
26 August 2022

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Do UML object diagrams affect design comprehensibility? Results from a family of four controlled experiments /
Torchiano, Marco; Scanniello, Giuseppe; Ricca, Filippo; Reggio, Gianna; Leotta, Maurizio. - In: JOURNAL OF VISUAL
LANGUAGES AND COMPUTING. - ISSN 1045-926X. - STAMPA. - 41:(2017), pp. 10-21. [10.1016/j.jvlc.2017.06.002]

Original

Do UML object diagrams affect design comprehensibility? Results from a family of four controlled
experiments

Elsevier postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1016/j.jvlc.2017.06.002

Terms of use:
openAccess

Publisher copyright

© 2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/.The final authenticated version is available online at:
http://dx.doi.org/10.1016/j.jvlc.2017.06.002

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2645071 since: 2017-09-05T14:56:47Z

Elsevier

Do UML Object Diagrams Affect Design

Comprehensibility? Results from a Family of Four

Controlled Experiments

Marco Torchianoa, Giuseppe Scanniellob, Filippo Riccac, Gianna Reggioc,
Maurizio Leottac

aPolitecnico di Torino, Italy, marco.torchiano@polito.it
bUniversità della Basilicata, Italy, giuseppe.scanniello@unibas.it

cUniversità di Genova, Italy, {filippo.ricca, gianna.reggio, maurizio.leotta}@unige.it

Abstract

Objective : The main objective of our study is to assess whether the use of
UML (Unified Modeling Language) object diagrams improves comprehensi-
bility of software design when this kind of diagrams is added to UML class
diagrams.
Method : We have conducted a family of four controlled experiments. We
involved groups of bachelor and master students.
Results : Results suggest that the use of object diagrams does not always
introduce significant benefits in terms of design comprehensibility. We found
that benefits strongly depend on the experience of participants and their
familiarity with UML. More experienced participants achieved better design
comprehensibility when provided with both class and object diagrams, while
less experienced seemed to be damaged when using class and object diagrams
together. Results also showed the absence of substantial variations in the
time needed to comprehend UML models, with or without object diagrams.
Implications : Our results suggest that it is important to be aware and take
into account experience and UML familiarity before using object diagrams
in software modeling.

Keywords: Object Diagram, Family of Experiments, Model
Comprehension, UML

Preprint submitted to Visual Languages and Computing May 16, 2016

1. Introduction

The software engineering community has developed a number of methods
and approaches to model software systems. Most of them use the Unified
Modeling Language (UML) [1] as the notation to represent structural and
behavioral properties of object-oriented software systems. The class diagram
is the main building block and it is used to represent object (or conceptual)
models during analysis and design [2]. In the analysis phase, class diagrams
are used to model entities (or objects of the problem domain) by reporting for
each entity some attributes and operations, and relationships among entities.
In the design phase, classes are elements of the solution domain.

At class-level we can think of a software system as made up of classes
and their associations. To define the behavior of a software, developers write
classes that refer to each other. Though, if we observe the program during
its execution (i.e., at run-time) we see it as made up of objects linked to
each other and interacting; this is the object perspective. Currently the
prevailing perspective in the object-oriented community is the class-based.
That is, class diagrams are used more frequently than object diagrams.

However, also object diagrams are recognized useful, especially when
added to class diagrams. Object diagrams provide a complete or partial
view of the structure of a software system at run-time in a given instant [3].
This is even more useful in the analysis phase, where class diagrams added
with object diagrams are used to capture the concepts of problem domain of
a system, and to highlight relationships among these concepts [2]. Very few
evaluations have been conducted in the literature with the goal of assessing
object diagram benefits in the software development life cycle [4].

In this paper, we present a family of four controlled experiments to study
whether the use of UML object diagrams improves design comprehension of a
software system when this kind of diagrams is added to class diagrams. The
context of the original (or baseline) experiment [5] is constituted of a group
of 17 master students in Computer Science at the Politecnico di Torino. Our
first replication was performed at the same university with 17 bachelor stu-
dents of a Computer Engineering course. Other two experiments are external
replications conducted with a group of 24 master students in Computer Sci-
ence at the University of Basilicata [6] and a group of 66 bachelor students
in Computer Science at the University of Genova.

Our study extends [5] and [6]. With respect to these papers, we provide
here the following new contributions:

2

1. Two further replications are presented;

2. Data analysis of individual experiments is presented in a unified way.
That is, for each experiment we have adopted the same analysis strat-
egy. Therefore, data from experiments already published (i.e., [5, 6])
have been reanalyzed;

3. Results from our family of experiments are also discussed consider-
ing two important context factors (IT experience1 and familiarity with
UML).

4. A more thorough discussion of results is reported;

5. Practical implications for our results are discussed from both the prac-
titioner and the researcher perspectives.

The paper is organized as follows: we discuss in Section 2 a subset of
the related literature concerning experiments aimed at assessing the use of
UML in comprehension tasks. In Section 3, we present the goal, the research
questions, and the experimental objects of our family of experiments. Then,
we provide an overview of the original experiment, and describe the design
and execution of the three replications. In this section differences among the
experiments and analysis method are highlighted as well. We present the
family data analysis in Section 4, while we discuss the results of the family
of experiments in Section 5. Threats to validity are discussed in Section 6,
while remarks and future directions for our research conclude the paper.

2. Related Work

Researchers are looking for ways to improve the comprehension of the
various artifacts produced in the software development process. In the early
80s, Woodfield et al. [7] analyzed how different types of modularization ap-
proaches and the availability of comments affected the comprehension of
programs. In the late 90s, Agarwal et al. [8] compared the comprehension
of object-oriented models (tending to focus more on structure) with process-
oriented models (tending to emphasize the behavior). The latter kind of
models was found to be easier to understand when dealing with complex
tasks, whilst no significant difference was observed on simpler tasks.

1We use this term since we believe that building IT experience is a long piecemeal
process that starts during the university year – if not even earlier – and during such years
get systematized.

3

From the early 2000s, several researchers focused on: (1) analyzing the
comprehension of the various UML diagrams (also comparing them with
other kind of diagrams), (2) finding ways to improve the comprehensibility
of UML diagrams (e.g., adding stereotypes), and (3) analyzing the usage
of UML diagrams to comprehend other artifacts, such as requirements or
code [9, 10, 11, 12, 13]. This was mainly due to the diffusion of UML both in
the academy and in the software industry. In this section, we discuss the lit-
erature concerning empirical studies aimed at assessing the comprehensibility
of UML models and the use of UML models to comprehend other artifacts.
These studies cover the majority of the UML diagrams: Class diagrams, Use
Case diagrams, Sequence diagrams, Statechart diagrams2, Activity diagrams,
Collaboration diagrams3, and Object diagrams. A systematic literature re-
view concerning empirical evaluations on the models and forms used in UML
has been conducted by Budgen et al. [4].

Class diagrams. An empirical investigation concerning the comprehen-
sibility of class diagrams is proposed by Yusuf et al. [14]. The authors used
eye-tracking equipment to assess participants’ comprehension in the context
of software design problems. Results indicate that more experienced partic-
ipants prefer to use stereotype information, coloring, and layout to promote
the exploration and the navigation of class diagrams.

De Lucia et al. [15] presented results of three controlled experiments in-
volving university students having the goal of comparing the comprehensi-
bility of class diagrams and entity relationship diagrams during maintenance
tasks on data models. Results suggested that UML class diagrams are better
in terms of comprehensibility but the support given by the two notations
during maintenance activities is identical.

Purchase et al. [10] executed an experiment evaluating the comprehension
level of five independent “notational variations” for UML class diagrams.
These diagrams differed only in the presentation style (e.g., inheritance arcs
can be visually presented in overlapped or disjoint way). They found that
there is no a best notation; the best performing notation depends on the task
for which it is used. Later, the same authors performed a similar experiment
but focusing on stylistically different collaboration diagrams [16]. Also in
this case results were inconclusive. However, the participants’ preferences

2In UML 2, they are called State Machine diagrams.
3In UML 2, they are called Communication diagrams.

