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Abstract

Distributional representations of words have

been recently used in supervised settings for

recognizing lexical inference relations be-

tween word pairs, such as hypernymy and en-

tailment. We investigate a collection of these

state-of-the-art methods, and show that they

do not actually learn a relation between two

words. Instead, they learn an independent

property of a single word in the pair: whether

that word is a “prototypical hypernym”.

1 Introduction

Inference in language involves recognizing infer-

ence relations between two words (x and y), such

as causality (flu → fever), hypernymy (cat →
animal), and other notions of lexical entailment.

The distributional approach to automatically recog-

nize these relations relies on representing each word

x as a vector ~x of contextual features: other words

that tend to appear in its vicinity. Such features are

typically used in word similarity tasks, where cosine

similarity is a standard similarity measure between

two word vectors: sim(x, y) = cos(~x, ~y).
Many unsupervised distributional methods of rec-

ognizing lexical inference replace cosine similarity

with an asymmetric similarity function (Weeds and

Weir, 2003; Clarke, 2009; Kotlerman et al., 2010;

Santus et al., 2014). Supervised methods, reported

to perform better, try to learn the asymmetric opera-

tor from a training set. The various supervised meth-

ods differ by the way they represent each candidate

pair of words (x, y): Baroni et al. (2012) use con-

catenation ~x ⊕ ~y, others (Roller et al., 2014; Weeds

et al., 2014; Fu et al., 2014) take the vectors’ differ-

ence ~y − ~x, and more sophisticated representations,

based on contextual features, have also been tested

(Turney and Mohammad, 2014; Rimell, 2014).

In this paper, we argue that these supervised meth-

ods do not, in fact, learn to recognize lexical infer-

ence. Our experiments reveal that much of their pre-

viously perceived success stems from lexical mem-

orizing. Further experiments show that these super-

vised methods learn whether y is a “prototypical hy-

pernym” (i.e. a category), regardless of x, rather

than learning a concrete relation between x and y.

Our mathematical analysis reveals that said meth-

ods ignore the interaction between x and y, explain-

ing our empirical findings. We modify them ac-

cordingly by incorporating the similarity between

x and y. Unfortunately, the improvement in per-

formance is incremental. We suspect that methods

based solely on contextual features of single words

are not learning lexical inference relations because

contextual features might lack the necessary infor-

mation to deduce how one word relates to another.

2 Experiment Setup

Due to various differences (e.g. corpora, train/test

splits), we do not list previously reported results,

but apply a large space of state-of-the-art supervised

methods and review them comparatively. We ob-

serve similar trends to previously published results,

and make the dataset splits available for replication.1

1http://u.cs.biu.ac.il/~nlp/resources/

downloads/



Dataset #Instances #Positive #Negative

Kotlerman 2010 2,940 880 2,060

Bless 2011 14,547 1,337 13,210

Baroni 2012 2,770 1,385 1,385

Turney 2014 1,692 920 772

Levy 2014 12,602 945 11,657

Table 1: Datasets evaluated in this work.

2.1 Word Representations

We built 9 word representations over Wikipedia (1.5

billion tokens) using the cross-product of 3 types of

contexts and 3 representation models.

2.1.1 Context Types

Bag-of-Words Uses 5 tokens to each side of the tar-

get word (10 context words in total). It also employs

subsampling (Mikolov et al., 2013a) to increase the

impact of content words.

Positional Uses only 2 tokens to each side of the

target word, and decorates them with their position

(relative to the target word); e.g. the−1 is a common

positional context of cat (Schütze, 1993).

Dependency Takes all words that share a syntactic

connection with the target word (Lin, 1998; Padó

and Lapata, 2007; Baroni and Lenci, 2010). We used

the same parsing apparatus as in (Levy and Gold-

berg, 2014).

2.1.2 Representation Models

PPMI A word-context positive pointwise mutual in-

formation matrix M (Niwa and Nitta, 1994).

SVD We reduced M ’s dimensionality to k = 500
using Singular Value Decomposition (SVD).2

SGNS Skip-grams with negative sampling (Mikolov

et al., 2013b) with 500 dimensions and 5 nega-

tive samples. SGNS was trained using a modified

version of word2vec that allows different context

types (Levy and Goldberg, 2014).3

2.2 Labeled Datasets

We used 5 labeled datasets for evaluation. Each

dataset entry contains two words (x, y) and a label

whether x entails y. Note that each dataset was cre-

ated with a slightly different goal in mind, affecting

word-pair generation and annotation. For example,

2Following Caron (2001), we used the square root of the

eigenvalue matrix Σk for representing words: Mk = Uk

√

Σk.
3http://bitbucket.org/yoavgo/word2vecf

both of Baroni’s datasets are designed to capture hy-

pernyms, while other datasets try to capture broader

notions of lexical inference (e.g. causality). Table 1

provides metadata on each dataset, and the descrip-

tion below explains how each one was created.

