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Codon usage effects on translation error<p>The analysis of codon usage in nearly 900 species of the three domains of life suggests that codon usage patterns in mRNA messages do not minimize the effects of translation error.</p>

Abstract

Background: Do species use codons that reduce the impact of errors in translation or

replication? The genetic code is arranged in a way that minimizes errors, defined as the sum of the

differences in amino-acid properties caused by single-base changes from each codon to each other

codon. However, the extent to which organisms optimize the genetic messages written in this code

has been far less studied. We tested whether codon and amino-acid usages from 457 bacteria, 264

eukaryotes, and 33 archaea minimize errors compared to random usages, and whether changes in

genome G+C content influence these error values.

Results: We tested the hypotheses that organisms choose their codon usage to minimize errors,

and that the large observed variation in G+C content in coding sequences, but the low variation in

G+U or G+A content, is due to differences in the effects of variation along these axes on the error

value. Surprisingly, the biological distribution of error values has far lower variance than

randomized error values, but error values of actual codon and amino-acid usages are actually

greater than would be expected by chance.

Conclusion: These unexpected findings suggest that selection against translation error has not

produced codon or amino-acid usages that minimize the effects of errors, and that even messages

with very different nucleotide compositions somehow maintain a relatively constant error value.

They raise the question: why do all known organisms use highly error-minimizing genetic codes,

but fail to minimize the errors in the mRNA messages they encode?

Background
Genetic codes are arranged in a way that is highly resistant to

errors, but whether the mRNAs that genomes encode also

resist errors has been largely untested. The standard genetic

code is found in most nuclear and mitochondrial genomes,

although some genomes have slight variations in the genetic

code (see [1] for review). The biochemical basis for many of

these variations is known, but their purpose remains unclear.

The extent to which a genetic code is resistant to errors (in

replication, transcription, or translation) can be defined by an
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'error value' [2,3], which is the sum of the differences in

amino-acid properties when changing from each codon to

each other codon that can be reached by a single-base substi-

tution (see Materials and methods). The standard genetic

code and all known variants resist error better (have a lower

error value) than do random codes for a wide range of differ-

ent amino-acid properties and models of random code gener-

ation [4-9], although the extent to which natural selection has

reached the best of all codes remains somewhat controversial

[10-13]. We now test the idea that organisms optimize their

codon usage as well as their genetic code: codons with low

error values might be used in preference to those with high

error values, to reduce the overall probability of error.

Different organisms use the four bases in varying amounts at

each of the three positions within the codon (that is, the aver-

age counts of each of the four bases in all the first positions of

all the codons in a genome are different from the counts in all

the second positions and the third positions) [1]. In particu-

lar, the first position is heavily biased towards purines, and

the second position is somewhat biased towards A and C.

These trends hold for all organisms in all three domains of

life. In addition, organisms vary extensively in GC content

(the fraction of bases that are G or C, as opposed to A or T) at

each of the three codon positions, which also affects the

amino-acid usage [1,14-16]. These features might be related

to the code's error-minimizing properties: organisms might

choose their codon and/or amino-acid usages in ways that

reduce errors during translation [17-20].

Previous research has suggested that the GC content of a

sequence can greatly affect its error-minimizing properties

[20], and that amino-acid and/or codon usage may be opti-

mized in Drosophila and mouse [19] but not in Escherichia

coli [18], but no global survey has yet been performed. If

mRNA messages are arranged in ways that minimize error, as

has been comprehensively established for the genetic code

itself (see for example [2,3,7]), this error minimization might

arise by adjusting the usage of individual codons or amino

acids, or by adjusting the overall base frequencies at each of

the three codon positions. In particular, the error values

might be especially stable against change in GC content, since

organisms have mRNAs that vary over a wide range of GC

content but vary little over the other two orthogonal axes of

nucleotide composition. However, it is also possible that the

genetic code was shaped under different selection pressures

than those acting in modern organisms, resulting in codon-

usage patterns that are random with respect to error

minimization.