4

were always in favor of the more concise variants.
A family of controlled experiments to assess the effectiveness of stereo-

types in class diagrams to comprehend object-oriented applications in the
telecommunication domain is described by Staron et al. [11]. Results suggest
that the use of stereotypes significantly helps the participants in improving
their comprehension. Similarly, in [17, 18] a family of experiments with bach-
elor, master, and PhD students is presented to compare the comprehensibility
of the Conallen’s UML profile with respect to bare UML for modeling Web
applications. Differently to [11], stereotypes seem scarcely useful in under-
standing. The main finding of that family of experiments is that stereotypes
reduce the gap between more experienced and less experienced participants.

Use Case diagrams have been empirically investigated by Andrew
and Drew [19] with the goal of understanding whether they improve the
effectiveness of textual use cases by providing visual clues. The investiga-
tion was conducted by providing a group of students only with use cases
(control group) or use cases augmented with use case diagrams (treatment
group). Results show that students employing both use case diagrams and
use cases achieve a significantly higher level of understanding. In another
paper [20], the comprehensibility of requirements models expressed in two
visual modeling notations, Use Case, which is a scenario-base language, and
Tropos, which exploits goal-oriented modeling, is compared. This experimen-
tal evaluation has been conducted within a family of controlled experiments
involving 79 university students overall. The experimental results showed
that Tropos models seem to be more comprehensible, although more time
consuming than Use Case models.

Sequence diagrams have been considered in several empirical studies.
For instance, Xie et al. [21] focused on sequence diagrams used to model
multi-threaded concurrency. In particular, they proposed a variation of this
kind of diagram called synchronization adorned UML (saUML) sequence di-
agram. Xie et al. evaluated saUML sequence diagrams by mean of an em-
pirical experiment. A statistically significant benefit from adopting saUML
sequence diagrams was found, thus the authors concluded that this variant
of sequence diagrams improves the comprehension of concurrent programs.

A family of three experiments, involving undergraduate computer science
students, carried out to investigate the influence of using stereotypes in UML
sequence diagrams is presented by Cruz-Lemus et al. [22]. In particular, the
authors studied the comprehensibility of UML sequence diagrams with and
without stereotypes from three different perspectives: semantic, retention,

5

and transfer. The authors found that the use of stereotypes improves com-
prehensibility, particularly for participants not familiar with the application
domain of the object understudy.

Gravino et al. [23] present a controlled experiment executed with bach-
elor students to assess whether comprehension of software requirements is
influenced by the use of dynamic models abstracted by employing sequence
diagrams. The most important result was: the difference in comprehen-
sion of system requirements is not statistically significant when using or not
dynamic models. On the contrary, results from an external replication con-
ducted with more experienced participants (i.e., master students) showed
that the use of dynamic models facilitates comprehension of requirements.
Results were confirmed in three subsequent replications conducted in Italy
and Spain with professionals and master/PhD students [9].

Finally, Glezer et al. [24] compare two types of interaction diagrams (se-
quence and collaboration) in two application domains: management infor-
mation systems and real-time systems. Results suggest that collaboration
diagrams are easier to comprehend than sequence diagrams in real-time sys-
tems, but this is not true in management information systems; in these last
systems there is no difference in comprehension of the two diagram types.

Statechart diagrams have been extensively empirically investigated,
too. For example, Cruz-Lemus et al. [25] studied the impact of composite
states (which allow to group related states) on understandability of UML
statechart diagrams. They carried out three empirical studies, consisting
of five experiments in total using relatively small statechart diagrams as
experimental objects while, as participants, they employed undergraduate
and graduate students of Computer Science at several universities, along
with a number of professionals with an average of two years of experience
in UML modeling. The authors stated that the use of composite states
improves understandability and efficiency when statechart diagrams are con-
sulted/analyzed. Nevertheless, participants experience with statechart dia-
grams was considered essential to gain the improved understandability.

Activity diagrams have been empirically investigated in comprehensi-
bility context. For this kind of diagrams, we selected two papers. The first
work [26] reports on two controlled experiments aimed at comparing UML
activity diagrams and the event-driven process chains (EPCs). The main
objective of that comparison concerned the model understandability from
the perspective of both requirements engineers and customers. In the case of
requirements engineers, better performances have been obtained when par-

6

ticipants use activity diagrams. On the other hand, the customers do not get
significant differences in terms of business process understandability, when
they use both the business process visual notations.

Reggio et al. [27] presented the results from two experiments with bach-
elor and master students. These experiments have been conducted to assess
whether the level of formality/precision in business process modeling [28],
based on UML activity diagrams, influences two aspects of comprehensi-
bility: correctness of understanding and task completion time. Considered
styles were: a precise style (with specific rules and imposed constraints) and
an ultra-light style (no rules, no imposed constraints). Results indicate that:
the participants achieved a significantly better comprehension level with the
precise style, the used style did not have any significant impact on the effort
and more experienced participants benefited more from the precise style than
the ultra-light style.

Object diagrams and inexperienced students have been considered in
the experiment by Thomas et al. [29]. The authors involved a group of first
year programming students attempting multiple-choice code tracing ques-
tions4 on an object-oriented program. Students were provided (or not) with
partially completed object diagrams. The goal of the experiment was testing
the experimental group (source code provided with objects diagrams) against
the control group (source code provided without objects diagrams). The con-
jecture is that the students belonging to the experimental group would do
better than the control group since they had at least some help. This turned
out not to be the case since results were inconclusive. Results obtained by
Thomas et al. [29] reinforce our findings: the use of object diagrams does
not always introduce significant benefits in terms of comprehension, but it
depends on IT experience and familiarity with UML. In addition, results of
two out of four conducted experiments were consistent with those by Thomas
et al. [29]: providing inexperienced students with object diagrams do not im-
prove their understanding. Although this study might be considered similar
to that we present in this paper, there are two remarkable differences: type
of empirical study (controlled experiment vs. family of experiments involv-
ing students with different IT experience and different familiarity levels with
UML) and type of comprehension questions (code tracing questions vs. more

4Code tracing questions require students to demonstrate their understanding of code’s
execution, or describing what the code does in general.

7

general questions concerning related class diagram and application domain).

3. The Family

In this section, we present the goal of our family of experiments, research
questions, and used experimental objects. Then, we present an overview of
both the baseline experiment and the three replications. Finally, we summa-
rize differences among experiments in our family and data analysis procedure
adopted to compare results from individual experiments.

The baseline experiment (also PoliTo1, from here on) [5] was carried
out at the Politecnico di Torino in 2003. It was first internally replicated
in 2004 (PoliTo2, from here on) and later it was externally replicated two
times: at the University of Basilicata in 2010 (UniBas1, from here on) [6]
and at the University of Genova in 2011 (UniGe1, from here on). External
replications allowed us to increase external validity. For replication purposes,
we made available on the web5 an experimental package and the raw data of
all the experiments. To design and execute the experiments, we followed the
guidelines proposed in [30, 31].

3.1. Goal and Research Questions

On the basis of the Goal Question Metric (GQM) template [32], the goal
of our family of experiments can be defined as follows:

Goal: Analyze the use of UML object diagrams with the purpose of assess-
ing whether they improve design comprehensibility of software design
when these diagrams are added to UML class diagrams. The quality
focus is to ensure high comprehensibility, taking the perspective of both
Researchers, evaluating how effective are object diagrams, and Project
managers, evaluating the possibility of adopting object diagrams in
their organizations, in the context of students having different IT ex-
perience and different familiarity with UML.

In our family of experiments, we formulated and investigated the following
two research questions:

RQ1 Does the effectiveness to comprehend software design vary when object
diagrams are used in addition to class diagrams?