(Kotlerman et al., 2010) Manually annotated lexi-

cal entailment of distributionally similar nouns.

(Baroni and Lenci, 2011) a.k.a. BLESS. Created

by selecting unambiguous word pairs and their se-

mantic relations from WordNet. Following Roller et

al. (2014), we labeled noun hypernyms as positive

examples and used meronyms, noun cohyponyms,

and random noun pairs as negative.

(Baroni et al., 2012) Created in a similar fashion

to BLESS. Hypernym pairs were selected as posi-

tive examples from WordNet, and then permutated

to generate negative examples.

(Turney and Mohammad, 2014) Based on a

crowdsourced dataset of 79 semantic relations (Ju-

rgens et al., 2012). Each semantic relation was lin-

guistically annotated as entailing or not.

(Levy et al., 2014) Based on manually anno-

tated entailment graphs of subject-verb-object tuples

(propositions). Noun entailments were extracted

from entailing tuples that were identical except for

one of the arguments, thus propagating the exis-

tence/absence of proposition-level entailment to the

noun level. This dataset is the most realistic dataset,

since the original entailment annotations were made

in the context of a complete proposition.

2.3 Supervised Methods

We tested 4 compositions for representing (x, y) as

a feature vector: concat (~x⊕~y) (Baroni et al., 2012),

diff (~y − ~x) (Roller et al., 2014; Weeds et al., 2014;

Fu et al., 2014), only x (~x), and only y (~y). For each

composition, we trained two types of classifiers, tun-

ing hyperparameters with a validation set: logistic

regression with L1 or L2 regularization, and SVM

with a linear kernel or quadratic kernel.

3 Negative Results

Based on the above setup, we present three nega-

tive empirical results, which challenge the claim that

the methods presented in §2.3 are learning a rela-

tion between x and y. In addition to our setup, these

results were also reproduced in preliminary exper-



Dataset Lexical +Contextual ∆
Kotlerman 2010 .346 .437 .091

Bless 2011 .960 .960 .000

Baroni 2012 .638 .802 .164

Turney 2014 .644 .747 .103

Levy 2014 .302 .370 .068

Table 2: The performance (F1) of lexical versus contex-

tual feature classifiers on a random train/test split with

lexical overlap.

iments by applying the JoBimText framework4 for

scalable distributional thesauri (Biemann and Riedl,

2013) using Google’s syntactic N-grams (Goldberg

and Orwant, 2013) as a corpus.

Lexical Memorization is the phenomenon in

which the classifier learns that a specific word in a

specific slot is a strong indicator of the label. For

example, if a classifier sees many positive examples

where y = animal, it may learn that anything that

appears with y = animal is likely to be positive,

effectively memorizing the word animal.

The following experiment shows that supervised

methods with contextual features are indeed mem-

orizing words from the training set. We randomly

split each dataset into 70% train, 5% validation, and

25% test, and train lexical-feature classifiers, using a

one-hot vector representation of y as input features.

By definition, these classifiers memorize words from

the training set. We then add contextual-features (as

described in §2.1), on top of the lexical features,

and train classifiers analogously. Table 2 compares

the best lexical- and contextual-feature classifiers on

each dataset. The performance difference is under

10 points in the larger datasets, showing that much

of the contextual-feature classifiers’ success is due

to lexical memorization. Similar findings were also

reported by Roller et al. (2014) and Weeds et al.

(2014), supporting our memorization argument.

To prevent lexical memorization in our following

experiments, we split each dataset into train and test

sets with zero lexical overlap. We do this by ran-

domly splitting the vocabulary into “train” and “test”

words, and extract train-only and test-only subsets of

each dataset accordingly. About half of each original

dataset contains “mixed” examples (one train-word

and one test-word); these are discarded.

4http://jobimtext.org

Dataset Best Supervised Only ~y Unsupervised

Kotlerman 2010 .408 .375 .461

Bless 2011 .665 .637 .197

Baroni 2012 .774 .663 .788

Turney 2014 .696 .649 .642

Levy 2014 .324 .324 .231

Table 3: A comparison of each dataset’s best supervised

method with: (a) the best result using only y composi-

tion; (b) unsupervised cosine similarity cos(~x, ~y). Perfor-

mance is measured by F1. Uses lexical train/test splits.

