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[1] In this paper we explore the use of time-variable tracer data as a complementary tool
for model structure evaluation. We augment the modular rainfall-runoff modeling
framework FUSE (Framework for Understanding Structural Errors) with the ability to track
the age distribution of water in all model stores and fluxes. We therefore gain the novel
ability to compare tracer/water age signatures measured in a catchment with those predicted
using hydrological models built from components based on four existing popular models.
Key modeling decisions available in FUSE are evaluated against streamflow tracer
dynamics using weekly observations of tracer concentration which reflect the tracer transit
time distribution (TTD). Model structure choice is shown to have a significant effect on
simulated water age characteristics, even when simulated flow series are very similar. We
show that for a Scottish case study catchment, careful selection of model structure enables
good predictions of both streamflow and tracer dynamics. We then use FUSE as a
hypothesis testing tool to understand how different model characterization of TTDs and
mean transit times affect multicriteria model performance. We demonstrate the importance
of time variation in TTDs in simulating water movement along fast flow pathways, and
investigate sensitivity of the models to assumptions about our ability to sample fast,
near-surface flow.
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1. Introduction

[2] A wide range of lumped, conceptual, rainfall-runoff
model structures are currently used for hydrological model-
ing applications [e.g., Singh, 1995]. The model parameters
are typically set by calibration which continues to be an im-
portant research strand within hydrology [e.g., Kavetski
et al., 2011; McMillan and Clark, 2009; Reichert and
Mieleitner, 2009]. However, a current shift in thinking is
leading the hydrological community to re-emphasize the
importance of model structure over and above model cali-
bration [Beven, 2010; Clark et al., 2011b; Krueger et al.,
2010; Savenije, 2009; Sivapalan, 2009]. Model structure is
critical because if model representations of the dominant
runoff generation mechanisms of a catchment are not con-
sistent with reality, the predictive power of the model may
be reduced, especially outside the range of calibration con-
ditions [Kirchner, 2006].
[3] The challenge of selecting appropriate model struc-

ture for a given catchment is substantial. Aggregated per-
formance measures such as the Nash-Sutcliffe may fail to
distinguish between model structures [Clark et al., 2008].

This may be due to the compression of the error series into
a single-valued measure [Gupta et al., 2008; Schaefli and
Gupta, 2007], to the choice of performance measure which
may be sensitive to model structural complexity [e.g.,
Akaike, 1974], or to flexibility in parameterization meaning
that very similar flow predictions may be obtained from
multiple model structures. Multiresponse data have the
potential to reduce ambiguity between competing model
structures via evaluation of individual model components.
This was shown in diagnostic tests proposed recently by
McMillan et al. [2011] and Clark et al. [2011a], building
on the concept of diagnostic signatures for model evaluation
[Gupta et al., 2008] and previous research into the benefits
of auxiliary data to improve process understanding [e.g.,
Fenicia et al., 2007, 2008; Seibert and McDonnell, 2002;
Son and Sivapalan, 2007]. Further challenges to selecting
model structure include the common finding that increased
model complexity is needed as extra data sources become
available for evaluation [Vache and McDonnell, 2006] and
the inability of standard data sources of rainfall and flow to
discriminate between some aspects of model structure.
[4] In this paper we explore the use of environmental

tracer data as a complementary response data set for model
structure evaluation. Tracers are used to investigate geo-
graphical source areas and runoff pathways [e.g., Bergstrom
et al., 1985; Rodgers et al., 2005a; Soulsby et al., 2003;
Soulsby et al., 2006; Tetzlaff et al., 2007b]. Diagnostic tests
using hydrometric data in conjunction with time domain or
geographic source tracers, offer an alternative view on model
performance [Birkel et al., 2011a, 2011b; Botter et al.,

1National Institute of Water and Atmospheric Research, Christchurch,
New Zealand.
2Northern Rivers Institute, School of Geosciences, University of Aber-

deen, Aberdeen, UK.
3National Center for Atmospheric Research, Boulder, Colorado, USA.

Copyright 2012 by the American Geophysical Union
0043-1397/12/2011WR011688

W05501 1 of 18

WATER RESOURCES RESEARCH, VOL. 48, W05501, doi:10.1029/2011WR011688, 2012

http://dx.doi.org/10.1029/2011WR011688


2008; Iorgulescu et al., 2005]. For example, Uhlenbrook
and Leibundgut [2002] carried out a multiresponse valida-
tion of a process-orientated catchment model, using meas-
ured runoff together with silica, 18O, tritium, and CFC
tracers, and showed how the auxiliary data sources enabled
a more realistic conceptualization of runoff generation in
their catchment. An important additional benefit of validat-
ing a hydrological model against both flow and tracer dy-
namics is that it could be used for integrated water quantity
and quality applications [Krueger et al., 2009].
[5] When evaluating a hydrological model using envi-

ronmental tracer data, two characterizations of transit time,
i.e., the time water spends traveling through a catchment to
the stream, are commonly used for comparison. These are
the mean transit time (MTT) and the transit time distribu-
tion (TTD) of the tracer (which is assumed to be identical
to that of the water). The TTD is the probability density
function (pdf) of the time taken for water (or tracer) falling
at a given moment to exit the catchment (i.e., the break-
through curve). The MTT is the mean of this distribution.
Estimates of MTT from observed data rely on an underly-
ing model of tracer transport, often a simple prespecified
time-invariant TTD with calibrated parameters. Popular
distributions include gamma, exponential, or exponential-
piston flow; a review is given by McGuire and McDonnell
[2006]. The gamma distribution with shape parameter �0.5
has been shown to be appropriate for many catchments by
analysis of the power spectra of conservative tracers in rain-
fall and streamflow [Godsey et al., 2010; Kirchner et al.,
2000], implying the general need for a more peaked initial
response and more sustained tail than a exponential distri-
bution, i.e., as derived from a completely mixed reservoir.
[6] For two reasons, the approach of a prespecified time-

invariant transit time distribution has recently been put
under scrutiny. First, work by Rinaldo et al. [2011, 2006]
and Botter et al. [2011] has emphasized the differences
between water ages in different storages and fluxes in a
generalized theoretical model of a catchment, leading to in-
herent time variation in TTDs. Second, Beven [2010] high-
lighted the need to apply a hypothesis testing framework to
the estimation of TTDs and not to assume a particular form
without evidence. Working within a multimodeling frame-
work allows exploration of these assumptions. The model
performance can be evaluated using the tracer concentra-
tions in the stream, requiring the model to reproduce the
observed tracer dynamics, with the assessment made either
graphically or using a performance measure [Fenicia et al.,
2010; Vache and McDonnell, 2006]. The model simula-
tions can then be used to derive and investigate the MTT,
the shape of the TTD, and its variation with time and catch-
ment wetness conditions. These characteristics can also be
compared to possible TTD shapes and previous estimates
of the MTT.
[7] In this study we augment the modular modeling sys-