5www2.unibas.it/gscanniello/ObjectDiagrams/

8

RQ2 Does the effort6 required to complete a comprehension task vary when
object diagrams are used in addition to class diagrams?

3.2. Experimental Objects

We used the following four experimental objects in all the experiments:

FS. The File System Manager handles folders, files, and links. Folders can
contain other elements (e.g., files), while links refer to other elements
in the file system (e.g., folders). Both the used class diagram (up) and
object diagram (down) are shown in Figure 1;

Figure 1: The class and object diagrams of FS.

R. The Roads system handles maps made up of cities connected by means
of roads. Each road starts and ends in a city. Furthermore, a road
is characterized by a length. Both the used class diagram (left) and
object diagram (right) are shown in Figure 2;

6We consider the time as an approximation for effort. This is almost customary in
literature (e.g., [12]) and it is compliant with the ISO/IEC 9126 standard, namely effort
is the productive time associated with a specific project task.

9

Figure 2: The class and object diagrams of R.

T. Train is a system to manage timetables, trains, and paths. Both the used
class diagram (up) and object diagram (down) are shown in Figure 3;

C. The Catalogue system collects category of items (e.g., cars) and items
(e.g., car models) based on a set of features (e.g., number of doors).
Both the used class diagram (up) and object diagram (down) are shown
in Figure 4;

Some details on the experimental objects are shown in Table 1. We used
four experimental objects to diversify the application domains so as to reduce
external validity threats (see Section 6).

To observe a possible contribution of object diagrams, we selected UML
class diagrams having a significant structure (i.e., containing classes with

Class diagram Object diagram
Object Classes Relations Instances Links

FS 4 5 8 8
R 2 2 9 8
T 4 5 15 22
C 5 6 6 7

Table 1: Characteristics of experimental objects used in the family of experiments.

10

Figure 3: The class and object diagrams of T.

several associations). In particular, the class diagram of File System (FS)
has a tree-like structure that is achieved by means of an indirect self-loop
association (i.e., an instance of the design pattern composite [33]). The class
diagram of Roads (R) contains two classes and two associations forming a
loop that allows representing a graph, while the class diagram of Trains (T)
has four classes forming a cycle and an additional self-loop association on
class Station. The Trains system presents a type-instance duality: Train-
Path and Station describe a “type”, while Train and Passage can be seen as
“instances” of this type. Finally, the class diagram of Catalogue (C) contains
cycles (but no self-loop association) and presents a type-instance duality. The
used models of the experimental objects can be downloaded from the home
page of our family of experiments.

11

Figure 4: The class and object diagrams of C.

3.3. PoliTo1

17 master students carried out PoliTo1 [5]. They were enrolled at the first
year of the Master program in Computer Science. Some of them were, or had
been, industry professionals. The experiment was a class exercise of a basic
course in software development including a quick introduction to UML and
object-oriented programming. These students had no previous experience
with UML. In their career, they attended only introductory computer science
courses.

Participants were required to perform some comprehension tasks on the
experimental objects alternating the following treatments:

− the system is documented using a textual description supplemented by a
class diagram only (no object diagram is provided);

12

Groups
Tasks Group 0 Group 1

Task 1 FS+ FS-
Task 2 R- R+
Task 3 T+ T-
Task 4 C- C+

Table 2: PoliTo1 experiment design. Class diagram augmented with object diagram (+),
only class diagram (-)

+ the system is documented using a textual description supplemented by
both a class diagram and an object diagram.

The experiment used a factorial design with two groups, one treatment,
and four tasks. Each task was performed on a single experimental object ac-
cording to the schema shown in Table 2. Participants were randomly assigned
to the groups Group 0 and Group 1.

The original experiment was designed to investigate RQ1 only. For this
reason only the comprehension level of participants was measured. The com-
prehension achieved on each experimental object was assessed through a
questionnaire. It included four multiple-choice questions with only one cor-
rect answer (i.e., closed-ended questions) for each experimental object. Each
question could be answered examining provided UML models (depending on
the administered treatment: class diagram augmented with object diagram
or class diagram only). That is, we designed the experiment so as to the
class diagrams alone were sufficient to answer the questions of comprehen-
sion questionnaire.

An example of comprehension question for FS is: “Which object types can
belong to a Folder object?”. To answer this question is sufficient looking at
the aggregation present in the class diagram (see on the top of Figure 1) or to
consider also the example provided by object diagram (see on the bottom of
Figure 1). The correct answer for this question is composed by the following
items: Folder, File, and Link.

The comprehension level achieved by a participant has been measured
counting the number of correct answers in the comprehension questionnaire
(i.e., score). For each experimental object, the comprehension level achieved
by a given participant in the experiment ranges in between 0 (null compre-
hension) and 4 (perfect comprehension).

13

3.3.1. Summary of Results for PoliTo1

We give here a summary of PoliTo1 results. The interested reader can
found further details on this experiment in [5]. Data analysis was performed
considering experimental objects alone and together. Results on each object
alone revealed a significant statistical difference in favor of object diagrams
on FS and T. Given the preliminary nature of PoliTo1, the author accepted
17% of committing Type-I-error instead of 5% [31]. Such an alpha level has
been chosen to have the statistical power of the Mann-Whitney test greater
than 75%. In all other experiments in our family, we decided to accept a
probability of 5% of committing Type-I-error. The analysis of the magnitude
of the observed differences, measured using the Cohen’s “d” standardized
difference between two groups [34], revealed that the effect size7 was medium
for FS and T and negligible for R and C. A significant positive effect of
object diagrams was observed when considering all the experimental objects
together. The effect size was small.

3.4. PoliTo2

Participants in PoliTo2 were 17 bachelor students of a Computer Engi-
neering degree. The experiment was a class exercise of an Object-Oriented
Programming course, which included an introduction to UML. Before attend-
ing this course, students had no previous experience with UML. In particular,
they had only attended an introductory programming course and an Algo-
rithms and Data Structures course. Therefore, they had a limited familiarity
with UML and a limited experience in software development. Results from
this experiment have never been published.

Also in this case the experiment was designed to investigate only RQ1. To
reduce the time required to conduct the replication (only one hour and half
was available in total) and to adapt the experiment to the limited experience
of students, only FS and T were used. We adopted a within-participants
counterbalanced design with two tasks and four groups summarized in Ta-
ble 3. We randomly assigned participants to the four groups shown in table.

3.5. UniBas1

We conducted UniBas1 in 2010 with 24 students of the Master program in
Computer Science at the University of Basilicata (Italy) [6]. The experiment

7Typically, the effect size is considered negligible for d < 0.2, small for 0.2 ≤ d < 0.5,
medium for 0.5 ≤ d < 0.8, and large for d ≥ 0.8.

14

Groups
Task Group 0 Group 1 Group 2 Group 3

Task 1 FS- FS+ T- T+
Task 2 T+ T- FS+ FS-

Table 3: PoliTo2 experiment design. Class diagram augmented with object diagram (+),
only class diagram (-)

Groups
Task Group 0 Group 1 Group 2 Group 3

Task 1 A1+ A1- A2+ A2-
Task 2 A2- A2+ A1- A1+

Table 4: UniBas1 experiment design. Class diagram augmented with object diagram (+),
only class diagram (-)

represented an optional activity of an advanced Software Engineering course.
Before the execution of UniBas1, participants have already passed a basic

Software Engineering course, where they learned UML. Some of them were,
or had been, industry professionals. Thus, we can state that participants in
UniBas1 had a reasonable level of technical maturity and knowledge of UML,
requirements engineering, and object-oriented software development.

In this replication, experimental objects were paired in assignments as
follows:

A1. the pair of objects FS and T;

A2. the pair of objects R and C.

