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Abstract

Background: Previous studies have identified lung, sputum or blood transcriptomic biomarkers associated with the

severity of airflow limitation in COPD. Yet, it is not clear whether the lung pathobiology is mirrored by these surrogate

tissues. The aim of this study was to explore this question.

Methods: We used Weighted Gene Co-expression Network Analysis (WGCNA) to identify shared pathological mechanisms

across four COPD gene-expression datasets: two sets of lung tissues (L1 n= 70; L2 n= 124), and one each of induced

sputum (S; n= 121) and peripheral blood (B; n = 121).

Results: WGCNA analysis identified twenty-one gene co-expression modules in L1. A robust module preservation between

the two L datasets was observed (86%), with less preservation in S (33%) and even less in B (23%). Three modules

preserved across lung tissues and sputum (not blood) were associated with the severity of airflow limitation. Ontology

enrichment analysis showed that these modules included genes related to mitochondrial function, ion-homeostasis, T

cells and RNA processing. These findings were largely reproduced using the consensus WGCNA network approach.

Conclusions: These observations indicate that major differences in lung tissue transcriptomics in patients with COPD

are poorly mirrored in sputum and are unrelated to those determined in blood, suggesting that the systemic

component in COPD is independently regulated. Finally, the fact that one of the preserved modules associated with

FEV1 was enriched in mitochondria-related genes supports a role for mitochondrial dysfunction in the pathobiology

of COPD.
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Background
Chronic Obstructive Pulmonary Disease (COPD) is de-

fined, and its severity graded, simply by the presence of

persistent airflow limitation, as determined by the forced

expiratory volume in 1 s (FEV1) and the ratio of FEV1 to

forced vital capacity (FVC) [1]. However, COPD is a

complex and heterogeneous disease, both clinically [2]

and molecularly [3, 4], and often patients have both pul-

monary and systemic manifestations [5]. On the other

hand, since the lung parenchyma is difficult to access,

the pathobiology of COPD is often studied in surrogate

tissue samples, such as sputum or circulating blood. In

these surrogate tissues, different mRNAs whose expres-

sion is associated with the severity of airflow limitation

have been identified. [6–11] Yet, the relationship of

changes in these surrogate tissues with those occurring

in the lung parenchyma is unclear.

Network analysis is a novel research strategy well-suited

to integrate and analyze complex data sets and to investi-

gate complex and heterogenous diseases such as COPD

[3, 12]. Weighted gene co-expression network correlation-

based analysis (WGCNA) is a particular type of network

analysis that allows the identification of modules of

co-expressed genes in a given transcriptomic dataset, the

investigation of the degree of module preservation in

other datasets, and the study of their relationship with

clinical features of interest [13–15]. This network based

comparison can be performed using data from different

technological platforms [13–15]. Here, we used WGCNA

to meta-analyse four previously published COPD tran-

scriptomic datasets determined in lung tissue (L), blood

(B) and sputum (S) [3, 16–18] (1) to identify L modules re-

lated with FEV 1, (2) to investigate if these L modules are

preserved in S and/or B data sets, and (3) to investigate

the biological processes associated with these modules.

Methods
Methods are detailed in the Additional file 1.

Participants and data sets
We used four transcriptomic datasets generated by three

different COPD studies in Lung (L1 [3] and L2 [16]), in-

duced sputum (S) and circulating blood (B) [17, 18]. L1

included 70 lung tissue samples obtained from COPD

patients who spanned all GOLD grades (1–4) of airflow

limitation severity [3], L2 included 90 lung tissue sam-

ples from COPD patients with GOLD grades 3–4 and 34

former smokers with normal lung function. The S and B

datasets were obtained from 121 COPD patients in-

cluded in the ECLIPSE study with GOLD grades 2–4

[17]. To avoid a potential confounder effect of active

smoking on transcriptomics, all participants were former

smokers, who had been abstinent from smoking for at

least one month before tissue sampling. The selected

datasets fulfilled the following criteria: including former

smokers with COPD (to avoid the influence of the active

smoking exposure in the transcriptomic results), large

sample size (n > =70), being of the same individual

(blood and sputum).

Ethics statement
The Ethic Committees of the participating institutions

approved each of these three studies, and all participants

provided written informed consent prior to the perform-

ance of any study procedures.