Codon and amino-acid usage statistics are now available for

thousands of species from the Codon Usage Tabulated from

GenBank (CUTG) database [21]. We tested whether species

preferentially use codons with low error values; that is,

codons that, if misread, would tend to substitute a more sim-

ilar amino acid. To do this, we compared the error value of the

code weighted by the actual codon usages against the error

values of codes in which the codon or amino-acid usages had

been randomized. Thus, we tested three specific hypotheses:

first, that organisms choose codon usages that produce fewer

errors than permuted or randomly chosen codon usages; sec-

ond, that organisms choose amino-acid usages that produce

fewer errors than permuted or randomly chosen amino-acid

usages; and third, that the discrepancy in composition in the

three nucleotide positions is caused by selection of codons

that minimize errors in translation.

Results and discussion
Messages are not optimized

We used two different methods to compare the actual codon

usages to randomized codon usages. First, we used 'shuffled'

codon usages. In shuffled codon usages, the codons, amino

acids, or positional-base frequencies were randomly per-

muted. This method preserves the relative frequencies of the

the different codons, amino acids, or positional-base frequen-

cies, but changes their meanings. For example, if the original

amino-acid usage was 5%A, 10%G, and 2%W, the usage after

Table 1

Error values for biological and random codon usages

Archaea Bacteria Eukaryotes

Natural codon usages 67.7 ± 3.42 64.7 ± 1.77 63.8 ± 2.14

Codon permuted 52.4 ± 4.92 52.2 ± 5.15 52.7 ± 3.61

Codon random 52.6 ± 3.76 52.6 ± 3.47 52.4 ± 3.16

Amino acid permuted 61.6 ± 8.74 61.0 ± 6.95 61.1 ± 6.35

Amino acid random 61.0 ± 7.37 61.8 ± 6.96 61.7 ± 6.72

Positional base permuted 51.7 ± 6.49 52.3 ± 6.91 52.2 ± 5.44

Positional base random 52.1 ± 10.5 53.4 ± 12.6 52.1 ± 12.9

Mean ± standard deviation for each set of codon usages. The natural codon usages invariably have higher error values and lower standard deviations 
than any of the random or randomized codon usages: this pattern is consistent for all three domains of life.
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shuffling might be 5%A, 2%G, and 10%W. Second, we used

random codon usages that did not preserve the relative fre-

quencies of codons, amino acids, or positional-base frequen-

cies, but instead assigned each codon, amino acid, or

positional-base frequency a random number from a uniform

distribution, followed by normalization so that the frequen-

cies summed to one (see Materials and methods). We ana-

lyzed species in the three domains of life separately: 33

archaea, 457 bacteria, and 264 eukaryotes for which at least

50 genes were available.

From the distributions of code-error values for real and rand-

omized codon usages (Figure 1 first column, and Table 1), we

make three observations. First, the actual distribution of

error values in organisms was much tighter than in any of the

randomized usages (63.8 ≤ mean ≤ 67.7 and standard devia-

tion ≤ 3.42 for all domains). Second, both the permuted and

random codon usages produced code-error values signifi-

cantly lower than the corresponding values for actual codon

usages (P ≤ 0.05 by two-tailed paired t-test between actual

and shuffled or random codon usages). Finally, the shuffled

and random codon usages produced almost identical results

(P > 0.05 in all cases by two-tailed paired t-test).

The variance of the actual codon usages is significantly

smaller than the shuffled and random usages under each ran-

domization model and for all domains of life. The P-value

ranges are as follows: for archaea from 7.7 × 10-9 to 0.59

(where 0.59 is the only non-significant value), for bacteria

from 3.9 × 10-257 to 1.1. × 10-43, and for eukaryotes from 8.5 ×

10-131 to 5.5 × 10-10. The significance of the difference in vari-

ance between a shuffled and random usage varies considera-

bly (no consistent trend in P-values), probably depending on

each specific random sample.

The pattern was similar for shuffled and random amino-acid

usages, and for shuffled and random positional-base usages.