We adopted the within-participants counterbalanced design shown in Ta-
ble 4. This design ensures that each participant work on two tasks (each
consisting of an assignment), experimenting alternatively class and object
diagrams together (+) or class diagrams alone (-). Participants performed
the two tasks without time limit. Participants could have a break between
the two tasks. We opted for within-participants counterbalanced design be-
cause it allows reducing possible carry-over effects.8

8If a participant is tested first under the condition X and then under the condition
Y, he/she could potentially exhibit better or worse performances (with respect to a given
dependent variable) under the second condition.

15

We equally distributed high and low ability participants among the four
groups (i.e., Group 0, Group 1, Group 2, and Group 3) [6]. This was possible
because we asked participants to fill out a pre-questionnaire. In particu-
lar, we asked participants their GPA (Grade Point Average), and used this
information to assign them to the groups. We equally distributed partici-
pants with a GPA less than or equal to 24 (low ability participants) in the
four groups in Table 4. This design choice was applied in previous studies
(e.g., [9]).

The scope of UniBas1 is broader than PoliTo1 (i.e., the original exper-
iment). In fact, we also measured comprehension effort to answer RQ2.
Therefore, the considered dependent variables are: comprehension level and
comprehension effort.

Similarly to PoliTo1, the comprehension level has been assessed by em-
ploying a comprehension questionnaire. However, we decided to convert the
questions in the comprehension questionnaire in open-ended questions. This
allowed to mitigate possible threats to the validity of results. That is, this
decreases the possibility participants gave correct answers by chance. There-
fore, the comprehension level has been measured using an information re-
trieval based approach [17]. In particular, correctness of provided answers
has been measured using the precision measure. On the contrary, for esti-
mating the completeness of the answers, we exploited the recall measure. To
get a single value representing a balance between correctness and complete-
ness of the answers, we used the F-measure (i.e., the harmonic mean between
precision and recall). A single value for the comprehension level is obtained
computing the overall average of the F-Measure values of all the questions.
This mean assumes values ranging from 0 to 1. A value close to 0 indicates a
null comprehension of the design, whilst a value close to 1 means a complete
comprehension. Further details on that dependent variable comprehension
level can be found in [6].

The dependent variable comprehension effort measures the time to ac-
complish a task. The time was expressed in minutes and was directly recorded
by participants by writing down their start and stop times on comprehension
questionnaires.

A post-experiment questionnaire was administered at the end of the ex-
periment with the goal of gaining insights about participants’ behavior dur-
ing the experiment. That is, we used a qualitative approach to explain the
quantitative results from experiments. To design this questionnaire, we used
standard approaches and scales [35]. This allowed us to reduce possible ex-

16

perimenters’ biases [31].

3.5.1. Summary of Results for UniBas1

Table 5 summarizes results in terms of comprehension level (both signif-
icance and effect size) of UniBas1. For comparison purposes, this table also
shows results obtained in the original experiment. The interested reader can
found further details in [6].

Significance Effect size
Object PoliTo1 UniBas1 PoliTo1 UniBas1
All yes yes small large
FS yes yes medium large
T yes yes medium large
R no yes negligible large
C no yes negligible large

Table 5: Comparison between PoliTo1 and UniBas1 in terms of comprehension level

Results confirm (see row “All”) and strengthen findings of baseline ex-
periment, thus increasing our confidence in benefits deriving from the use
of object diagrams. Complementing class diagrams with object diagrams
improves comprehension of circa 35%.

Regarding the comprehension effort, the experiment did not reveal any
significant difference. This result suggests that the provided additional in-
formation (i.e., object diagrams) does not require addition effort to complete
a comprehension task.

Finally, the analysis of the answers to the post-questionnaires suggests
the usefulness of object diagrams. In addition, participants found object
diagrams useful to understand the cardinality of associations.

3.6. UniGe1

Participants in UniGe1 were 66 students of the Bachelor program in Com-
puter Science. These students were enrolled in a Software Engineering course
of the third year, where they learned UML. As a mandatory activity of this
course, students were grouped in teams and allocated on projects to develop
a software system using specifications based on UML. As for UniBas1, the
experiment was conducted as part of laboratory exercises carried out within
the course in which the experiment was conducted. Participants had knowl-
edge of object-oriented programming and database systems modeling. To
conduct this replication, we used the same design as UniBas1.

17

3.7. Differences Among the Experiments

We introduced some differences in replicated experiments. Some of these
differences have been intentionally introduced to improve material and/or
data analysis and then to increase the validity of results. Other variations
were added because of time constraints (e.g., the laboratory was available
only for two hours). We summarize differences as follows:

Comprehension questionnaire. Before executing the three replications,
we removed some minimal sources of possible confusion found in the
material of PoliTo1. Furthermore, in UniBas1 and UniGe1, we mod-
ified questionnaires by turning closed questions into open ones. The
rationale for this modification relies on the fact that open questions
should reduce participants guess and hence decrease the possibility to
give correct answers by chance.

Dependent variables. Apart from comprehension, we added effort as de-
pendent variable in UniBas1 and UniGe1. This variable was added to
further investigate the effect of object diagrams.

Experiment design. For PoliTo2, UniBas1 and UniGe1, we used a within-
participants counterbalanced experimental design. On the contrary, a
factorial design with two groups, one treatment, and four objects was
used in PoliTo1. We added this modification to better analyze the
effect of the main factor (i.e., the presence or the absence of object
diagrams to execute a comprehension task) and co-factors (e.g., task).
Other modifications have been introduced as a natural consequence of
having used a different design. Another modification has been intro-
duced in UniBas1. That is, a break between two tasks was provided.
This modification was introduced to reduce fatigue on the main factor
understudy. As for UniGe1, we had time constraints and then partici-
pants did not have a break between tasks.

Group composition. For UniBas1, we used the information from a pre-
questionnaire to equally distribute high- and low-ability participants
among the groups shown in Table 4. In the baseline experiment, and
in the PoliTo2 and UniGe1 replications, participants were randomly
assigned to groups.

Post-experiment survey questionnaire. For PoliTo2 and UniBas1, a post-
experiment questionnaire was employed.

18

PoliTo1 PoliTo2 UniBas1 UniGe1
Number of participants 17 17 24 66

Kind of students Master Bachelor Master Bachelor

Geographic distribution Torino Torino Potenza Genova

Research questions RQ1 only RQ1 only RQ1 and RQ2 RQ1 and RQ2

Comprehension questionnaire Closed answers Closed answers Open answers Open answers

Design Factorial 2 Counterbalanced Counterbalanced Counterbalanced

Tasks 4 2 2 2

Comprehension level Score Score F-measure F-measure

Comprehension effort No No Yes Yes

Time limit Yes Yes No Yes

Break between the tasks No No Yes No

Group composition Randomized Randomized Blocking factor (Ability) Randomized

Post-experiment questionnaire No Yes Yes No

Participants’ IT experience High Low High Low

Familiarity with UML Low Low High High

Empirical strategy Quantitative Quantitative Quantitative Quantitative
and Qualitative

Table 6: Key features of the four experiments in our family

Data analysis. Owing to the new dependent variable introduced (i.e., com-
prehension effort), we considered a new null hypothesis in UniBas1 and
in UniGe1. Moreover, in all the replications of our family we accepted
the standard probability of 5% of committing Type-I-error instead of
17% as done in the original experiment.

Participants’ IT experience. We measured participants’ experience as their
level of education, i.e., either bachelor or master. Master students were
considered to have high IT experience, while bachelor students low.

Familiarity with UML. The familiarity of participants with UML has been
measured as high or low. It has been estimated by the lecturer on the
basis of UML contents provided to students both in the course where
experiment took place and in previous university courses.

We summarize main differences among experiments in Table 6.