Gene expression
The methodology for microarray hybridization has been

described previously [3, 16–18]. All datasets are available

on the Gene Expression Omnibus website, http://

www.ncbi.nlm.nih.gov/geo/ (GSE69818, GSE4837, GSE22

148 and GSE76925). The array platforms used in each

cohort were: i) L1, Human Genome U219 Array Plate

(Affymetrix, Santa Clara, CA, USA), ii) L2, HumanHT-12

v4 Expression BeadChip Kit (Illumina, San Diego, USA);

and iii) S and B (ECLIPSE), HG_Plus_2.0 GeneChips

(Affymetrix, Santa Clara, CA, USA).

qPCR validation
In 20 additional lung tissue samples, recruited at Hos-

pital Clinic of Barcelona (characteristics provided in the

Additional file 1), the expression of MPV17L2, TSFM,

and NDUFA3 was assessed by qPCR using TaqMan as-

says and 2ΔCP with ACTB as the housekeeping gene,

based on previously described methods [3].

Data analysis
Quantitative clinical data is presented as mean ± stand-

ard deviation and compared between groups using

one-way ANOVA. Microarray pre-processing of each

dataset has been previously described [3, 16–18]. For the

present analysis, probes in the lowest quartile of variabil-

ity were removed, and array probes were collapsed to

genes, yielding 10,434 genes for final analysis.

Weighted gene co-expression network meta-analysis

The WGCNA meta-analysis was performed using the

WGCNA R package [13, 14] following the previously de-

scribed meta-analysis pipeline [15]. A step by step tutor-

ial on how to perform the WGCNA package can be

found at: https://horvath.genetics.ucla.edu/html/Coex-

pressionNetwork/Rpackages/WGCNA/Tutorials/.

Briefly, we first calculated the correlation matrix and

defined the WGCNA co-expression modules (labelled by

colour) in L1. The adjacency matrix for each data set

was built using the biweight midcorrelation, with a

softpower threshold of 12. The DeepSplit for module

identification in LT-1 was 1 and the minimum module
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size 30. WGCNA produces a set of modules (labeled by

color), each containing a set of unique genes. Next, the

preservation of the modules across the other three data-

sets was assessed using the modulePreservation function

with 100 permutations; Zsummary values > 5 were con-

sidered as preserved modules [15, 19]. The module

eigengene value (i.e., the first principal component of the

expression matrix of the probes within the module) was

calculated and used to test for association with the se-

verity of airflow limitation (as expressed by the FEV1%

predicted) after adjusting for gender and body mass

index (BMI) [20]. False discovery rate (FDR) < 0.05 was

used to define association. Driver genes were identified as

those with highest Module Membership (kME) in LT1

modules that also have highest kME in the same modules

in the other datasets [15]. To test the association of blood

gene expression with level of airflow limitation and verify

the lack of association, WGCNA modules were defined

for this dataset independently of the others, and their as-

sociation with FEV1 was calculated.

Enrichment analysis

To identify over-represented pathways in co-expression

modules related to FEV1% predicted, we used hypergeo-

metric tests in the R Bioconductor package GeneAnswers

[21], the Vignettes describing how to use the pipeline are

available from Bioconductor (https://www.bioconductor.-

org/). Significant enrichment was defined as FDR < 0.05,

with five or more genes associated to the term. To evaluate

the term overlap and obtain a visual summary we used

REVIGO [22], a tutorial is available at: http://revigo.irb.hr/).

Consensus network

A WGCNA consensus network was built using data

from L1, L2 and S using the blockwiseConsensusMo-

dules function with a softpower of 12, minModuleSize of

30, a maxBlockSize of 10,434, a corType “bicor”, and the

network and the TOM were signed [19]. Then, we used

linear regression with adjustment for gender and BMI to

identify modules associated with FEV1% predicted [20].

Results
Characteristics of participants

Table 1 describes the main characteristics of partici-

pants. All patients were Caucasians and former smokers.

There were more women in the L2 cohort, and ECLIPSE

participants had smoked fewer pack-years, but age and

BMI were similar across the three studies.

Network based transcriptomic meta-analysis

Using WGCNA [13], we identified 21 modules with a

minimum size of 30 genes in the L1 (Fig. 1, panel A).