tem FUSE (Framework for Understanding Structural Errors)
[Clark et al., 2008] with the ability to track the age distri-
bution of water in all model storages and fluxes. FUSE is a
rainfall-runoff model building toolkit which allows the user
to investigate hydrological modeling decisions, in particu-
lar the choice of state variables and flux equations to simu-
late water flow through a catchment. A complete model
can be constructed with components based on well-known

rainfall-runoff models: ARNO/VIC [Wood et al., 1992],
PRMS [Leavesley et al., 1983], Sacramento [Burnash et al.,
1973], and Topmodel [Beven and Kirkby, 1979]. The FUSE
concept is designed to allow testing of competing modeling
hypotheses of similar complexity but alternative structures,
with individual control of each model component allowing
systematic testing. We therefore gain the novel ability to
track conservative tracers and compare tracer/water transit
time signatures measured in a catchment with predictions
made using this flexible modeling system. Our aims are
as follows: (1) To compare the ability of competing model
structures to predict stream tracer response, while retaining
similar streamflow behavior. (2) To use the FUSE models
as a tool to explore how different model characterizations of
TTDs and MTTs (including time variability) affect model
behavior and multicriteria model performance. (3) To use
sensitivity analyses to show how simulated tracer response
is affected by the interaction of model structure with param-
eter values and mixing assumptions.

2. Study Site

2.1. Catchment Characteristics

[8] The Loch Ard Burn 10 (B10) catchment (0.9 km2)
lies in the Central Scottish Highlands (Figure 1), and was
chosen due to availability of long-term hydrochemical
tracer data. Average annual precipitation is 1980 mm and
average runoff is 1660 mm. Slopes are gentle (generally
less than 10�) and mean elevation is 170 m. The catchment
is forested with plantations of Sitka Spruce (Pitea Sitchensis).
Forest operations occurred between 1990 and 2002 with 39%
of forest cover felled, however there is little evidence for any
major change in average or high flows after the felling
[Tetzlaff et al., 2007a]. The geology is dominated by low
permeability metamorphic rocks [Miller et al., 1990]; bed-
rock outcrops occur on interfluves of the steep northwestern
slopes. The most common soils are thin, poorly drained
minerogenic gleyed soils.
[9] Runoff generation processes are relatively well under-

stood in the catchment [Dawson et al., 2008; Hrachowitz
et al., 2009a; Tetzlaff et al., 2010; Tetzlaff et al., 2007a].
The catchment is highly responsive, with low base flow
levels compared to stormflow (the ratio of low flows to
flood flows may be up to 104) [Tetzlaff et al., 2007a]. The
catchment maintains low soil moisture deficits and most
parts of the catchment are highly connected to the stream
network via a series of drainage ditches and saturated ri-
parian zones, leading to high runoff rainfall ratios (vary-
ing between 0.64 and 0.98 [Dawson et al., 2008]). Storm
runoff is thought to be dominated by flow paths in the
upper soil horizons, influenced by high vertical gradients
in the saturated hydraulic conductivity of the soil. Con-
ductivity was found to vary from 0.3 cmh�1 in lower
layers to 600 cmh�1 in surface layers in similar forested
gley soils elsewhere [Soulsby and Reynolds, 1993]. How-
ever tree roots and areas of exposed bedrock provide
pathways to fracture systems in the bedrock, allowing
some deeper recharge to occur [Tetzlaff et al., 2010].
Although hydrograph separations based on stream alkalin-
ity are uncertain, average groundwater contributions to
annual streamflow were estimated to be in the range
35%–47%.
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2.2. Hydrometric Data

[10] Daily rainfall totals were available using records
from three gauges close to the catchment. Due to the flashy
nature of the small catchment, rainfall totals at a subdaily
time step were required in order to capture the fast runoff
generation mechanisms and ensure correct timing of runoff
in the model. Hourly rainfall data was available from four
stations (Sloy, Loch Venachar, Abbotsinch, and Bishopton)
at 18 to 30 km from Loch Ard. The hourly data were
expressed as a fraction of daily precipitation total at each
hourly station, and the hourly ratios were interpolated
(using inverse distance weighting) to the basin centroid.
This timing information was then used to disaggregate the
daily rainfall totals. Potential evapotranspiration (PET) was
calculated based on daily temperature data using the

Hamon method which is recommended for cases where
radiation data is not available [Lu et al., 2005]. Flow data
has been collected since 1989 using a concrete crump weir
maintained by the Scottish Environment Protection Agency
(SEPA). Flow data was extracted at a daily time step from
the UK National River Flow Archive.

2.3. Hydrochemical Data

[11] During the period 1990–2002, a consistent set of
hydrochemical data including weekly precipitation and
streamflow samples was available, and hence this time pe-
riod was used for analysis (Figure 2). The precipitation sam-
ples (collected using open funnel bulk deposition samplers)
and streamflow dip samples were filtered through a 0.45 mm
polycarbonate membrane filter. Ion chromatography was

Figure 1. (a) Loch Ard B10 catchment map and instrument locations. (b) Photograph of Loch Ard B10
catchment.

Figure 2. Hydrometric and hydrochemical data available for the Loch Ard B10 catchment.
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then used to determine chloride (Cl�) concentrations. Chlo-
ride quantities in the catchment are increased due to dry and
occult deposition, and hence the input concentrations were
rescaled to ensure mass balance using an adjustment factor,
assumed constant with time. Some previous studies suggest
a range of models of dry and occult deposition including
dependence on wind speed, wind direction, and land use
changes [e.g., Page et al., 2007; Oda et al., 2009]. How-
ever, in the Atlantic-maritime Scottish context, dry and
occult deposition is generally highest when sea-salt concen-
trations in the atmosphere are highest, which is also when
wet deposition tends to be highest, hence a constant correc-
tion is a reasonable assumption. Kirchner et al. [2010]
showed that when using a constant correction assumption in
Scottish catchments, the use of chloride versus isotope trac-
ers led to consistent process identification, and therefore
concluded that the unmodeled depositional processes do not
materially affect inferences drawn from the data. For further
details on the hydrochemical data collection, processing, and
mass balance adjustment refer to Hrachowitz et al. [2009a].