Supervised vs Unsupervised While supervised

methods were reported to perform better than un-

supervised ones, this is not always the case. As a

baseline, we measured the “vanilla” cosine similar-

ity of x and y, tuning a threshold with the validation

set. This unsupervised symmetric method outper-

forms all supervised methods in 2 out of 5 datasets

(Table 3).

Ignoring x’s Information We compared the per-

formance of only y to that of the best configuration

in each dataset (Table 3). In 4 out of 5 datasets, the

difference in performance is less than 5 points. This

means that the classifiers are ignoring most of the

information in x. Furthermore, they might be over-

looking the compatibility (or incompatibility) of x to

y. Weeds et al. (2014) reported a similar result, but

did not address the fundamental question it beckons:

if the classifier cannot capture a relation between x

and y, then what is it learning?

4 Prototypical Hypernyms

We hypothesize that the supervised methods exam-

ined in this paper are learning whether y is a likely

“category” word – a prototypical hypernym – and,

to a lesser extent, whether x is a likely “instance”

word. This hypothesis is consistent with our previ-

ous observations (§3).

Though the terms “instance” and “category” per-

tain to hypernymy, we use them here in the broader

sense of entailment, i.e. as “tends to entail” and

“tends to be entailed”, respectively. We later show

(§4.2) that this phenomenon indeed extends to other

inference relations, such as meronymy.

4.1 Testing the Hypothesis

To test our hypothesis, we measure the performance

of a trained classifier on mismatched instance-



Dataset Top Positional Contexts of y

Kotlerman 2010 grave−1, substances+2, lend-lease−1, poor−2, bureaucratic−1, physical−1, dry−1, air−1, civil−1

Bless 2011 other−1, resembling+1, such+1, assemblages+1,magical−1, species+1, any−2, invertebrate−1

Baroni 2012 any−1, any−2, social−1, every−1, this−1, kinds−2, exotic−1,magical−1, institute−2, important−1

Turney 2014 of+1, inner−1, including+1, such+1, considerable−1, their−1, extra−1, types−2, different−1, other−1

Levy 2014 psychosomatic−1, unidentified−1, auto-immune+2, specific−1, unspecified−1, treatable−2, any−1

Table 4: Top positional features learned with logistic regression over concat. Displaying positive features of y.

category pairs, e.g. (banana, animal). For each

dataset, we generate a set of such synthetic exam-

ples S, by taking the positive examples from the test

portion T+, and extracting all of its instance words

T+
x and category words T+

y .

T+
x = {x|(x, y) ∈ T+} T+

y = {y|(x, y) ∈ T+}

We then define S as all the in-place combinations of

instance-category word pairs that did not appear in

T+, and are therefore likely to be false.

S =
(

T+
x × T+

y

)

\ T+

Finally, we test the classifier on a sample of S (due to

its size). Since all examples are assumed to be false,

we measure the false positive rate as match error

– the error of classifying a mismatching instance-

category pair as positive.

According to our hypothesis, the classifier can-

not differentiate between matched and mismatched

examples (T+ and S, respectively). We therefore

expect it to classify a similar proportion of T+ and

S as positive. We validate this by comparing recall

(proportion of T+ classified as positive) to match er-

ror (proportion of S classified as positive). Figure 1

plots these two measures across all configurations

and datasets, and finds them to be extremely close

(regression curve: match error = 0.935 · recall),
thus confirming our hypothesis.

4.2 Prototypical Hypernym Features

A qualitative way of analyzing our hypothesis is to

look at which features the classifiers tend to con-

sider. Since SVD and SGNS features are not eas-

ily interpretable, we used PPMI with positional con-

texts as our representation, and trained a logistic re-

gression model with L1 regularization using concat

over the entire dataset (no splits). We then observed

the features with the highest weights (Table 4).

Figure 1: The correlation of recall (positive rate on T+)

with match error (positive rate on S) compared to perfect

correlation (green line).

Many of these features describe dataset-specific

category words. For example, in Levy’s medical-

domain dataset, many words entail “symptom”,

which is captured by the discriminative feature

psychosomatic−1. Other features are domain-

independent indicators of category, e.g. any−1,

every−1, and kinds−2. The most striking features,

though, are those that occur in Hearst (1992) pat-

terns: other−1, such+1, including+1, etc. These

features appear in all datasets, and their analogues

are often observed for x (e.g. such−2). Even quali-

tatively, many of the dominant features capture pro-

totypical or dataset-specific hypernyms.