3.8. Family Analysis Procedure

Since the four experiments have been conducted in different settings and
with different number of tasks, we could not combine results and analyze data

19

as originally gathered. Moreover, the measure to quantify comprehension
level in the two experiments conducted at Politecnico di Torino (PoliTo1 and
PoliTo2) is different from the measure used in UniGe1 and UniBas1 (score
vs. F-measure). We devised a transformation of measures that allowed for a
direct comparison of results from our experiments. The idea is to discretize
comprehension level (computed as F-measure in the UniBas1 and UniGe1)
into a dichotomous variable indicating whether an answer is correct or not
(i.e., analogous to the variable used in PoliTo1 and PoliTo2). The threshold
we adopted for such discretization is the most conservative one, i.e., correct
⇔ F-measure = 1. This transformation is similar to that used in [36, 37].

After this transformation, we report summary statistics of four experi-
ments in terms of absolute number of correct answers per task (score) with
and without object diagrams. Since the distributions of the scores are not
normal, we use the median and the median absolute deviation (MAD). We
also provided results of the Mann-Whitney test, which were consistently ap-
plied in all experiments of our family.

Since the number of questions per task is different among four exper-
iments (namely four in PoliTo2 and eight in the others), the score is not
a suitable measure for a comparison among the experiments in our family.
Therefore, we decided to build, for each experiment, a contingency matrix of
correct/wrong answers vs. the presence/absence of object diagrams.

The contingency table allows us to look at the benefits achievable by
object diagrams in terms of odds ratio, which is a measure of effect size that
can be used for dichotomous categorical data. An odds ratio indicates the
likelihood of occurrence of an event as opposed to non occurrence. Odds ratio
is defined as the ratio of the odds of an event occurring in one group (e.g.,
experimental group) to the odds of it occurring in another group (e.g., control
group), or to a sample-based estimate of that ratio. If the probabilities of
the event in each of groups are indicated as p (experimental group) and q
(control group), then the odds ratio is precisely defined as:

OR =
p/(1− p)
q/(1− q)

An odds ratio of 1 indicates that the condition or event under study is
equally likely in both groups. An odds ratio greater than 1 indicates that
the condition or event is more likely in first group. Finally, an odds ratio less
than 1 indicates that condition or event is less likely in first group.

20

Table 7: Summary statistics of raw score for the four experiments
NO OD OD MW

Exp median MAD median MAD p-value
PoliTo2 3.00 1.48 3.00 1.48 0.77
UniGe1 5.73 1.58 5.58 0.96 0.77
PoliTo1 3.00 1.48 3.00 1.48 0.09
UniBas1 4.50 1.68 6.50 0.74 < 0.01

Moreover, on the basis of the contingency tables we apply the Fisher exact
test, which is well suited for small samples 2× 2 tables [38]. The test allows
to check for the existence of a significant difference between two treatments
in term of correctness.

We also studied how contexts influenced benefits achievable with object
diagrams. The two context factors considered are IT experience and familiar-
ity with UML. Both are ordinal measures that can assume High and Low as
the values, respectively. To identify a possible correlation between the two
context factors and the experiment outcome we fit a linear model. Given
the nature of factors and the lack of other empirical evidence, we opted for
simplest model.

4. Family Data Analysis

In this section, we present the results of a data analysis conducted on our
family of experiments according to defined research questions.

4.1. RQ1 - Comprehension Level

Summary statistics on comprehension level are reported in Table 7. This
table reports median and median absolute deviation (MAD) for both treat-
ments. Table 7 also reports p-values the Mann-Whitney test returned. We
can observe a statistical significant difference only in UniBas1.

Figure 5 shows the boxplots for comprehension level grouped by treatment
and experiment. The number of participants is proportional to the widths
of boxes. Boxes can be only pairwise compared because experiments differ
in both number of tasks and number of questions per task.

As mentioned in Section 3.8, we use the odds ratio of a correct answers to
make comparable outcomes of four experiments. Table 8 reports odds ratio

21

●●

1

2

3

4

5

6

7

8
S

co
re

PoliTo1 PoliTo2 UniGe1 UniBas1

NO_OD
OD

width ~ # participants

Figure 5: Score in the four experiments.

Table 8: Odds ratio estimate with 95% CI in the four experiments
Odds ratio Fisher

Exp est. 95% CI p-value
PoliTo2 0.73 0.31 1.71 0.55
UniGe1 1.08 0.84 1.40 0.57
PoliTo1 1.39 0.79 2.47 0.28
UniBas1 1.76 1.15 2.70 < 0.01

(OR) estimates and 95% confidence interval9, with p-values of the Fisher test.
Based on either the odds ratio confidence interval or the Fisher test, we can
reject first hypothesis only for UniBas1 with a large effect size (OR=1.76),
while we cannot reject it for other three experiments. This result is consistent
with the analysis summarized in Table 7.

A graphical representation of odds ratios and relative confidence intervals
is shown in Figure 6. Both estimates and intervals can be directly compared.
We can graphically infer the significance of effect observed in UniBas1, and
the lack of statistical significance in the other experiments (the lower extreme
of CI overcomes the straight line OR=1 only for UniBas1).

9The width of the confidence interval gives us some idea about how uncertain we are
about unknown parameter (in our case odds ratio estimate)

22

0.
0

1.
0

2.
0

3.
0

O
dd

s
R

at
io

●

●

●

●

PoliTo2 UniGe1 PoliTo1 UniBas1Experiment
(n= 17) (n= 66) (n= 17) (n= 24)

Low High Low HighUML knowledge

Bachelor MasterExperience

● Estimate
95% CI

Figure 6: Odds ratio estimate with 95% CI in the four experiments.

The effect of context factors – IT experience and UML familiarity – can
be estimated by means of a linear model. Fitting a linear model on four
estimates vs. IT experience and UML familiarity levels yields the following
equation:

OR = 0.73 + 0.67 ·MasterITExperience + 0.36 · HighUMLFamiliarity (1)

Where MasterITExperience is 1 for master students and 0 for bachelor
students. HighUMLFamiliarity is 1 for participants with a high familiarity
with UML and 0 otherwise.

All the three coefficients are statistically significant as well as the overall
model (p-value = 0.0111). The goodness of fit is very high (R2 > 99%)10.

4.2. RQ2 - Comprehension Effort

As far as effort is concerned, only UniBas1 and UniGe1 collected timing
information. Values are summarized in Figure 7. A statistically significant
difference was found neither in UniBas1 (p=0.22) nor in UniGe1 (p=0.99).

10R2 measures how well a regression approximates the real data points; R2=100% indi-
cates that the regression perfectly fits the data.

23

10

20

30

40

50

60

70

T
im

e
[m

in
]

NO_OD OD NO_OD OD
UniBas UniGe

NO_OD
OD

width ~ # participants

Figure 7: Time to complete the task in UniBas1 and UniGe1.

5. Discussion

Running a family of experiments rather than an individual experiment
provides us with more evidence about external validity – including gener-
alizability – of results [39, 40]. The same hypotheses were tested in three
distinct contexts (Politecnico di Torino, University of Genova, and Univer-
sity of Basilicata) employing two different profiles of participants (master
and bachelor students) having different familiarity with UML.