3. Methods

3.1. Tracking Water Through Hydrological Models

[12] This paper uses the FUSE multimodel framework to
enable individual control of hydrological model compo-
nents, based on a variety of popular models. The modeling
choices available include the choice of state variables in
the unsaturated and saturated zones, and the choice of flux
equations for surface runoff, interflow, vertical drainage,
base flow, and evaporation. In order to compare modeled

and measured tracer dynamics, in addition to flow dynam-
ics, capability was added to the models to simulate routing
and transit times of individual water ‘‘parcels’’ through
conceptual model stores.
[13] We identified two possible strategies to achieve this

capability, distinguished by the additional state variables
used to track water movement. The first strategy uses state
variables which quantify tracer concentrations in each con-
ceptual store. The evolution of tracer concentration is con-
trolled by input precipitation depth and tracer concentration,
and flux equations describing tracer movement between sto-
rages. This is the method most commonly used in previous
studies which integrate tracer information into hydrological
models [e.g., Birkel et al., 2010; Birkel et al., 2011b; Dunn
et al., 2010; Fenicia et al., 2010; Vache and McDonnell,
2006].
[14] The second strategy uses state variables which quan-

tify the distribution of water ages (defined as the elapsed
time since a particle of water fell as rainfall) in each store, at
a given time (i.e., the state variables are multidimensional
and specify an empirical histogram of water ages). The evo-
lution of the distributions is controlled by input precipitation
depths, aging of the water in each store, and flux equations
describing water movement between stores. This strategy is
a generalization of the previous method, as tracer concentra-
tions in any store or flux can be directly calculated using
convolution of the water age distribution with the corre-
sponding input tracer concentrations (Figure 3). It also
allows additional information to be easily derived such as
mean and shape of the simulated water age distribution. This
strategy relies on the underlying equations for conservative

Figure 3. Conceptual diagram showing process used to calculated model TTDs and outflow tracer
concentrations in a sample FUSE model. (a) Water age distribution of each reservoir (S1 upper zone,
S
A;B
2 lower zone) stored as histogram. Fluxes (p precipitation, qif interflow, q12 drainage, q

A;B
b base flow)

have the age signature of their source reservoir. (b) Outflow age distribution for time t is the sum of dis-
tributions from component fluxes (qif, q

A;B
b ). (c) TTD of input water is calculated from the corresponding

outflow times. (d) Outflow tracer concentration calculated by convolution of outflow age distribution
with precipitation tracer concentrations.
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tracers derived by Botter et al. [2010, in particular equation
(17) for tracer mass flux] and summarized in Botter et al.
[2011, Table 1]. However the numerical implementation
used in this paper differs as we solve concurrently for both
soil water dynamics and age distributions.
[15] An example of the implementation of the second

strategy is given here for demonstration. Consider a simple
model with variable S1 representing water volume in the
soil zone. The equation controlling evolution of S1 may be
as follows:

dS1

dt
¼ ð p� qsxÞ � e� q; (1)

where p is precipitation, qsx is saturation excess runoff, e is
evaporation, and q is drainage. Now define a histogram
(i.e., numerical vector representation of the pdf) St1 parti-
tioning the volume S1 by age. The equivalent differential
equation for St1 is as follows:

dSt1
dt

¼ ðpt � qtsxÞ � e
t � qt: (2)

[16] Equation 2 relies on similar histogram distributions
pt, qtsx, e

t, and qt of the fluxes p, qsx, e, and q. However,
these histograms are known: water in rainfall (p) and qsx is
all of age 1; water in e and q has age distributions equal to
that of St1 at the start of the time step under the complete
mixing assumption (refer to section 3.3 on mixing assump-
tions), and the magnitude of these fluxes is given by the
model equations. Therefore equation (2) can be solved for
St1 at the next time step. The same strategy can be used
for each model state equation, giving a complete solution
for water age evolution in each store and flux. Finally, the
method requires an initial histogram form (exactly as an
initial value for all model states is required). A uniform dis-
tribution is used, followed by a spin up period as for the
other model states.
[17] In this study the second strategy was preferred for

its generality. An important aim of the study is to under-
stand how different model characterizations of MTTs and
TTDs affect model performance, and this information can
be estimated more completely using the second method
(see section 3.2 for description of the relationship between
TTD and water age). Hence, the additional capability was
added to a FUSE prototype.

3.2. Model Output

[18] The water-tracking model framework was designed
to allow output of various aspects of simulated water age
and transit times. Time series of the model state variables
provide the age distribution in all stores, at each time step
(1 day increments were used here, matching the flow data
resolution, but the time step could be varied). Age distribu-
tions of all fluxes, including the catchment outlet flow, are
also calculated. Time-varying statistics of the distributions,
e.g., mean water age, can easily be derived. The TTD is
calculated for each time step in a secondary step which
links each input quantity of rainfall to its age at the time it
exited the catchment as streamflow. The TTD depends on
both antecedent and current catchment wetness conditions,
which determine how quickly water is driven through the

catchment system. The TTDs may also be averaged over
all time steps to create a ‘‘master TTD’’ [Botter et al.,
2011; Rinaldo et al., 2011]. The tracer volume or flux is
given by the convolution of the water age distribution with
the time series of input tracer concentrations. The model
can be evaluated by its ability to simulate tracer dynamics
by direct comparison of modeled and measured tracer out-
flow concentrations. This is a more direct and powerful test
than invoking the MTT as a comparison tool, as any calcu-
lation of MTT relies on some underlying model of TTD.

3.3. Mixing Assumptions

[19] Simulated water ages within a hydrological model
are strongly dependent on the mixing assumptions used.
Within a conceptual model store, instantaneous and com-
plete mixing is the most usual assumption [e.g., Fenicia
et al., 2010; Vache and McDonnell, 2006]. A justification
for this may be that by stipulating the store as the funda-
mental unit of model design, complete mixing within that
store is implicit : otherwise the store would represent an
amalgamation of lower-level stores in which complete mix-
ing did occur.
[20] Recent work has however suggested that partial

mixing behavior may provide a more accurate representa-
tion of observed tracer concentrations [Barnes and Bonell,
1996; Dunn et al., 2007; Fenicia et al., 2010]. Partial mix-
ing refers to a water store in which some fraction of the
volume controls hydrological response, with the remaining
inert volume contributing only to tracer mixing. This con-
cept is equivalent to a modification of the storage-discharge
behavior of the water store, i.e., that no discharge occurs
below some threshold. Such behavior is commonly
assumed in hydrological models, e.g., that modeled perco-
lation only occurs when soils are above field capacity (e.g.,
in the PRMS and Sacramento models underlying FUSE). In
this study, mixing behaviors will only be changed in this
way, i.e., through alternative storage-discharge parameter-
izations for both unsaturated and saturated model zones.
The relevant model choices are as follows: In the upper
zone, use of a single state variable simulates partial mixing,
whereas use of split state variables simulates total mixing
within the free storage reservoir. In the lower zone, the par-
allel linear reservoirs options simulate total mixing, but the
Topmodel option simulates a hybrid method whereby dis-
charge is greatly reduced but not zero as the volume of
stored water decreases (for information on these model
options refer to section 3.4 and Figure 4).
[21] An important aspect of mixing behavior is the extent