These modules were also identified in L2, S and B datasets

(Fig. 1, panels B/C/D). Using the Z preservation score, we

ranked their preservation across datasets (Table 2).

Z-score values > 5 are considered preserved modules [19].

Four modules (19%) were preserved across all datasets

(Table 2). Eighteen modules (86%) were preserved in the

two lung tissue datasets, whereas seven (33%) were also

preserved in sputum, and five (24%) were preserved in

blood (Table 2). The negative control, a random selection

of genes (gold module), was not preserved in any group.

Association with lung function

To investigate the relationships between identified mod-

ules and FEV1, we performed a linear regression of each

module Eigengene with the FEV1% predicted as the

dependent variable, after adjusting for covariates (gender

and BMI). Results are displayed in the form of a heat

map in Fig. 2 (p-value and effect estimate). No blood

module was associated with FEV1% at p < 0.05, even

when the module definition was done in the blood

dataset, (Additional file 2: Figure S1). By contrast, 8

modules (38%) were significantly associated with airflow

Table 1 Characteristics of the 3 cohorts (4 transcriptomic datasets)

L1 L2 ECLIPSE

Sample Type and GEO accession number Lung Tissue Lung Tissue Sputum & Blood p value

GSE69818 GSE76925 GSE22148, GSE76705

Number of COPD/Controls 70/0 90 /34 121/0

Gender (M/F) 63/7 57/67 81/40 0.0005

Age 66.3 ± 8.6 64.3 ± 7.3 65.1 ± 5.5 ns

Current/Former Smokers 0/70 0/124 0/121 ns

Pack-years of smoking 56.5 ± 26.1 57.2 ± 28.6 47.1 ± 29.2 0.012

BMI 27.5 ± 4.5 26.2 ± 4.6 26.6 ± 4.9 ns

FEV1% predicted 57.9 ± 21.1 46.1 ± 34.0 48.9 ± 15.1 < 0.0001

FEV1/FVC 52.8 ± 12.3 45.1 ± 22.8 42.6 ± 11.8 0.0075

ns: non-significant p value > 0.05. GEO = gene expression omnibus
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limitation in L1, 6 (28%) in L2, and 17 (81%) in S; 3 of

them were preserved in L1, L2 and S: yellow (329 genes),

brown (345 genes) and magenta (142 genes) modules

(Fig. 2, Table 2 and Additional file 3: Table S1). The yel-

low module (Fig. 3a, Additional file 4: Table S2) included

ontologies related to mitochondrial function, signal

transduction by p53, hydrogen ion transmembrane

transport and MHC class I antigen processing/presenta-

tion. Accordingly, KEGG pathways analysis showed en-

richment in oxidative phosphorylation, metabolic and

spliceosome pathways (Additional file 5: Table S3). The

brown module (Fig. 3b, Additional file 4: Table S2) in-

cludes ontologies related to endocytosis, lysosome

organization, ion homeostasis, nucleotide metabolism

and T cell activation. KEGG pathway analysis showed

enrichment in Lysosome and Phagosome pathways

(Additional file 5: Table S3). Finally, the magenta module

(Fig. 3c, Additional file 4: Table S2) includes ontologies

related to noncoding RNA metabolism, cellular response

to cytokine stimulus and iron transmembrane transport.

KEGG analysis showed enrichment in the Ribosome bio-

genesis pathway (Additional file 5: Table S3).

We defined driver genes in a module as those genes

both associated with the severity of airflow limitation

and also highly correlated with other genes in that mod-

ule in all datasets (see methods) [15]. Table 3 lists the

driver genes in the three modules of interest and

highlighted in bold those genes that are included the

enriched gene ontology categories. In the yellow module,

ANAPC11, ATP5G1, ATP5G2, and NDUFA13 were in-

cluded in the mitochondrial related ontologies. In the

brown module, APEH and GPI were included in the me-

tabolism related ontologies. In the magenta module

ABCE1, MKI67IP, RIOK1, TIMM17A and WDR43 were

included in the RNA related ontologies.

Only one module, Lightcyan, was preserved and asso-

ciated with FEV1% in both lung tissue datasets but not

in blood or sputum (Fig. 2, Table 2). Interestingly this

module contained a set of genes related to B-lymphocyte

biology (Additional file 4: Table S2).