The first result that emerges from our family of experiments is that the
use of object diagrams does not always introduce significant benefits in terms
of design comprehension. Our result partially contrasts a general belief that
UML object diagrams are useful to increase the comprehension of class di-
agrams in the modeling of object-oriented software systems. For example,
Fowler wrote: Object diagrams are useful for showing examples of objects
connected together. In many situations, you can define a structure precisely
with a class diagram, but the structure is still difficult to understand. In these

24

situations, a couple of object diagram examples can make all the difference [3].
We found that the variability of our results strongly depends on two

co-factors: IT experience and UML familiarity. These co-factors play an
important role in our family of experiments. Students having a higher IT
experience (master) and high UML familiarity obtained clear benefits. On
the contrary, less experienced participants (i.e., bachelor students) having low
UML familiarity obtained no advantage from the usage of object diagrams
(this outcome is consistent with those obtained by Thomas et al. [29]). This
is quantitatively shown by the odds ratio that provides a measure of the effect
size. More in detail, master students having high UML familiarity improve
their comprehension level of UML models of circa two times (OR=1.76),
when object diagrams are provided. The improvement is reduced when the
familiarity with UML decreases, OR = 1.39 in the PoliTo1 experiment where
the students had a low familiarity with UML, and collapse with less IT
experienced students (OR=1.08 in UniGe1 and OR=0.73 in PoliTo2). The
relationship between IT experience and UML familiarity and the magnitude
of benefits in terms of comprehension of UML models is highlighted by the
linear model (equation 1). From this model, we observe that the coefficient
for IT experience is roughly two times larger than the coefficient for UML
familiarity, indicating a larger importance of IT experience in determining
the magnitude of benefits achievable from the presence of object diagrams.

The fact that students having more IT experience and high UML famil-
iarity obtained the highest benefits in the usage of object diagrams is, in some
sense, counter-intuitive. Our results contrast the common belief that specific
examples (in our case object diagrams) are more useful than generalizations
(in our case class diagrams) for novices while examples are less useful for
experienced participants. In our family of experiments, we obtained exactly
the opposite. This result probably depends on the capability of participants
to integrate different sources of knowledge, namely class diagrams and ob-
jects diagrams. Some of them are able to quickly find associations between
different artifacts and for them object diagrams are useful, while others find
this kind of notation more difficult and in this case having or not the objects
diagrams does not make difference. We observed a similar phenomenon in the
study by Reggio et al. [27], where a precise style and an ultra-light style for
modeling business processes were compared. Also in that case, more experi-
enced participants (master students) benefited more from the precise style,
in which a combination of UML diagrams has been used to model a busi-
ness process, than less experienced participants. Similarly Abrahão et al. [9]

25

observed that in the case of high ability and more experienced participants
the use of sequence diagrams, in combination with other UML notations,
improves functional requirements comprehension.

As for comprehension effort, the results confirmed the absence of substan-
tial variations in the time needed to perform a comprehension task, whatever
is the treatment applied.

5.1. Implications

We adopted a perspective-based approach to judge practical implications
for our family of experiments from the practitioner/consultant (simply prac-
titioner, here on) and the researcher perspectives. To this end, we exploited
the reading method inspired by perspective-based and checklist-based re-
views suggested Kitchenham et al. [41]. The practical implications suggested
by our results can be summarized as follows:

• Comprehension of software design improves when class diagrams and
object diagrams are provided together only in certain cases. The im-
provement depends on the IT experience and the familiarity with UML
of participants. This outcome is relevant for practitioner. We should
expect an improvement in comprehension only for software engineers
with a little of IT experience and good familiarity with UML. This out-
come is also relevant for the researcher. Understanding the reason of
such result from a cognitive point of view is a challenge and our results
together with those previously published in the literature (e.g., [9],[27])
pose the basis for future work.

• The use of object diagrams could reduce the number of defects orig-
inated from the model comprehension. In addition, the use of such
a kind of diagram could also positively impact communication among
stakeholders. This is true only in case stakeholders have a given expe-
rience and familiarity with UML. This implication is clearly relevant
for the practitioner.

• Using different layouts for a diagram could lead to different compre-
hension level of software design. This aspect is relevant for the prac-
titioner, who could be interested in understanding the best way for
creating UML class and object diagrams. Even the researcher could be
interested in such a result, so investigating why a different layout should
affect comprehension of software design. Although our empirical work

26

has not been specifically designed for pursuing these concerns, our out-
comes pose the base for future work. That is, IT experience and UML
familiarity have to be taken into account in designing future empirical
studies on the effect of layouts on diagram comprehensibility.

• The use of object diagrams induces no additional time burden, while
performing a comprehension task. This result is relevant for practition-
ers/consultants even if this opens an issue that deserves future dedi-
cated empirical investigations: does the use of object diagrams impact
on the time to create/maintain UML models? Researchers could be
interested in such a kind of future research direction.

• The study focused on UML models in domains in which participants
were familiar with. We cannot claim that, in less familiar domains, the
gap in comprehensibility between two treatments (class diagrams plus
object diagrams with respect to class diagrams alone) would increase
or decrease. However, based on the experience we gained in the family
of experiments presented in this paper, we might postulate that the
presence of object diagrams should help more in unfamiliar domains.
This aspect deserves future investigations. Researchers are particularly
interested in such a future research.

• When trying to balance the cost related to the adoption of a new nota-
tion, one should also take into account the cost for training stakehold-
ers. In this case, the cost of training is low because object diagrams are
well-known. The practitioner is particularly interested in this outcome.

• The adoption of object diagrams as complement to class diagrams does
not require a complete and radical process change in any company in-
terested in doing so. This aspect is clearly relevant for the practitioner.

• Although the models were realistic for small-sized software projects, we
are not sure that achieved results scale to real software projects. This
point is relevant for the practitioner, but it is even more relevant for
the researcher interested in assessing whether our results hold also in
real projects.

27

6. Threats to Validity

Internal validity threats concern factors that may affect results in an
undesirable way. To deal with this concern, we have properly chosen the
experimental design in UniBas1, UniGe1 and PoliTo2 (within-participants
counterbalanced design). To limit fatigue effect, we also introduced a break
between the two tasks in UniBas1. Fatigue threat is not present in PoliTo2
since only two experimental objects were used by each participant (instead
of four). Other possible threats concern information exchanged among par-
ticipants within the same experiment and among experiments. This was pre-
vented by monitoring participants while performing experimental tasks and
by asking them back all material they used. Finally, to avoid apprehension,
students were informed that they were not assessed on their performance.

External validity concerns the generalization of results. Although the
models might appear small, their size has been chosen in accordance to soft-
ware engineering book recommendations (e.g., [42]). In addition, we chose
diagrams to be realistic for small/medium sized comprehension tasks. There-
fore, we can argue that used UML models were simple, without being trivial.
They were also related to four different domains (file systems, roads, trains,
and catalogues). Future empirical investigations are needed to reduce exter-
nal validity threats. To this end, we plan to conduct case studies on larger
and more complex UML models and software. Different and special conceived
empirical investigations (i.e., case studies) are needed to assess whether the
obtained results hold also in real-sized projects. Our results pose the basis for
such a kind of empirical studies, justifying their need. The use of students as
participants may also affect external validity. However, they were trained on
software engineering tasks and the execution of these tasks did not require
a high level of industrial experience. Then, we can claim that the use of
students here is appropriate as suggested in the literature [43, 44]. Working
with students has also advantages, such as their prior knowledge being rather
homogeneous, so to give a chance to test experimental and initial hypotheses
[45] reducing failure risks and related costs. An additional advantage of using
students is that the cognitive complexity of the objects under study is not
hidden by participants experience. However, the participants in PoliTo1 and
UniBas1 could be considered close to junior software developers. Moreover,
Kitchenham et al. [46] argue that using students as participants instead of
software engineers is not a major issue, as long as research questions are not
specifically focused on experts.

28

Construct validity threats concern relationships between theory and ob-
servations. This kind of threat is related to how comprehension of UML
models and time were measured. For comprehension, we used comprehension
questionnaires. We carefully defined the questions so that they were neither
too complicated, to make tasks impossible to perform, nor too simple, to
make it difficult to observe any difference among participants. Answers were
quantitatively evaluated using two different approaches: score in PoliTo1
and in PoliTo2 and F-measure in UniBas1 and in UniGe1. These approaches
avoid as much as possible any subjective evaluation [11, 18, 47]. As far as
IT experience and UML familiarity are concerned, used ordinal measures are
a proxy of actual participants’ experience and UML familiarity. Therefore,
it is possible that a different measure could lead to different results. Com-
prehension effort was measured by means of time sheets and was validated
qualitatively by researchers. We used this approach because very common
in the empirical software engineering community.