In all cases, the means for the shuffled and random distribu-

Code-error values for actual and permuted codon usagesFigure 1

Code-error values for actual and permuted codon usages. The usages are displayed for three randomization algorithms and each domain of life. Rows: 
archaea, bacteria, and eukaryotes. Columns (randomization algorithms): codon, amino acid, positional base. Black, biological (unpermuted); red, permuted; 
green, random. Variability is always much less in the biological codon usages (black lines) than in any of the random or randomized usages, and the mean is 
always higher, suggesting that the biological codon usages are constrained to a narrow band but are not optimized for error minimization.
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tions were similar to each other and lower than the mean for

the actual distribution (Figure 1, columns 2 and 3). The simi-

larities across domains are striking: the error values for codon

usages in all three domains of life fall in the same narrow

region.

Code error is not correlated with composition

To test whether the error value varied systematically with

nucleotide composition, we plotted the error value as a func-

tion of position in the tetrahedron of possible base composi-

tions (see Materials and methods for discussion). If the error

value of a message depended on the composition of the

codons, we would expect to see no correlation along the GC

axis, because the amount of natural variation along this axis

suggests that all values are selectively neutral and that there-

fore the code error is approximately the same. In contrast, we

would expect to see increasing error values with increasing

distance from the GC axis, constraining the biological varia-

tion in these other directions. However, contrary to these pre-

dictions, we find that for the real, permuted, and random

positional-base usages, there are clear differences both in

composition and in error at the three positions, but there is no

systematic variation of error with composition.

Figure 2 shows the composition of each of the three codon

positions and of the total in composition space, where the vol-

ume of a sphere is proportional to its error value. As expected,

we observe clear differences in composition between the

three codon positions. We can also see that the different

codon positions contribute very differently to the total error

value of the message. The second codon position determines

about 70% of the total error value, the first codon position

another 29%, and the third codon position less than 1%.

To highlight possible changes in code-error value along the

three compositional axes, which are difficult to see in the sim-

plex, we plotted code-error value versus composition along

each of the three axes separately. Figure 3 shows the code-

error values for the actual codon usages of bacteria along the

UC, UG, and UA axes. In the left column, the error values have

been scaled relative to the maximum value for each codon

position independently to demonstrate relative changes,

while in the right column the absolute values are displayed.

Results for archaea and eukaryotes are very similar to those

for bacteria (data not shown).

We applied the same analysis to permuted and random posi-

tional-base usages, which allowed us to examine the correla-

tions along a wider compositional range on all of the axes.

These codon usages form spherical distributions around the

center of the tetrahedron (Figure 4). For permuted usages,

the original compositional values are redistributed over the

three axes; the random usages show equal distributions for

each of the three codon positions with equal variation along

each axis. Figure 5 shows the corresponding scatterplots for

the permuted and random usages.

We found highly significant correlations between (total) code

error and position on each of the three orthogonal composi-

tion axes, except for the eukaryotes along the UG axis (Table

2). For total code error, the significant P-values averaged

0.0042 (range 1 × 10-6 to 0.03), explaining an average of 0.19

(range 0.020 to 0.37) of the variance in code error. However,

the correlation along the GC axis was not, in general, less than

the correlation along the other axes. In addition, we found no

significant correlations along the UG and UA axes for random

and permuted data sets (in a single case the correlation was

significant, but only explained 0.023 of the variation). Along

the UC axis, the correlations in random and shuffled bacterial

and eukaryotic usages are of similar magnitude to the corre-

lations in the natural usages. Together with the observation

that actual usage errors are typically higher than random

usage errors, these observations suggest that selection

against errors caused by variation along the different compo-

sition axes cannot explain observed trends in codon usage.

Conclusion
If organisms were under strong selection to minimize errors

in replication and translation, we would expect them to

choose codons that are less prone to error. Consequently, we

would expect that the actual codon, amino-acid, and posi-

tional-base usages would have lower error values than would

permuted versions. However, we found exactly the opposite:

the actual codon, amino-acid, and positional-base usages

produce more errors than randomly chosen compositions.