A B

C D

Fig. 1 Co-expression network dendrograms in the 4 datasets. (a) L1 co-expression network, with twenty-one modules with a minimum module

size of 30. (b) L2 co-expression network. (c) Blood co-expression network. (d) Sputum co-expression network. The color code in parts B, C, and D

corresponds to the modules identified in L1 (part A). For further details on analytical method

see: (https://horvath.genetics.ucla.edu/html/CoexpressionNetwork/Rpackages/WGCNA/Tutorials/)

Faner et al. Respiratory Research            (2019) 20:5 Page 4 of 11

https://horvath.genetics.ucla.edu/html/CoexpressionNetwork/Rpackages/WGCNA/Tutorials


Consensus co-expression network of lung tissue and

sputum

The network meta-analysis method does not assume

module preservation, yet we identified multiple modules

that are highly preserved in the other lung tissue dataset

and the sputum datasets. To verify these results, we built

a consensus network including the two lung tissue data

sets and the sputum data set (as detailed in Additional

file 1), which assumes preservation between datasets.

Blood was not included, since none of the blood mod-

ules were related to the level of airflow limitation.

The consensus WGCNA network identified 14 con-

sensus modules (Additional file 6: Figure S2). Figure 4

shows the overlapping gene composition between these

14 consensus modules and the 21 WGCNA modules de-

rived from lung tissue. The yellow WGCNA module and

the brown consensus module shared 56.2% of their

genes. The brown WGCNA module and the green con-

sensus module shared 31.6% of genes. The WGCNA

magenta module and the pink consensus module shared

26.1% of genes. In keeping with WGCNA results, the

brown, green, and pink consensus modules were also

associated with the severity of airflow limitation

(Additional file 7: Figure S3).

Core of co-expressed genes and related ontologies

We found that, out of the 185 genes shared by the yel-

low WGCNA module and the brown consensus module,

60 genes were nominally associated with FEV1% pre-

dicted at p < 0.1 in lung tissue and sputum (Additional

file 8: Table S4); Gene Ontology analysis showed enrich-

ment in mitochondrial-related ontologies (Fig. 5a,

Additional file 9: Table S5). Three mitochondrial-related

genes were selected for qPCR validation on the basis of

significant association with FEV1% in L1 and L2: NADH

dehydrogenase 1 alpha subcomplex subunit 3

(NDUFA3), Ts Translation Elongation Factor, Mitochon-

drial (TSFM), and MPV17 Mitochondrial Inner Mem-

brane Protein Like 2 (MPV17L2). Additional file 10:

Figure S4 shows the gene expression of these three genes

in L1 and L2 samples, and Fig. 5 shows that the relative

expression of these genes (RQ) was also negatively cor-

related with the severity of airflow limitation in lung tis-

sue obtained from 12 additional COPD patients and 8

controls.

Discussion
We performed a gene co-expression network analysis in

COPD datasets from two separate lung tissue studies,

sputum, and blood. The main results show (1) robust

gene module preservation between the two lung tissue

datasets, with less preservation in sputum and even less

in blood; (2) an association of the modules identified in

the two lung tissue datasets and sputum (but not in

blood) with the severity of airflow limitation (FEV1); and

(3) that these findings were largely reproduced in a

consensus WGCNA network. Taken together, these ob-

servations indicate that major changes in lung tran-

scriptomics in patients with COPD are poorly mirrored

in sputum and are unrelated to those determined in

blood.

Previous studies
Obeidat et al. recently used WGCNA to investigate

blood transcriptomics in COPD patients (n = 238) [23];

however, our study used WGCNA to compare lung tis-

sue, sputum and blood samples in COPD patients.