Conclusion validity threats concern relationships between treatment and
findings. In our family of experiments, we applied non-parametric tests to
statistically reject null hypotheses. We opted for non-parametric tests be-
cause of sample size and non-normality of data. For rejecting null hypotheses,
we exploited the Mann-Whitney and Fisher tests, because they are very ro-
bust and sensitive, even with small datasets [48]. In particular, the Fisher
test is more accurate than the χ2 test for small sample sizes. To compare
the results of the four experiments we: (1) applied some transformations to
discretize the comprehension level computed as F-measure (only for UniBas1
and UniGe1), (2) built a contingency matrix of the correct/wrong answers
vs. the presence/absence of object diagrams to compare PoliTo2 with the
other experiments, (3) for each experiment computed the odds ratio and
95% confidence interval using the contingency table. Given the nature of
factors and the lack of other empirical evidence, we used the simplest pos-
sible model (i.e., the linear model) to study the effect of the IT Experience
and UML familiarity context factors. Moreover, the post-experiment ques-
tionnaire (intended to get qualitative insights) was designed using standard
ways and scales [35]. Finally, we ensure replicability of our experiments by
providing an experimental package on the web.

29

7. Conclusions

In this paper, we report results from a family of controlled experiments
aimed at investigating the combined effect of object and class diagrams on
comprehensibility of software design. In each experiment, the participants
were provided with either class diagrams alone or class and object diagrams
together. Participants in our family of experiments were bachelor and master
students having different IT experience and familiarity with UML.

Results suggested that participants having different IT experience and
UML familiarity achieved different levels of benefit from the use of object
diagrams. Our findings partially contrast the common beliefs: higher expe-
rienced participants having good UML familiarity benefited more of object
diagrams in terms of comprehension than lower experienced participants. We
speculate that this result depends on participants’ capability to integrate dif-
ferent sources of knowledge, in our case class diagrams and objects diagrams,
that is good for experienced participants and bad for inexperienced ones. As
for comprehension effort, our results showed the absence of substantial vari-
ations in the effort needed to accomplish a comprehension task.

Based on our experimental results, a project manager should carefully
think about the potential benefits of object diagrams considering her/his own
industrial context. In a context where the software is developed/maintained
by high experienced people with a good UML level, object diagrams could
be used because useful. In this respect, obtained results justify and draw
the need of future empirical studies to assess cost/benefit in the use of object
diagrams to improve design comprehensibility. On the other hand, if the soft-
ware is developed/maintained mainly by low experienced people with modest
UML knowledge, it might not be convenient to adopt object diagrams.

The experiments belonging to our family of experiments involved partic-
ipants possessing different UML familiarity and experience levels and made
the use of UML models representing software systems belonging to differ-
ent domains. Despite such a prominent variety, further empirical studies are
highly desirable to provide further evidence or to contradict our results.

8. Acknowledgments

The authors would like to thank all the participants in the experiments
of our family.

30

References

[1] OMG, Unified modeling language (OMG UML) specification, version
2.4.1, Tech. rep., Object Management Group (May 2011).

[2] B. Bruegge, A. H. Dutoit, Object-Oriented Software Engineering: Using
UML, Patterns and Java, 3rd Edition, Prentice-Hall, 2010.

[3] M. Fowler, S. Kendall, UML Distilled: A Brief Guide to the Stan-
dard Object Modeling Language (4th ed.), Addison-Wesley Professional,
2010.

[4] D. Budgen, A. J. Burn, O. P. Brereton, B. A. Kitchenham, R. Preto-
rius, Empirical evidence about the UML: a systematic literature review,
Software: Practice and Experience 41 (4) (2011) 363–392.

[5] M. Torchiano, Empirical assessment of UML static object diagrams,
in: Proceedings of the 12th IEEE International Workshop on Program
Comprehension, IWPC 2004, IEEE Computer Society, Washington, DC,
USA, 2004, pp. 226–230.

[6] G. Scanniello, F. Ricca, M. Torchiano, On the effectiveness of the UML
object diagrams: A replicated experiment, in: Proceedings of the 15th
International Conference on Evaluation and Assessment in Software En-
gineering, EASE 2011, IET Digital Library, 2011, pp. 76–85.

[7] S. N. Woodfield, H. E. Dunsmore, V. Y. Shen, The effect of modular-
ization and comments on program comprehension, in: Proceedings of
the 5th International Conference on Software Engineering, ICSE 1981,
IEEE Press, Piscataway, NJ, USA, 1981, pp. 215–223.

[8] R. Agarwal, P. De, A. Sinha, Comprehending object and process models:
an empirical study, IEEE Transactions on Software Engineering 25 (4)
(1999) 541–556.

[9] S. Abrahão, C. Gravino, E. Insfran, G. Scanniello, G. Tortora, Assessing
the effectiveness of sequence diagrams in the comprehension of functional
requirements: Results from a family of five experiments, IEEE Trans.
on Soft. Eng. 39 (3) (2013) 327–342.

31

[10] H. C. Purchase, L. Colpoys, M. McGill, D. Carrington, C. Britton, UML
class diagram syntax: an empirical study of comprehension, in: Proceed-
ings of the 2001 Asia-Pacific Symposium on Information Visualisation -
Volume 9, APVis 2001, Australian Computer Society, Inc., Darlinghurst,
Australia, 2001, pp. 113–120.

[11] M. Staron, L. Kuzniarz, C. Wohlin, Empirical assessment of using stereo-
types to improve comprehension of UML models: A set of experiments.,
Journal of Systems and Software 79 (5) (2006) 727–742.

[12] G. Scanniello, C. Gravino, M. Genero, J. A. Cruz-Lemus, G. Tortora, On
the impact of UML analysis models on source-code comprehensibility
and modifiability, ACM Trans. Softw. Eng. Methodol. 23 (2) (2014)
13:1–13:26.

[13] M. Leotta, F. Ricca, G. Antoniol, V. Garousi, J. Zhi, G. Ruhe, A
pilot experiment to quantify the effect of documentation accuracy on
maintenance tasks, in: Proceedings of the 29th International Confer-
ence on Software Maintenance, ICSM 2013, IEEE, 2013, pp. 428–431.
doi:10.1109/ICSM.2013.64.
URL http://dx.doi.org/10.1109/ICSM.2013.64

[14] S. Yusuf, K. Kagdi, J. I. Maletic, Assessing the comprehension of UML
class diagrams via eye tracking, in: Proceedings of the 15th International
Conference on Program Comprehension, ICPC 2007, IEEE Computer
Society, Washington, DC, USA, 2007, pp. 113–122.

[15] A. De Lucia, C. Gravino, R. Oliveto, G. Tortora, An experimental com-
parison of ER and UML class diagrams for data modelling, Empirical
Software Engineering 15 (5) (2010) 455–492.

[16] H. C. Purchase, L. Colpoys, M. McGill, D. Carrington, UML collabo-
ration diagram syntax: An empirical study of comprehension, in: Pro-
ceedings of the 1st International Workshop on Visualizing Software for
Understanding and Analysis, VISSOFT 2002, IEEE Computer Society,
Washington, DC, USA, 2002, pp. 13–22.

[17] F. Ricca, M. Di Penta, M. Torchiano, P. Tonella, M. Ceccato, The role
of experience and ability in comprehension tasks supported by UML
stereotypes, in: Proceedings of the 29th International Conference on

32

http://dx.doi.org/10.1109/ICSM.2013.64
http://dx.doi.org/10.1109/ICSM.2013.64
http://dx.doi.org/10.1109/ICSM.2013.64
http://dx.doi.org/10.1109/ICSM.2013.64
http://dx.doi.org/10.1109/ICSM.2013.64

Software Engineering, ICSE 2007, IEEE Computer Society, Minneapolis,
MN, USA, 2007, pp. 375–384.