to which precipitation is assumed to mix with shallow soil
water before flowing into the channel as saturation excess
or other overland flow representations. Although saturation
excess flow might be visualized as unmixed with soil water,
empirical evidence using geochemical tracers in Scottish
catchments suggests that surface runoff does often partially
acquire the chemical signature of soil water [Birkel et al.,
2011b]. If model simulation of mixing is required, its
occurrence and extent must be exactly specified, possibly
through introduction of calibrated parameters if sufficient
process knowledge is not available. In this study, the
simplest option was used whereby saturation excess flow
was treated as unmixed, in common with previous studies
[e.g., Botter et al., 2008]. To explore the impact of this
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assumption, a sensitivity analysis was carried out to investi-
gate the effect of flow partitioning between surface (unmixed)
and subsurface (mixed) pathways (refer to section 4.5).

3.4. Model Implementation

[22] The FUSE framework provides hundreds of possible
model combinations using different combinations of compo-
nents from four popular hydrological models [Clark et al.,
2008]. In this study, to provide a manageable scope we
investigate the effect of key decisions of upper and lower
layer architecture on the simulated stream water transit time
(Conceptual diagrams including the outflow pathways for
each model component are shown in Figure 4.)
[23] In all cases the following decisions are treated as

fixed. (a) Evapotranspiration is satisfied from the single
upper soil layer: this is the simplest option available. (b)
Percolation is parameterized as a linear function of upper
zone storage above field capacity: again the simplest
option. Note also that the alternative formulation of perco-
lation as a power function of total upper zone storage was
found to give poor results in initial trials. (c) Surface runoff
is parameterized as a power function of total upper zone
storage, except when using the Topmodel formulation
where it is controlled directly from lower zone storage. The
state and flux equations defining each of the resulting six
models are given in Table 1, with fluxes defined in Table 2.

The alternative choices provided for in FUSE could be
investigated for their effect on transit time in future work.
[24] FUSE is formulated as a state-space model and ena-

bles several classes of time stepping schemes to control
model numerical behavior [Clark and Kavetski, 2010;
Kavetski and Clark, 2010]. The additional model equations
required to track water age are similarly written in state-
space form. The numeric scheme chosen was a fixed-step
explicit Euler for simplicity, using short 15 min substeps to
ensure numerical stability and accuracy. The model used
input precipitation data at hourly resolution. Model flow
simulations were evaluated at a daily time step, commensu-
rate with flow data availability and which minimizes the
effect of any rainfall timing errors introduced by the inter-
polation method used for rainfall disaggregation. In our
study, evaluation at daily time step seemed sufficient to
capture the flow generation processes of interest (i.e., the
effect of upper and lower zone model architecture choices),
and is at higher resolution than processes captured by tracer
measurements which relate to (slower) water transit times
rather than the subdaily dynamic response.

3.5. Model Parameters

[25] When comparisons are made between hydrological
model structures, there is interplay between the choice of
model structure and the choice of model parameters : both
can influence flow and transit time predictions and each

Figure 4. Simplified wiring diagram showing model architecture options used in this study. Upper
zone: [S] a single state variable S1 combining tension and free storage, [Sp] separate state variables for
tension ST1 and free S

F
1 storage. Lower zone: [1 Linear] S2 a single linear reservoir [2 Linear] S

A
2 , S

B
2 two

parallel linear reservoirs [Topmodel] S2 a single nonlinear reservoir based on Topmodel concepts (where
surface runoff qsx is controlled by the lower zone). Key to soil moisture values: �W wilting point (here
0), �F field capacity ð� � S1;max Þ, �S saturation point ðS1;max Þ.
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can compensate for deficiencies in the other, though not
necessarily in agreement with reality. In this study the
focus was on model structure. Therefore default parameter
values for the FUSE models were used where possible, as
recommended by Clark et al. [2011a]. Measured informa-
tion or process knowledge from the Loch Ard catchment
was also used to set parameter values where appropriate ;
this method assumes a translation from field to model scale
but given the process-orientated nature of the models it was
considered preferable to setting the parameters via calibra-
tion. The depth of the upper humic/peaty soil layer contrib-
uting to shallow subsurface slow is approximately 400 mm
[Tetzlaff et al., 2007a]; assuming a typical porosity for peat
of 0.8 allows the upper store depth to be set as 320 mm.
Typical field capacity for peat of 0.35 enables the fraction of
total storage as tension storage to be set at 0.44 (¼ 0.35/0.8).
Known values of the fractional groundwater contribution
to streamflow were also used as ‘‘soft data’’ [Seibert and
McDonnell, 2002] to guide the parameter choice. A digital
terrain model (EDINA Digimap) of the catchment was used
to estimate the topographic index distribution parameters
required for the Topmodel component of FUSE.
[26] The remaining one or two parameters relating to the

lower zone storage [storage depth, base flow exponents,
base flow depletion rate(s)] were chosen using a simple cal-
ibration procedure by exhaustive search (accompanying
visualization by contour plot) of model performance in
relation to parameter value (Figure 5). As shown, the single

linear reservoir model is not sensitive to the lower zone
storage depth (this parameter only influences model predic-
tions in the rare case that the tank fills completely) and
hence this is set to infinite depth in the model (this is also
true for the stores in the model with two parallel linear res-
ervoirs). The Topmodel nonlinear reservoir model shows
dependency between the lower zone storage size and base
flow exponent, which could therefore be varied jointly in
the model to improve tracer simulations if necessary. The
dependence is indicated by the form of the base flow equa-
tion (Table 1). The same parameter sets were used for both
single and split variable upper zone structures. The com-
plete parameter sets thus derived provide a robust baseline
calibration for comparisons between structures (Table 3).
The fitted models all give very similar predictions of flow
dynamics, with only very minor differences in the flood
peaks and low recessions. Nash-Sutcliffe scores were all in
the range 0.75–0.80 when validated over a 12 year period.