Relationship between base composition and code errorFigure 2

Relationship between base composition and code error. Bacterial codon 
usages are chosen to illustrate this relationship by plotting the base 
composition and code-error value for each codon position in the 
tetrahedral simplex (composition space). The error value for each species 
is plotted as a sphere with volume proportional to the error. Two 
perspectives are given. On the left is an oblique view to show variation 
along Chargaff's axis (G = C and A = T) and the relative contribution of 
each codon position to the error value. On the right is a view down 
Chargaff's axis to show the bias of each codon position. First position, 
yellow; second position, red; third position, blue; and total, green. As 
expected, the error value is always lowest at the third position (blue) as 
result of interconversion among synonymous codons and codons for 
similar amino acids.
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Consequently, our hypothesis that genetic messages (as well

as genetic codes) are optimized for error minimization was

not supported by the data. However, the low variance in

codon-usage error values in organisms suggests the intrigu-

ing alternative possibility that mRNAs are selected for a spe-

cific level of errors, rather than to minimize errors overall.

Because the rate of evolution is limited by mutation, it is pos-

sible that the ability to tune the rate of protein sequence evo-

lution by using error-prone codons has provided a selective

advantage to modern organisms. Intriguingly, recent

research suggests that the canonical genetic code allows tar-

get protein sequences to evolve far more rapidly than do the

alternative genetic codes [22]. Codon usage may also be tuned

for evolvability rather than for error minimization.

Another possible explanation for the limited variability in

error-minimization properties is that the genetic code was

shaped under very different selection pressures than those

acting in modern organisms. Today, other factors, including

directional mutation or selection for translation speed, may

greatly outweigh the benefits that could be obtained by using

error-minimizing codons or amino acids. However, such an

explanation would predict that modern usages would be ran-

dom with respect to code error, and would not predict the

near constancy of error values in actual organisms. This work

is consistent with the previous observations that messages

within E. coli are not optimized for error minimization at the

codon level [18] and that codon usage can greatly influence

error minimization [20], and extends the analysis to a sample

of over 700 bacterial, archaeal, and eukaryotic species. How-

ever, it does not confirm the observation that the amino-acid

usage in some species is chosen in a way that minimizes

errors [17,19]. This latter discrepancy could be due to the dif-

ferent sampling of genes or the different methods used to

calculate the error value (single-step versus multi-step

mutations).

As previously observed, we confirm that the three nucleotide

positions differ greatly in nucleotide composition [1] and in

error minimization [3]. However, we find no evidence for a

relationship between these two properties. The universal

maintenance of these patterns across species suggests that

some kind of selection is involved, but the factors influencing

this selection remain undefined. In particular, positional

base-composition patterns orthogonal to the actual base-

composition patterns, and occupying regions of composition

space in which no organism has ever been observed, have

errors no worse than do the actual usage patterns. This simi-

larity strongly suggests that selection for error minimization

Variation in code error along the three axes in composition space: G+A, G+C, G+UFigure 3

Variation in code error along the three axes in composition space: G+A, 
G+C, G+U. Scatterplots of variation in code-error value along each of the 
three axes that make up the composition space. Top row, UC content; 
middle row, UG content; bottom row, UA content. Left column, error 
value at each codon position individually scaled relative to the maximum 
value for that position (maximum = 1.0). Right column, absolute error 
values for each codon position. First position, yellow; second position, red; 
third position, blue; and total, green. Data shown are for bacteria, though 
results were similar for the other two domains (data not shown). 
Although substantial correlations are revealed in the scaled data, these 
correlations contribute little to the overall error value, which is 
dominated by the second codon position.
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Base composition by codon position for randomized base usagesFigure 4

Base composition by codon position for randomized base usages. Left: 
permuted by positional bases, where the variability at each position is 
preserved, but the direction of the variability is rotated by 90 degrees 
around an arbitrary axis. Right: randomly chosen positional bases, where 
the amount of variability and the size of the correlations between axes at 
each position are destroyed. First position, yellow; second position, red; 
third position, blue; and total, green. Compare this figure with biological 
codon usages in Figure 2.
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does not play a role in keeping genomes within a narrow

region of composition space. The nucleotide composition of a

message has relatively little effect on its error value, suggest-

ing that other factors maintain the systematic biases in com-

position at the three codon positions that are observed in all

species and domains of life.