[18] F. Ricca, M. Di Penta, M. Torchiano, P. Tonella, M. Ceccato, How
developers’ experience and ability influence web application comprehen-
sion tasks supported by UML stereotypes: A series of four experiments,
IEEE Transactions on Software Engineering 36 (1) (2010) 96–118.

[19] A. Gemino, D. Parker, Use case diagrams in support of use case mod-
eling: Deriving understanding from the picture, Journal of Database
Management 20 (1) (2009) 1–24.

[20] I. Hadar, I. Reinhartz-Berger, T. Kuflik, A. Perini, F. Ricca, A. Susi,
Comparing the comprehensibility of requirements models expressed in
use case and Tropos: Results from a family of experiments, Information
and Software Technology 55 (10) (2013) 1823–1843.

[21] S. Xie, E. Kraemer, R. E. K. Stirewalt, Empirical evaluation of a UML
sequence diagram with adornments to support understanding of thread
interactions, in: Proceedings of the 15th IEEE International Confer-
ence on Program Comprehension, ICPC 2007, IEEE Computer Society,
Washington, DC, USA, 2007, pp. 123–134.

[22] J. A. Cruz-Lemus, M. Genero, D. Caivano, S. Abrahao, E. Insfran, J. A.
Carsi, Assessing the influence of stereotypes on the comprehension of
UML sequence diagrams: A family of experiments, Information and
Software Technology 53 (12) (2011) 1391–1403.

[23] C. Gravino, G. Scanniello, G. Tortora, An empirical investigation on
dynamic modeling in requirements engineering, in: Proceedings of the
11th International Conference on Model Driven Engineering Languages
and Systems, MoDELS 2008, Springer-Verlag, Berlin, Heidelberg, 2008,
pp. 615–629.

[24] C. Glezer, M. Last, E. Nachmany, P. Shoval, Quality and comprehension
of UML interaction diagrams - an experimental comparison, Information
and Software Technology 47 (10) (2005) 675–692.

[25] J. Cruz-Lemus, M. Genero, M. Manso, S. Morasca, M. Piattini, Assess-
ing the understandability of UML statechart diagrams with composite

33

states – a family of empirical studies, Empirical Software Engineering
14 (6) (2009) 685–719.

[26] A. Gross, J. Doerr, EPC vs. UML activity diagram - two experiments
examining their usefulness for requirements engineering, in: Proceedings
of the 17th IEEE International Conference on Requirements Engineer-
ing, RE 2009, IEEE, Los Alamitos, CA, USA, 2009, pp. 47–56.

[27] G. Reggio, F. Ricca, G. Scanniello, F. D. Cerbo, G. Dodero, On the
comprehension of workflows modeled with a precise style: results from
a family of controlled experiments, Software & Systems Modeling 14 (4)
(2013) 1481–1504.

[28] G. Reggio, M. Leotta, F. Ricca, E. Astesiano, Business process mod-
elling: Five styles and a method to choose the most suitable one, in:
Proceedings of the 2nd International Workshop on Experiences and Em-
pirical Studies in Software Modelling, EESSMod 2012, ACM, 2012, pp.
8:1–8:6. doi:10.1145/2424563.2424574.
URL http://dx.doi.org/10.1145/2424563.2424574

[29] L. Thomas, M. Ratcliffe, B. Thomasson, Scaffolding with object dia-
grams in first year programming classes: some unexpected results, in:
Proceedings of the 35th SIGCSE Technical Symposium on Computer
Science Education, SIGCSE 2004, ACM, New York, NY, USA, 2004,
pp. 250–254.

[30] N. Juristo, A. Moreno, Basics of Software Engineering Experimentation,
Kluwer Academic Publishers, 2001.

[31] C. Wohlin, P. Runeson, M. Höst, M. Ohlsson, B. Regnell, A. Wesslén,
Experimentation in Software Engineering, Kluwer, 2012.

[32] V. Basili, G. Caldiera, D. H. Rombach, The Goal Question Metric
Paradigm, Encyclopedia of Software Engineering, John Wiley and Sons,
1994.

[33] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns: Ele-
ments of Reusable Object Oriented Software, Addison-Wesley, 1995.

[34] J. Cohen, Statistical power analysis for the behavioral sciences (2nd ed.),
Lawrence Earlbaum Associates, Hillsdale, NJ, 1988.

34

http://dx.doi.org/10.1145/2424563.2424574
http://dx.doi.org/10.1145/2424563.2424574
http://dx.doi.org/10.1145/2424563.2424574
http://dx.doi.org/10.1145/2424563.2424574

[35] A. N. Oppenheim, Questionnaire Design, Interviewing and Attitude
Measurement, Pinter, London, 1992.

[36] E. Kamsties, A. von Knethen, R. Reussner, A controlled experiment to
evaluate how styles affect the understandability of requirements specifi-
cations., Information and Software Technology 45 (14) (2003) 955–965.

[37] G. Scanniello, M. Staron, H. Burden, R. Heldal, On the effect of using
SysML requirement diagrams to comprehend requirements: results from
two controlled experiments, in: International Conference on Evaluation
and Assessment in Software Engineering, EASE 2014, ACM, 2014, pp.
49:1–49:10.

[38] A. Agresti, An Introduction to Categorical Data Analysis, Wiley-
Interscience, 2007.

[39] V. Basili, F. Shull, F. Lanubile, Building knowledge through families of
experiments, IEEE Transactions on Software Engineering 25 (4) (1999)
456–473.

[40] J. C. Carver, N. J. Juzgado, M. T. Baldassarre, S. Vegas, Replications of
software engineering experiments, Empirical Software Engineering 19 (2)
(2014) 267–276.

[41] B. Kitchenham, H. Al-Khilidar, M. Babar, M. Berry, K. Cox, J. Keung,
F. Kurniawati, M. Staples, H. Zhang, L. Zhu, Evaluating guidelines
for reporting empirical software engineering studies, Empirical Software
Engineering 13 (2008) 97–121.

[42] B. Bruegge, A. H. Dutoit, Object-Oriented Software Engineering: Con-
quering complex and changing systems, Prentice-Hall, 2000.

[43] J. Carver, L. Jaccheri, S. Morasca, F. Shull, Issues in using students
in empirical studies in software engineering education, in: Proceedings
of the 9th International Software Metrics Symposium, METRICS 2003,
IEEE Computer Society, Washington, DC, USA, 2003, pp. 239–249.

[44] M. Svahnberg, A. Aurum, C. Wohlin, Using students as subjects - an
empirical evaluation, in: Proceedings of the 2nd ACM-IEEE Interna-
tional Symposium on Empirical Software Engineering and Measurement,
ESEM 2008, ACM, New York, NY, USA, 2008, pp. 288–290.

35

[45] D. I. K. Sjoberg, J. E. Hannay, O. Hansen, V. B. Kampenes, A. Kara-
hasanovic, N. Liborg, A. C. Rekdal, A survey of controlled experiments
in software engineering, IEEE Transactions on Software Engineering
31 (9) (2005) 733–753.

[46] B. Kitchenham, S. Pfleeger, L. Pickard, P. Jones, D. Hoaglin, K. El
Emam, J. Rosenberg, Preliminary guidelines for empirical research in
software engineering, IEEE Transactions on Software Engineering 28 (8)
(2002) 721–734.

[47] L. C. Briand, Y. Labiche, M. Di Penta, H. Yan-Bondoc, An experimen-
tal investigation of formality in UML-based development, IEEE Trans-
actions on Software Engineering 31 (10) (2005) 833–849.

[48] H. Motulsky, Intuitive biostatistics: a Nonmathematical guide to statis-
tical thinking, Oxford University Press, 2010.

36