4. Results

[27] Section 4 is organized as follows. First the six dif-
ferent FUSE model structures (2 options for upper zone
architecture � 3 options for lower zone architecture) are
evaluated against the tracer measurements from the B10
catchment using direct comparison using tracer output se-
ries (section 4.1). A comparison with the results of previous
studies is also made using MTTs (section 4.2).
[28] Second, we use the FUSE models as a tool for hy-

pothesis testing by comparing characteristics of simulated
TTDs and MTTs between models with differing perform-
ance. (1) Models are run in steady state (i.e., constant pre-
cipitation input) to study time-invariant representations of
the TTD (section 4.3.1). (2) Models are run dynamically
(i.e., measured precipitation input) to study time-varying
behavior on MTT and TTD caused by seasonal/event-scale
changes in wetness conditions (section 4.3.2). (3) A sensi-
tivity analysis of effect of model calibration (section 4.4)
and mixing behavior (section 4.5) on the shape of the mod-
eled TTD.

Figure 5. Calibration results for lower zone storage parameters for three lower zone model architec-
tures. The objective function is the sum of squared errors between modeled and measured discharge se-
ries, after Box-Cox transformation to normalize error variance. The calibration period was over two
hydrological years (1998–1999).

Table 2. Model Fluxes (All Units Are mm d�1)

Variable Name Description

p Precipitation
e Evapotranspiration
qsx Saturation excess runoff
qif Interflow (subsurface stormflow)
q12 Drainage from upper to lower zone
qb q

A
b q

B
b Baseflow (from single, primary, secondary reservoir)

qutof qufof Overflow from upper zone (from tension, free reservoir)
qsfof qsfofa qsfofb Overflow from lower zone
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4.1. Model Structure Evaluation: Output
Tracer Dynamics

[29] The models were driven using measured precipitation
depths and weekly precipitation chloride concentrations for
the years 1990–2002. Observed chloride concentrations in
stream water were then compared with the model simula-
tions. The results are shown in Figure 6 (panels a and b),
with closeups (panels c and d) of the largest peak in the tracer
concentration series, from December 1992 to October 1993.
[30] Figure 6 shows the clear differences in simulated

tracer response between models using single versus split
upper state variables. The models using a single variable
simulate greater mixing of soil water and hence a more
damped tracer response, which corresponds more closely to
the measured stream water chloride concentrations. The
split upper state variable approach produces simulated
spikes in tracer concentration (due to reduced mixing
within the model leading to faster tracer breakthrough)
which do not occur in the measured data. Hence to provide
a model which can simulate both flow dynamics and tracer
response in the Loch Ard catchment, the single state vari-
able formulation would be the preferred choice.
[31] Within those models using the single upper state

variable, the choice of lower zone formulation makes a
smaller but evident difference in simulated tracer response.
The single linear reservoir model simulates extended peaks
of tracer concentration higher than those measured, and
concentrations which are too low during recession periods.
This indicates that water is routed too quickly through the
model, with insufficient depth of stored water for realistic
mixing behavior. The parallel linear reservoir and Topmo-
del formulations simulate less sustained peak concentra-
tions which more closely match the measured values (e.g.,
Figure 6c). In recession periods however, the parallel linear
reservoir model simulates too low concentrations, and hence
this model has insufficient mixing in the lower reservoirs.
The Topmodel architecture (i.e., a single nonlinear reservoir)
most closely simulates tracer recession behavior, and is over-
all most successful in reproducing the tracer dynamics.
[32] Both the parallel linear reservoir and Topmodel

architectures produce unobserved short-duration fluctuations

in tracer concentration, and all models simulate unrealistic
periods of constant tracer concentration. Recessions in the
chloride concentrations are also too rapid in some cases
(e.g., 1997–1998). These weaknesses are caused by limita-
tions in all the structures tested which assume a maximum
three flow pathways, often decreasing to one flow pathway
during recession periods when surface and subsurface storm-
flow pathways are not active. The short-duration fluctuations
are largest in the Topmodel architecture because water ages
differ most strongly between the upper and lower reservoirs,
the same characteristic which produces realistic extended
recession curves. In reality, chloride concentrations repre-
sent an aggregation of pathways derived from the spatial
and temporal heterogeneity of the catchment [as shown by
Rinaldo et al., 2006]. This aggregated solute mixing behav-
ior is analogous to that found for flow recessions at the
catchment scale which integrate the behavior of many hill-
slopes [Harman et al., 2009].

4.2. Model Structure Evaluation: Mean Transit Times

[33] In this section we investigate the effect of model
structure on MTT and compare the six FUSE model esti-
mates of MTT with those previously derived for the Loch
Ard B10 catchment. The MTTs predicted by the FUSE mod-
els are all relatively short, less than 150 days (Figure 7).
There is a marked split whereby models which use a single
upper state variable (S/1Linear, S/2Linear, S/Topmodel)
have longer MTTs than those which use split upper state var-
iables for tension and free storage (Sp/1Linear, Sp/2Linear,
Sp/Topmodel); resulting from the different mixing charac-
teristics as described in section 4.1. Short MTTs are consist-
ent with the dominant responsive soils (peats, gleys) that
generate a quick flow response in the Loch Ard catchment.
Indeed, previous work has shown dominant soil cover to be
the best single landscape predictor of catchment MTTs in
the Scottish Highlands [Hrachowitz et al., 2009a; Rodgers
et al., 2005b; Speed et al., 2010; Tetzlaff et al., 2009]. Previ-
ous estimates of the MTT (Table 4 and Figure 7) are typi-
cally longer than the FUSE estimates, and have a wide range
due to the range of models used (refer to Table 4), highlight-
ing the difficulty of choosing an appropriate TTD shape,

Table 3. Parameters Used for Different FUSE Modelsa

Lower Zone Formulation

Parameter Description Single Linear Parallel Linear Topmodel Parameter Type

S1;max Maximum storage in unsaturated zone (mm) 320.0 320.0 320.0 Field
S2;max Maximum storage in saturated zone (mm) Inf Inf 91.3 Calibrate
� Fraction total storage as tension storage 0.440 0.440 0.440 Field
ku Vertical drainage rate (mm/day) 750.0 750.0 750.0 Default
c Vertical drainage exponent 1.0 1.0 1.0 Default
ki Interflow rate (mm/day) 1000.0 1000.0 1000.0 Default
ks Baseflow rate (mm/day) 1000.0 1000.0 1000.0 Default
n Baseflow exponent N/A N/A 12.18 Calibrate
� Baseflow depletion rate (single reservoir) (/day) 0.176 N/A N/A Calibrate
�A Baseflow depletion rate (primary reservoir) (/day) N/A 0.840 N/A Calibrate
�B Baseflow depletion rate (secondary reservoir) (/day) N/A 0.0317 N/A Calibrate
b ARNO/VIC b exponent 0.500 0.500 0.500 Default
� Mean of log topographic index distribution (m) N/A N/A 5.91 Field
� Shape parameter of topographic index distribution N/A N/A 2.57 Field
� Time delay in runoff 0.3 0.3 0.3 Calibrate

aParameter values are identified as [Field] identified from field knowledge, [Default] default recommended FUSE values, or [Calibrate] calibrated.
Refer to section 3.5 for details.
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particularly under an assumption of time invariance. The
time invariance assumption may also lead to an under-repre-
sentation of fast flow pathways and hence a longer MTT
(refer to section 4.3.2 for a discussion). The FUSE models
demonstrate that the range in MTT due to dynamic wetness
conditions can be greater than the range due to choice of
model structure.