While we found no gene modules associated with lung

function in blood, Obeidat et al. identified 3 blood mod-

ules associated with FEV1. Differences between the two

studies may be related to their larger sample size (238

vs. 121 patients). The gene ontology enrichments of

these three blood modules [23] were different from

those identified in preserved in lung and sputum in the

present analysis, supporting that lung and blood are in-

dependent compartments in COPD [24], arguing against

Table 2 Module preservation across the different datasets

L2 ECLIPSE-BL ECLIPSE-SP

Module ID # genes Z score Z score Z score

Blue 394 29.91 0.41 1.35

Yellow 329 17.02 10.32 23.76

Brown 345 16.28 1.75 8.86

Salmon 91 11.82 0.00 2.07

Green yellow 99 11.41 2.39 1.37

Light yellow 37 9.38 2.58 2.31

Pink 148 11.57 0.91 −0.71

Light green 51 8.65 4.44 6.16

Tan 95 10.76 −0.47 −0.79

Magenta 142 8.74 2.27 5.44

Red 238 8.03 5.61 1.02

Black 204 7.89 −0.47 0.62

Turquoise 400 6.84 14.23 9.04

Green 241 7.90 1.72 3.21

Midnight blue 76 5.81 0.19 −0.74

Grey60 56 7.26 5.38 5.48

Royal blue 30 6.30 9.02 6.43

Cyan 82 6.04 1.81 0.35

Light cyan 61 4.14 1.07 0.43

Purple 113 2.71 2.58 2.00

Gold 400 2.86 3.53 2.71

Grey 400 2.76 4.09 4.89

Modules are considered preserved if Z score is > 5 (in bold and underlined in

the table), and highly preserved if Z score is > 10 as described in

reference [19]
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the so-called “spill-over” hypothesis, which states that

the systemic manifestations of the disease are the result

of the release to the circulation of lung inflammatory

mediators [25].

Interpretation of findings
Three modules associated with FEV1 were preserved in

lung and sputum. These modules contained genes re-

lated to mitochondrial function, metabolic alterations,

regulation of T cell activation, endocytosis and non-cod-

ing RNA metabolism. Some of these processes have been

previously associated with COPD. For example, meta-

bolic alterations are well documented in airway smooth

muscle (ASM) cells [26], and CTS3 (a driver gene of the

brown module) was previously reported to be causally as-

sociated with COPD [27]. Likewise, the loss of mitochon-

drial biogenesis (production of new mitochondria) and

mitochondrial DNA (mtDNA) appear associated with a

significantly lower body mass index and muscle mass in

COPD [28, 29]. Similarly, inherited mtDNA haplotypes

may also pre-dispose or confer susceptibility to COPD

[30]. Little is known about the effects of mitochondrial

translation or mRNA splicing in COPD, [31] although the

role of mitochondrial and iron abnormalities has been de-

scribed in relationship to a COPD genome-wide associ-

ation gene IREB2 [32]. We validated three of the key

mitochondria-relevant genes encoded by the nuclear gen-

ome by qPCR. TSFM regulates the translation of the

Fig. 2 Association between meta-analysis gene modules and lung function. Heat-map shows the p-values (and effect estimates) of the linear

regression of each module eigengene with FEV1% predicted in each of the four datasets. Yellow denotes lower p-values and blue higher p-

values. The three preserved modules associated with FEV1% predicted are marked with a black outline. For further details on analytical method

see: (https://horvath.genetics.ucla.edu/html/CoexpressionNetwork/Rpackages/WGCNA/Tutorials/)
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Fig. 3 Visual summary of the ontologies in each of the three interesting modules (Treemap in REVIGO (http://revigo.irb.hr/) [22]): (a) Yellow, (b)

Brown, (c) Magenta. Each box is a single ontology cluster, which are joined into superclusters of loosely related terms, shown by the same color

and named with a representative term. Larger boxes have more significant enrichment
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13-mtDNA encoded genes in the mitochondrial matrix,

whereas NDUFA3 encodes an accessory subunit of the

mitochondrial membrane respiratory chain NADH de-

hydrogenase (Complex I). MPV17L2 is a mitochondrial

inner membrane protein that regulates ribosomal assem-

bly and protein synthesis in mitochondria [33].