Thus, organisms do not choose their codon, amino-acid, or

nucleotide composition in a way that minimizes the effects of

errors. This observation is highly unexpected in light of the

great extent to which the genetic code itself is arranged in an

error-minimizing fashion, and suggests that some factor

underlying the near-constant error values of codon usage

across genomes in all three domains of life remains to be

discovered.

Materials and methods
We addressed our first and second hypotheses, that genetic

messages are optimized for error minimization either at the

codon or amino-acid level, by comparing the actual codon

usages from organisms to first, permuted codon usages, in

which the codon counts were preserved but the codons to

which those counts applied were randomized, and second, to

completely random codon usages. We addressed our third

hypothesis, that the code error is robust to variation in GC

content but not robust to other compositional variation, by

examining the correlation between composition along each of

the three compositional axes (GC, GU, and GA) and the code-

error values for real, permuted, and random codon usages.

Data source

We used the CUTG database as source for codon usages found

in organisms [21]. We repeated the analysis separately for the

three domains of life (archaea, bacteria, and eukaryotes). The

species were classified according to the NCBI Taxonomy. We

analyzed the 754 species for which at least 50 genes were

available: 33 archaea, 457 bacteria, and 264 eukaryotes.

Mitochondrial sequences were excluded.

Calculating the error value of a message

The process of calculating an error value for a message (or

codon usage) uses the basic method for calculating an error

value for a genetic code [2,3], with the addition that the error

value of a change from one codon to another is weighted by

the frequency of the starting codon [18]. To maintain consist-

ency with previous work [2,3], we measured the distance

between amino acids using polar requirement, a measure of

hydrophobicity [23].

The error value of a code is given by:

For all possible mutations b at each of the three codon posi-

tions p in all 64 codons c, we sum the weighted size of the

change in amino-acid property, for example, hydrophobicity.

The change is given by the difference in the amino-acid prop-

erty of the amino acids encoded by the old and new codons,

νold - νnew, weighted by the abundance of the codon wc, the

effect of the base position wp, and the probability of mutation

to the new base given the codon and position wb|(c,p). A

'mutation' from a codon to itself does not add to the error

value, because the same amino acid is present before and

after the 'mutation'. Stop codons are excluded from the calcu-

lation. Codon frequencies were taken from the codon usage

database or assigned at random. We used a range of transi-

tion/transversion biases from 1:1 to 10:1, although there was

no qualitative effect on the results. Results shown are for a

transition/transversion bias of 4:3, and equal weighting for

the three base positions.

Absolute error values for permuted bacterial codon usagesFigure 5

Absolute error values for permuted bacterial codon usages. The variation 
in code-error values is shown along the three compositional axes. 
Compare this figure with biological codon usages in Figure 3. Top row, UC 
content; middle row, UG content; bottom row, UA content. Left column, 
permuted positional-base usages. Right column, random positional-base 
usages. First position, yellow; second position, red; third position, blue; 
and total, green. Lack of correlation along any axis and wide range suggests 
that constraints on positional-base usage do not explain the pattern of 
codon usage error values in organisms.
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Creating permuted and random codon usages

We can calculate the amino-acid usage and positional-base

usage from a given codon usage. The frequency of an amino

acid is the sum of the frequencies of each of its codons. A posi-

tional-base usage is the frequency of each of the four bases at

each of the three codon positions. For example, the frequency

of U at the first codon position is the sum of the frequencies

of all codons that start with a U. Thus, each codon usage is

associated with one unique amino-acid usage and one posi-

tional-base usage.