4.3. Synthetic Experiments

[34] The FUSE models can be used to investigate the
relationship of model structure to simulated water age char-
acteristics. The performance of the models in reproducing
tracer concentrations (Figure 6) can then be used to judge
which types of water age dynamics are most realistic. The
models can be used to investigate aspects of water age
which we are not currently able to measure directly, such
as TTDs.

4.3.1. Steady State Models
[35] In real conditions, TTDs can change seasonally or

by event [McGuire and McDonnell, 2010; Weiler et al.,
2003] in any catchment due to varying catchment wetness
[Birkel et al., 2012; Hrachowitz et al., 2010; McGuire
et al., 2007; Nyberg et al., 1999]; this correspondingly
causes temporal variation of MTTs [Lindstrom and Rodhe,
1992; Turner et al., 1987]. We initially avoided this com-
plexity by using a synthetic constant precipitation input, to
determine whether different model structures simulate dif-
ferent steady state water TTDs (even when simulated flow
dynamics are similar) and how that gives rise to the differ-
ent tracer dynamics shown in Figure 6.
[36] Each catchment model was run with constant rain-

fall and PET input set at the average per time step depth.
The models were spun up to steady state (1 year) and then
run for a further 11 years to capture the TTD including the

Figure 6. Time series of measured chloride input and output concentrations and comparisons with
model predictions. (a) Models with a single upper zone storage variable. (b) Models with split upper
zone storage variables. (c) Closeup of (a) for largest event (December 1992–October 1993). (d) Closeup
of (b) for largest event.

W05501 MCMILLAN ET AL.: TRACERS FOR EVALUATION OF MODEL STRUCTURE W05501

10 of 18



tail, consistent with the findings of Hrachowitz et al. [2011]
who found that a spin-up period of approximately 3 times
the MTT was required. The steady state TTDs are shown in
Figure 8 for (a) total subsurface flow and (b) deep ground-
water only.
[37] The TTDs demonstrate clear differences between

model structures. The total flow TTDs show that models
with split upper state variables have a more peaked initial
response than those with a single variable. This helps to
explain differences in simulated tracer dynamics, as the for-
mer route storm water more quickly to the channel with
less mixing with older water. The poorer performance in
tracer simulation for these models shows that this is a less
realistic conceptualization, concurring with previous stud-
ies which highlight the importance of deep flow pathways
for solute transport [e.g., Botter et al., 2008].
[38] The maximum of the distribution is typically close

to zero indicating the dominance of fast flow pathways;
although models using a single upper state variable and lin-
ear lower zone reservoirs have a slightly later maximum.
Nonzero peaks have been found in previous studies, e.g.,
McGuire et al. [2007] who simulated bromide tracer flux in
a steep hillslope with gravelly clay loam soils over rela-

tively low permeability bedrock and found that modeled
TTDs peaked at 10 days rather 0 days. In some drier cli-
mates, lags may also be related to inter-arrival times of
storms or wet periods when more than one storm event is
required to flush the tracer through the catchment ([Rinaldo
et al., 2011]; the climate example used was 180 mm yr�1

rainfall with 10% rainy days). The models using the Top-
model formulation, most successful in simulating tracer
response, have flatter responses than those using linear res-
ervoirs. Note that the TTDs given do not include the satura-
tion excess flow pathway: this pathway provides an
unmixed pulse of tracers at transit times of <1 day. The
TTDs for base flow only (indicative of the behavior of the
catchment in a drier state) are flatter with more delayed
responses showing the longer transit times for water fol-
lowing deeper flow pathways.

4.3.2. Effect of Rainfall Variation and Antecedent
Catchment Wetness on Water Transit Time
Distribution
[39] Section 4.3.1 examined the case of the catchment in

steady state, and hence an invariant transit time distribu-
tion. This assumption lies behind the majority of interpreta-
tions provided of experimental data for MTTs which use a
fixed distribution to model the TTD. In reality, TTDs vary
according to the wetness state of the catchment on both a
seasonal and event time scale. Recently, the time variant
nature of TTDs has been stressed by Botter et al. [2010]
who also developed the underlying theory. Complementary
work by Hrachowitz et al. [2010] demonstrated inter-an-
nual variation in gamma TTDs and showed that the b
(scale) parameter could be linked to precipitation intensity.
However, when applied to a catchment like Loch Ard B10,
time variance may be weaker due to the year-round wet cli-
mate and peaty soils, as has been found in other case

Figure 7. Comparisons of MTT estimates between models (run in dynamic and steady state mode) and
from previous studies (Table 4) of the B10 catchment.

Table 4. Previous Estimates of MTT in the Loch Ard B10

Catchment

Reference Model MTT (Days)

Tetzlaff et al. [2007a] Exponential 120–180
Exponential-piston flow 180–270

Sine wave 60
Godsey et al. [2010] Gamma (	 ¼ 0.56) 29.2
Hrachowitz
et al. [2009b]

Exponential 93
Gamma 62–203

Two parallel linear reservoirs 54–254

W05501 MCMILLAN ET AL.: TRACERS FOR EVALUATION OF MODEL STRUCTURE W05501

11 of 18



studies carried out in wet catchments [Hrachowitz et al.,
2010; Rinaldo et al., 2011]. The long data record also helps
to ensure that the full range of catchment response path-
ways is captured and hence a stationary TTD more com-
pletely represents catchment behavior.
[40] The FUSE framework allows us to explore the TTD

time variation simulated by different model structures, and

hence test the hypothesis that these variations are required
for realistic tracer simulation. Here the FUSE models were
driven using the recorded precipitation time series (after
spin-up to steady state as for section 4.3.1). Figure 9 dem-
onstrates how MTT varies over a multiyear period, show-
ing strong seasonal variation in four of the six models. The
longer MTTs during dry periods contribute proportionately

Figure 9. Variation of mean transit time with time for a range of model structures (a) Models with sin-
gle upper state variable. (b) Models with split upper state variables. (c) Measured flow is plotted for
comparison.