As mentioned, the datasets examined in this work

also contain inference relations other than hyper-

nymy. In Turney’s dataset, for example, 77 %

of positive pairs are non-hypernyms, and y is of-

ten a quality (coat → warmth) or a component

(chair → legs) of x. Qualities and components

can often be detected via possessives, e.g. of+1 and

their−1. Other prominent features, such as extra−1



and exotic−1, may also indicate qualities. These ex-

amples suggest that our hypothesis extends beyond

hypernymy to other inference relations as well.

5 Analysis of Vector Composition

Our empirical findings show that concat and diff are

clearly ignoring the relation between x and y. To un-

derstand why, we analyze these compositions in the

setting of a linear SVM. Given a test example, (x, y)
and a training example that is part of the SVM’s sup-

port (xs, ys), the linear kernel function yields Equa-

tions (1) for concat and (2) for diff.

K (~x⊕ ~y, ~xs ⊕ ~ys) = ~x · ~xs + ~y · ~ys (1)

K (~y − ~x, ~ys − ~xs) = ~x · ~xs + ~y · ~ys − ~x · ~ys − ~y · ~xs (2)

Assuming all vectors are normalized (as in our ex-

periments), the kernel function of concat is actually

the similarity of the x-words plus the similarity of

the y-words. Two dis-similarity terms are added to

diff’s kernel, preventing the x of one pair from being

too similar to the other pair’s y (and vice versa).

Notice the absence of the term ~x · ~y. This means

that the classifier has no way of knowing if x and y

are even related, let alone entailing. This flaw makes

the classifier believe that any instance-category pair

(x, y) is in an entailment relation, even if they are

unrelated, as seen in §4. Polynomial kernels also

lack ~x · ~y, and thus suffer from the same flaw.

6 Adding Intra-Pair Similarity

Using an RBF kernel with diff slightly mitigates this

issue, as it factors in ~x · ~y, among other similarities:

KRBF (~y − ~x, ~ys − ~xs) = e
− 1

σ2
|(~y−~x)−( ~ys− ~xs)|

2

= e
− 1

σ2
(~x~y+ ~xs ~ys+~x ~xs+~y ~ys−~x ~ys−~y ~xs−2)

(3)

A more direct approach of incorporating ~x · ~y is to

create a new kernel, which balances intra-pair simi-

larities with inter-pair ones:

KSIM ((~x, ~y) , ( ~xs, ~ys)) = (~x~y · ~xs ~ys)
α

2 (~x ~xs · ~y ~ys)
1−α

2 (4)

While these methods reduce match error –

match error = 0.618 · recall versus the previous

regression curve of match error = 0.935 · recall
– their overall performance is only incrementally

better than that of linear methods (Table 5). This

improvement is also, partially, a result of the non-

linearity introduced in these kernels.

Dataset LIN(concat) LIN(diff) RBF(diff) SIM

Kotlerman 2010 .367 .187 .407 .332

Bless 2011 .634 .665 .636 .687

Baroni 2012 .745 .769 .848 .859

Turney 2014 .696 .694 .691 .641

Levy 2014 .229 .219 .252 .244

Table 5: Performance (F1) of SVM across kernels. LIN

refers to the linear kernel (equations (1) and (2)), RBF to

the Gaussian kernel (equation (3)), and SIM to our new

kernel (equation (4)). Uses lexical train/test splits.

7 The Limitations of Contextual Features

In this work, we showed that state-of-the-art su-

pervised methods for recognizing lexical inference

appear to be learning whether y is a prototypical

hypernym, regardless of its relation with x. We

tried to factor in the similarity between x and y,

yet observed only marginal improvements. While

more sophisticated methods might be able to extract

the necessary relational information from contextual

features alone, it is also possible that this informa-

tion simply does not exist in those features.

A (de)motivating example can be seen in §4.2. A

typical y often has such+1 as a dominant feature,

whereas x tends to appear with such−2. These fea-

tures are relics of the Hearst (1992) pattern “y such

as x”. However, contextual features of single words

cannot capture the joint occurrence of x and y in that

pattern; instead, they record only this observation

as two independent features of different words. In

that sense, contextual features are inherently hand-

icapped in capturing relational information, requir-

ing supervised methods to harness complementary

information from more sophisticated features, such

as textual patterns that connect x with y (Snow et al.,

2005; Turney, 2006).
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