However, many different codon usages correspond to the

same amino-acid usage. To predict the codon usage associ-

ated with an amino-acid usage, we used the assumption that

all codons coding for the same amino acid occur with equal

frequencies, so that each gets an equal share of the amino-

acid frequency. Consequently, blocks of codons (coding for

the same amino acid) are assigned the same frequency. The

prediction of the frequency of a codon from a positional-base

usage is calculated as the product of the positional-base fre-

quencies of its bases at the three codon positions. This

method reflects the idea that if a species were under selection

for amino-acid usage only, there would be no a priori reason

to assign different frequencies to the different codons for a

given amino acid. Similarly, to predict the codon usage asso-

ciated with a particular positional-base usage, we take the

product of the frequency of the appropriate base at each of the

three codon positions. For example, the frequency of the

codon AUG is the product of the frequency of A at the first

position, U at the second position, and G at the third position.

With the above transformations in mind, we can shuffle fre-

quencies or choose random frequencies at three levels:

codons, amino acids, and positional bases. After creating a

permuted or random amino-acid usage or positional-base

usage, we calculate the corresponding codon usage as

described above (because the error value calculations require

codon usages as input).

Statistics

We used the two-tailed paired t-test to compare the means of

the various distributions, because we examined the same

sample before and after randomization. Differences in vari-

ance between the error values of the actual usages and the

permuted and random usages were calculated by a two-tailed

F-test.

Visualization

The (positional) composition of the codon usages can be con-

veniently visualized with the program MAGE [24], using a

presentation scheme in which the volume of a sphere is pro-

portional to the error value at a particular codon position. The

base frequency of a set of bases, such as a sequence of nucle-

otides or all bases at a particular codon position, can be visu-

alized as a point in composition space. The base frequency is

described as a vector of the fraction of each of the four bases

(U, C, A, and G) in the set. These fractions form the four coor-

dinates to describe sequence composition. When visualizing

the space of all possible compositions, we only have three

dimensions to work with. Three unique ways divide the four

bases into sets of two, which provide an orthogonal coordi-

nate system. The three axes are the lines where G+C equals

A+U, G+U equals A+C, and G+A equals U+C. The GC (or AU)

axis is also called Chargaff's axis, because it is the line where

all perfectly Watson-Crick base-paired regions would reside.

Composition space can thus be visualized as a tetrahedral

unit simplex [25].

Table 2

Correlations between composition and code-error value

UC (or AG) UG (or AC) UA (or GC)

Bacteria Natural 0.23 (1 × 10-6) 0.14 (1 × 10-6) 0.023 (0.0012)

Permuted 0.017 (0.0055) 0.0020 (0.35) 0.023 (0.0011)

Random 0.23 (1 × 10-6) 0.0026 (0.28) 0.00064 (0.59)

Eukaryotes Natural 0.21 (1 × 10-6) 0.0021 (0.46) 0.12 (1 × 10-6)

Permuted 0.14 (1 × 10-6) 0.00012 (0.86) 0.0033 (0.35)

Random 0.20 (1 × 10-6) 0.0014 (0.55) 0.0069 (0.18)

Archaea Natural 0.14 (0.029) 0.28 (0.0016) 0.37 (0.00017)

Permuted 0.073 (0.13) 0.016 (0.49) 0.029 (0.34)

Random 0.10 (0.071) 0.00056 (0.90) 0.025 (0.38)

Coefficient of determination (r2) and P-value for natural and representative randomized usages. Because of the much smaller sample size in archaea, 
the significance of the correlations is generally much lower than in the other two domains (n = 33 for archaea, 264 for eukaryotes, and 457 for 
bacteria).
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Additional data files
The Python code and the raw data to perform the described

code-error analysis are available as an Additional data file

with the online version of this paper. Additional data file 1 is

a tar archive containing the used CUTG records, separated for

archaea, bacteria, and eukaryotes, the data used to produce

the histograms in Figure 1, the kinemages used to produce

Figures 2 and 4, and the data used to produce the scatterplots

in Figures 3 and 5.

Additional data file 1The Python code and the raw data to perform the described code-error analysisA tar archive containing the used CUTG records, separated for archaea, bacteria, and eukaryotes, the data used to produce the his-tograms in Figure 1, the kinemages used to produce Figures 2 and 4, and the data used to produce the scatterplots in Figures 3 and 5.Click here for file
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