Figure 8. Steady state transit time distributions for a range of model structures. (a) Combined flow:
subsurface stormflow þ groundwater flow. (b) Groundwater flow only.
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less to the total MTT due to the weighting effect of the
lower fluxes involved. Note that the modeled dry season
MTTs are still relatively short, reflecting the small size of
the actual groundwater stores at Loch Ard and their rapid
turnover. The two models with weak seasonality have split
upper state variables and linear lower reservoirs, and dis-
play very short MTTs (<10 days) which vary with individ-
ual rainfall events rather than the seasonal cycle. Models
with a single upper state variable display longer MTTs as
these simulate greater mixing of water within the soil zone
(a conceptualization of mixing of water held in tension in
the soil matrix with free water in the matrix or macro-
pores). The structure of the lower zone also affects MTT:
in particular the Topmodel formulation leads to longer
MTTs since the nonlinear drainage function means that a
greater volume of water is retained in the lower store
between rainfall events.
[41] By comparing the MTT variability (Figure 9) with

model tracer simulations (Figure 6) we see that the models
which simulate longer, seasonally varying MTTs provide
most realistic tracer dynamics. However it is not sufficient
for a model to reproduce the seasonal cycle in MTT to
achieve good performance. For example, the model with
split upper state variables, and Topmodel formulation
lower architecture, produces a seasonal cycle due to the
larger lower store, but produces unrealistic event-scale
tracer response due to lack of simulated mixing in the upper

soil zone. None of the models tested are able to simulate
long MTTs without also producing a seasonal cycle in
MTT, because tracers that persist over multiple months are
subject to seasonal changes in the model wetness state that
are necessary to simulate seasonal differences in the flow
dynamics.
[42] In addition to the MTT, the full TTDs for different

wetness conditions can be compared with both the master
and steady state TTDs (Figure 10). This helps to determine
whether steady state models can produce a good approxima-
tion to the master TTD. The answer is likely to be catchment
specific, as catchments with less pronounced fluctuations in
their climate (including seasonality and other time scales)
will have more similar master and steady state TTDs. Here
we show TTDs for the three model structures which simu-
lated the most realistic tracer series, i.e., upper zone modeled
with a single variable, three lower zone architectures. In
all cases, there is a strong differential between TTD shapes
in wet and dry conditions for fast flow pathways (less than
30 days). In particular, the dry TTD is bimodal with peaks at
<5 days and 50–60 days, but a reduction in flow paths com-
pared to the wet TTD in the approximate range 5–30 days.
The differences between wet and dry TTDs are due to the
initial water depth in the model, the extent to which later
rainfall fills model stores and increases flow, and the propor-
tions of runoff from saturation excess flow, interflow, and
base flow.

Figure 10. Variation in transit time distribution according to catchment wetness condition for three
model structures. TTDs are given for (All) : all days in record, (Wet) : days in lower quartile of MTT dis-
tribution, (Dry): days in upper quartile of MTT distribution, (Steady State) : steady state TTD for
comparison.
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[43] The differences in TTD for time scales up to 30
days for wet and dry conditions (with corresponding differ-
ences between the master and steady state TTDs), suggest
that steady state models will not simulate realistic tracer
transport at short time scales. However, at longer time
scales there is less difference between TTDs for wet or dry
conditions, especially in the best performing model (Top-
model formulation) where all TTDs have heavier tails. We
conclude that for slow flow pathways in the B10 catchment,
the dynamic nature of the TTD is less important and could
reasonably be approximated by a steady state model. In log
space (not shown) the steady state TTDs are approximately
linear, suggesting that an exponential model could be used.
However the dynamic TTDs show additional fast flow
pathways which are not captured by the exponential distri-
bution. This helps to explain why a gamma function is of-
ten found to be more successful than an exponential
function in reproducing tracer dynamics [Godsey et al.,
2010], especially at the event scale [Birkel et al., 2012],
although modeled TTDs do not always conform to simple
statistical distributions [Dunn et al., 2010].

4.4. Sensitivity of TTDs to Model Parameters

[44] The model TTD is sensitive to parameter values as
well as model structure. Although most parameters were
set using field knowledge, there is still uncertainty in the
appropriate value at model scale. We therefore undertook a
sensitivity analysis to investigate the effect of available
depths of upper and lower zone storage on the model TTD,
allowing some insights into the interplay of model structure
and parameterization. The storage depths were chosen as

parameters to be varied because the depth of water avail-
able for mixing is known to be an important control on
model ability to simulate tracer dynamics [Fenicia et al.,
2010].
[45] The model used was [upper zone: single variable,

lower zone: Topmodel], as this produced the most realistic
simulation of tracer dynamics (Figure 6). The effects of
changing upper and lower zone storage depths on TTD and
model performance are shown in Figure 11. The results
show that the TTD is more sensitive to the size of the upper
zone store than the lower zone. We suggest that this is due
to the greater nonlinearity of response in the upper store
which is controlled by a threshold rather than a power func-
tion. The changes resulting from perturbation of upper zone
size are of comparable magnitude to those resulting from a
change in model structure and should therefore be consid-
ered alongside model structure when creating a model
which realistically reproduces tracer dynamics.
[46] Figure 11 also shows that model performance is

more sensitive to the size of the lower zone store than the
upper. Performance falls quickly away from the optimal
value. Less sensitivity is found to the size of upper zone
store but model performance could be slightly improved by
increasing the store size above the value of 320 mm set
using results from field knowledge, with a corresponding
increase in MTT.

4.5. Sensitivity of TTDs to Mixing of Saturation
Excess Flow

[47] An important decision in the modeling process was
whether saturation excess flow should be treated as mixed

Figure 11. The effects of changing upper and lower zone storage depths on transit time distribution
(upper panels) and model performance (lower panels). TTDs are shown for equal increments/decrements
of store size (thin lines) up to the maximum/minimum values given (thick lines).
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or unmixed with subsurface stormflow. In some environ-
ments, high intensity rainfall may run off quickly and be
missed by weekly sampling. However in the Loch Ard wet
environment with peaty soils and relatively low intensity
frontal rainfall, there is usually ready availability of water
in the upper organic horizons for mixing and hence the dis-
placement of resident soil water becomes the dominant
source of runoff.
[48] To explore this question a sensitivity analysis was

carried out into the effect of flow partitioning between sur-
face (unmixed) and subsurface (mixed) pathways. We used
the model with a single upper state variable and two paral-
lel linear reservoirs, because it provides a good simulation
of tracer dynamics during high flows (when surface path-
ways are active) and the effect of surface flow mixing can
be easily studied by changing the parameter ‘‘ARNO/VIC
b exponent’’ which controls the quantity of surface versus
subsurface flow by changing the estimate of saturated area
based on upper zone soil water storage (see model equation
in Table 1). The results (Figure 12) show that the TTDs are
relatively insensitive to the introduction of additional water
into the soil zone (i.e., increasing b), when compared to
sensitivity to store sizes (Figure 11). We therefore suggest
that in this case it is acceptable to make the simplifying
assumption the saturation excess flow is unmixed.

