperm proteins are modified by ‘small ubiquitin-like modifiers’
(SUMO), is another important regulatory mechanism in germ cells. A
recent combined proteomic and microscopic analysis of human sperm-
atozoa (Vigodner et al., 2013) demonstrated increased levels of sumoy-
lation in defective spermatozoa, such as those with two-tails, curled tails
and abnormal heads. In addition, there is emerging evidence that each in-
dividual spermatozoon contains its own population of microRNAs
(Curry et al., 2011; Das et al., 2013; Salas-Huetos et al., 2014). These
are RNA sequences of �20 bases (Hausser and Zavolan, 2014),
which are known to be powerful modulators of gene expression. As
the various microRNA species adopt unique three-dimensional
shapes, they are important candidates in any mechanism that involves se-
lection. Little information is currently available about their role in sperm
selection in vivo, but evidence from clinical studies supports the hypoth-
esis that microRNAs can make the difference between successful and
unsuccessful infertility treatment (Garrido et al., 2009, 2013; Garcia-
Herrero et al., 2011). Correlations between the fertility of artificially inse-
minated bull semen and the nature of its microRNA content have also
been demonstrated (Kasimanickam et al., 2012).

Implications for clinical
translation
The evidence presented above supports the view that females have
evolved mechanisms for the selection of spermatozoa (summarized in
Fig. 2) that might provide them with genetic benefits. This scenario has
been the subject of intensive research in evolutionary biology for many
years and, on the whole, experiments undertaken with a variety of taxo-
nomic groups have lent credence to the widespread importance of these
mechanisms. Here, we have aimed to demonstrate the complexity and
selectivity of sperm transport mechanisms in mammals and to emphasize
the potential mechanisms that may be involved.

Having gathered evidence that demonstrates the sophistication of
sperm selection processes within the female reproductive tract, we
are forced to wonder whether bypassing these mechanisms during
modern infertility treatments such as intracytoplasmic sperm injection
(ICSI) will eventually produce adverse outcomes. At the present time,
choosing one individual spermatozoon for ICSI, out of the many that
areavailable, seems to be a matter of chance, although some laboratories
are striving to develop and use selection techniques (Said and Land,
2011). Although the effectiveness of assisted reproductive technologies
for overcoming infertility is not in doubt, increased incidences of genomic
imprinting-related disorders are a cause for concern (Le Bouc et al.,
2010; Lazaraviciute et al., 2014). These disorders, which are attributable
to changes in DNA methylation at specific loci, may not be caused by ICSI
alone but by the many separate treatment steps that potentially affect the
periconception environment. In fact, some have argued that epigenetic
changes can be repaired to some extent (Rajender et al., 2011) and
are less of a concern than other genetic problems identifiable by

496 Holt and Fazeli

D
ow

nloaded from
 https://academ

ic.oup.com
/m

olehr/article/21/6/491/1309883 by guest on 20 August 2022



chromosomal screening (Patrat et al., 2010). These contradictory views
will eventually be resolved, especially when babies born after IVF and ICSI
are old enough to allow the significance of developmental programming
effects (Bateson et al., 2014) to be more precisely appreciated.

We conclude this article by re-emphasizing that there are important
scientific and clinical benefits to be gained from investigating the molecu-
lar characteristics of spermatozoa in relation to fertility. We envisage that
the availability of advanced high throughput technologies such as genom-
ics, proteomics and glycan arrays will shortly transform our understand-
ing of sperm biology and enable the development of a new generation of

semen assessment protocols. Some progress with such approaches has
already been reported (Garrido et al., 2009, 2013; Garcia-Herrero et al.,
2011). Similarly, approaching the issue of sperm quality assessment from
a molecular perspective will provide novel scientific information about
sperm quality in relation to evolutionary biology.
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