Functionally, nearly every cell in the lung depends on

mitochondrial metabolic activities, requiring a constant

supply of energy from oxidative phosphorylation. Mito-

chondria are at the hub of cellular metabolism, regulat-

ing the continuous aerobic oxidation of fatty acids and

consuming the end products of glucose, glutamine and

amino acid degradation in order to aerobically produce

ATP from oxygen and H2O [34]. An alteration in any of

the three genes identified in this study may alter bio-

energetic processes, mitochondrial shape, movement

and cellular interactions. From studies of families with

mutations in mitochondrial genes, it is known that im-

paired mitochondrial translation and impaired Complex

I activity results in deficient ATP production and cellular

Table 3 Driver genes in preserved modules associated with

lung function meta-analysis modules in the 4 datasets

Yellow module Brown module Magenta module

ANAPC11 APEH ABCE1

ATP5G1 CDK5 ATL3

ATP5G2 CHCHD10 CYCS

MRPL23 CST3 GGCT

MRPS12 DCAF7 MKI67IP

NDUFA13 GPI MRPL32

NDUFS3 PLD3 NUP35

ROMO1 PSMB2 RIOK1

SF3B5 TMEM147 TIMM17A

TMEM147 TSPO WDR43

Fig. 4 Comparison of the gene composition of the 14 consensus modules (columns) with the 21 meta-analysis modules (rows). Red color indicates

higher concordance. When a meta-analysis module corresponded with more than one consensus module, the module with greater concordance is

outlined with a green square. For further details on analytical method: (https://horvath.genetics.ucla.edu/html/CoexpressionNetwork/JMiller/)
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energy deficit [35]. Accordingly, in COPD mitochondrial

abnormalities have been associated with excessive pro-

duction of mitochondrial Reactive Oxygen Species

(mROS) and abnormalities in ATP production that in

turn lead to enhanced inflammation and cell hyperproli-

feration [36]. Further studies are required to know if the

abnormal mROS observed are related to defects in

translation or whether these defects are consequences of

the continuous exposure to noxious gases and particles,

such as tobacco smoke, in the lung.

Finally, we identified only one module in the

meta-analysis which was preserved and associated with

FEV1% predicted in the two lung tissue datasets (light--

yellow), but not in any other compartment. This module

contained B-cell related genes that have been previously

associated with the presence of emphysema and/or the

severity of airflow limitation [3, 16, 37]. Therefore, our

findings here suggest that the B-cell component of

COPD cannot be readily identified in sputum or blood.

Strengths and limitations
The fact that the two lung studies were performed in

different countries using different array platforms but

still showed good preservation of co-expression and as-

sociation with airflow limitation is a strength of our

study. This reflects both the reproducibility of the tran-

scriptomic changes associated with COPD once the po-

tential confounding effect of active smoking is removed

Fig. 5 Analysis of 60 genes with concordance between the yellow meta-analysis module and brown consensus module and association with

FEV1. (a) Visual summary (Treemap in REVIGO) of the gene ontologies. (b) Correlation (Spearman) between the qPCR expression level (RQ) of

MPV17L2, NDUFA3 and TSFM and FEV1% predicted in 20 additional lung tissue samples
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and that network-based transcriptomic meta-analysis is

a suitable tool to cope with methodological differences

[14, 38]. Among the limitations of our study, we ac-

knowledge that only blood and sputum, but not lung tis-

sue, data were obtained simultaneously from the same

patients. This is the reason why in the current analysis

we used WGCNA, as previous works have described the

ability of the method to assess module preservation across

different tissues and even across different species, over-

coming the limitation of using different subjects [15, 39].

The fact that we do not observe preservation of mod-

ules across sputum and blood that are from the same

individuals also supports the conclusion that there are

co-expressed genes associated with the severity of air-

flow limitation only in lung and sputum.Because our

study was observational, functional evidence based on

animal models or longitudinal human studies are required

to validate the clinical relevance of our observations. We

acknowledge that it would have been desirable to analyse

the mitochondrial gene expression in relation to diverse

COPD clinical parameters (i.e. exacerbations, treatment,

prognosis or blood exam measures) but this data was not

available for the current study and should be addressed in

future investigations.

Finally, in this study it is unclear how much of the dif-

ference in gene expression between samples was due to

differences in cellular composition vs. differences in ex-

pression across cell types.

Conclusions
Using gene expression correlation-based network ana-

lysis, we identified modules of co-expressed genes that

were preserved and associated with the severity of air-

flow limitation in lung tissue and sputum, but not in

blood samples, suggesting that the systemic component

in COPD is independently regulated. The fact that one

of the preserved modules associated with FEV1 was

enriched in mitochondria-related genes supports a role

for mitochondrial dysfunction in the pathobiology of

COPD.
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