5. Discussion

[49] Water transit time characteristics provide a valuable
diagnostic tool for evaluation of model structure, to

complement the traditional comparison of modeled and
measured discharge series, as shown both in this and previ-
ous papers [Birkel et al., 2011b]. While other data sources
such as soil moisture or depth to water table can also be
used for multiresponse evaluation, they are typically point
measurements subject to the ‘‘scaling problem’’ [Blöschl
and Sivapalan, 1995; Sivapalan et al., 2004]. Tracer dy-
namics are particularly useful as they provide an alternative
integrated signal to the hydrograph.
[50] In return, hydrological models (including mixing

assumptions) provide a tool for investigating scenarios of
water TTD shape, and variability with catchment wetness.
These characteristics are not directly measurable using
environmental tracers, and hence models provide a method
for their estimation. An estimate of the TTD shape is
required for studies which use inverse modeling to obtain
MTT estimates and then apply the results to simulate
tracer, chemical, or contaminant transport [McDonnell
et al., 2010]. It is hoped that future work will indicate
whether distribution shapes and variability are transferable
between neighboring or hydrologically similar catchments.
[51] This study relied on several assumptions. First,

uncertainty in rainfall, climate, streamflow, and chloride
measurements was not considered, although it is well
known that measured hydrological data is subject to many
sources of uncertainty [e.g., Andreassian et al., 2004;
Beck, 1987; Pelletier, 1988]. These uncertainties can have
substantial effects on calibrated parameter values [e.g.,
McMillan et al., 2010] and may therefore indirectly affect
water transit time characteristics predicted by the model. A
second assumption was that the effects of dry deposition
and biogeochemical cycling on chloride concentrations
were modeled using a constant, multiplicative adjustment
factor to correct the mass balance (refer to section 2.3).
[52] Our modeled transit times were generally shorter

than previous estimates from tracer data, consistent with
previous findings that model storage volumes required to
capture water quantity dynamics are smaller than those
required to reproduce tracer dynamics [e.g., Fenicia et al.,
2010]. Our work highlighted the value of FUSE to under-
stand which model structure and TTD characteristics
(shape, time variability) enable simulation of both flow and
tracer concentrations. For example, at Loch Ard this could
be achieved using a Topmodel style nonlinear lower zone
store, with a TTD which has a greater weight of fast flow
pathways than the exponential distribution and varies with
catchment wetness at short time scales. Although previous
studies have shown that water and tracer dynamics can be
used to tailor a model for an individual catchment [e.g.,
Birkel et al., 2011b], the FUSE framework provides much
greater flexibility in model structure. It leads toward a ro-
bust, transferable method for water and tracer modeling
that could be relatively easily used in a wide range of
catchments by selection of appropriate FUSE model com-
ponents according to process knowledge or structural diag-
nostics, on a per catchment basis or using a regionalization
method.
[53] The study has also led to recommendations for

model structure options that could be added to FUSE to
improve the concurrent representation of streamflow and
tracer dynamics. For example, subsurface stormflow is cur-
rently modeled as a linear function of free storage in the

Figure 12. The sensitivity of the model to soil water mix-
ing is shown by varying the surface flow b parameter.
Effects are shown on transit time distribution (upper panel)
and percentage share of flow volume between pathways
(lower panel).
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upper zone. When this pathway is used in a model with
separate state variables for tension and free storage, the
free storage becomes a very fast response store with low
transit times. Recent ecohydrologic experiments suggest
that in a strongly seasonal, Mediterranean climate where
there is significant summer soil drying, water in the soil
matrix may be largely decoupled from that in fast flows
paths [Brooks et al., 2010; Phillips, 2010]. In climates
where it occurs, this behavior would be more closely mod-
eled by the split upper state variables approach. One
method to reconcile longer mean transit times with split
state variables would be to use a nonlinear response func-
tion for interflow (e.g., a power function similar to those
used to model percolation).
[54] There are many needs for future research into transit

time distribution characterization; a summary was pro-
vided by McDonnell et al. [2010]. This study highlighted
that although MTT provides a very useful summary statistic
of catchment behavior, there is a need for better measure-
ment techniques which work toward characterization of the
complete time-variable TTD: this would reduce ambiguity
in transit time estimates and provide extremely valuable
data against which to test different model structures. Fur-
thermore, although of lesser importance in a fast-responding
catchment such as Loch Ard, conservative/natural tracers
are not adequate to capture behavior in catchments with
MTT of greater than a few years [Hrachowitz et al., 2009a;
Stewart et al., 2010], meaning that alternative tracers or
methods are needed to investigate TTD tails in catchments
with long response times. Improved understanding of the
true TTD would also help to counter other causes of bias
such as stream water tracer sampling biased toward low
flows, or model inability to differentiate multiple deep
groundwater stores.

6. Conclusions

[55] In this paper we demonstrated how augmenting the
FUSE rainfall-runoff modeling framework with a water-
tracking ability provides the opportunity to use tracer data
as an additional model structure diagnostic. Using a range
of calibrated models for the Loch Ard B10 catchment in
Scotland, we showed that different model structures which
provide very similar flow dynamics (and hence perform-
ance as measured by a sum-of-squared-errors score) can
produce very different simulations of water TTD and tracer
dynamics. We evaluated different model structures against
streamflow tracer dynamics using weekly observations of
tracer concentration. In the Loch Ard catchment, a model
structure could be selected to provide good simulations of
both flow and tracer dynamics. We used the water-tracking
models as a hypothesis testing tool to explore the effect of
catchment transit time characteristics on model behavior
and performance. Across model structures we showed
strong seasonality and event-scale fluctuation in MTT and
TTDs; and corresponding differences between dynamic
and steady state TTDs. The results suggest that steady state
approximations to the catchment TTD at Loch Ard will not
simulate realistic tracer transport at short time scales (<30
days), although differences are less marked at longer time
scales. The FUSE framework with water age characteriza-
tion provides a tool to investigate flow and tracer modeling

in competing model structures, which could be relatively
easily applied to many catchments.
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