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Abstract
The role of mast cell infiltrates in the pathology of radiation damage to the lung has been a subject
of continuing investigation over the past four decades. This has been accompanied by a number of
proposals as to how mast cells and the secretory products thereof participate in the generation of
acute inflammation (pneumonitis) and the chronic process of collagen deposition (fibrosis). An
additional pathophysiology examines the possible connection between mast cell hyperplasia and
pulmonary hypertension through the release of vasoactive mediators. The timing and magnitude of
pneumonitis and fibrosis are known to vary tremendously among different genetic mouse strains
and animal species. Therefore, we have systematically compared mast cell numbers in lung
sections from nine mouse strains, two rat strains and nonhuman primates (NHP) after whole
thorax irradiation (WTI) at doses ranging from 10–15 Gy and at the time of entering respiratory
distress. Mice of the BALB/c strain had a dramatic increase in interstitial mast cell numbers,
similar to WAG/Rij and August rats, while relatively low levels of mast cell infiltrate were
observed in other mouse strains (CBA, C3H, B6, C57L, WHT and TO mice). Enumeration of
mast cell number in five NHPs (rhesus macaque), exhibiting severe pneumonitis at 17 weeks after
10 Gy WTI, also indicated a low response shared by the majority of mouse strains. There appeared
to be no relationship between the mast cell response and the strain-dependent susceptibility
towards pneumonitis or fibrosis. Further investigations are required to explore the possible
participation of mast cells in mediating specific vascular responses and whether a genetically
diverse mast cell response occurs in humans.

INTRODUCTION
The human lung is among the most radiosensitive tissues of the body; it presents as a
delayed but acute onset of an inflammatory pneumonitis reaction at 2 to 6 months after
radiation exposure that may or may not progress to chronic pulmonary fibrosis (1).
Radiation pneumonitis is a particularly severe and life-threatening condition when large lung
volumes are exposed in radiotherapy (2–4) or accidental nuclear events (5, 6). The long
latency before onset of injury is consistent with initial DNA damage to slow proliferating
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epithelial and/or endothelial cells that then rapidly evolves into a sterile inflammatory
process involving a complex interplay of various inflammatory cell infiltrates and cytokines
(7, 8). Among the possible cell types actively recruited in radiation lung pathology, mast
cells are of interest because they have multifunctional properties that initiate not only IgE-
dependent allergic diseases but also play a fundamental role in innate and adaptive immune
responses and inflammatory autoimmune diseases (9). An influx of mast cells have been
documented as an accompaniment to radiation pneumonitis (alveolitis), most commonly in
experimental studies in rats, where their pathophysiological significance has been a subject
of continuing investigation over the past four decades (10–18). The timing and extent of
pneumonitis and fibrosis are known to vary tremendously among heterogeneous mouse
strains and animal species (19–23). We systemically compared pulmonary mast cell
numbers during the period of lethal lung injury in various rodent strains and in rhesus
macaques to determine if the level of mast cell hyperplasia is diverse and if it associates
with genetically determined variations in pneumonitic or fibrogenic responses.

MATERIALS AND METHODS
Male BALB/c (BALB/cAnNCrl, Charles River Laboratories International, Inc., Wilmington,
MA), and CBA/J, C57BL/6J, C57L/J, C57BR/cdJ and A/J mice (Jackson Laboratory, Bar
Harbor, ME) were housed under identical conditions in approved facilities at the
Massachusetts Institute of Technology (MIT). Male WHT mice (Gray Laboratory,
Northwood, Middlesex, UK), male TO mice (Tizzers’ Original, Hammersmith Hospital,
London, UK) and male August rats (MRC National Institute for Medical Research, Mill
Hill, Middlesex, UK) were housed at the Institute of Cancer Research (ICR), Sutton, Surrey,
UK. Female and male WAG/RijCmcr rats were housed in a moderate security barrier
facility at the Medical College of Wisconsin (MCW). All facilities were free of known
pathogenic organisms and experiments were approved by Institutional Animal Care and Use
Committees (at MIT and MCW) or performed in accordance with the Protection of Animals
Act, United Kingdom (at ICR).

Rhesus macaques were juvenile males of Chinese origin (3–5 kg) obtained from a
commercial vendor (AlphaGenesis, Yemassee, SC). Animals were prescreened by
tuberculin testing and CT scans of the chest. Animals were socially housed in pairs. All
animal procedures were performed in accordance with the Guide for Care and Use of
Laboratory Animals and followed protocols for avoidance of pain and discomfort,
environmental enrichment and psychological well being approved by the Wake Forest
School of Medicine (WFSM) Institutional Animal Care and Use Committee. Wake Forest
School of Medicine is accredited by the Association for the Assessment and Accreditation of
Laboratory Animal Care.

The different WTI treatments and animals used for comparison of mast cell numbers in the
irradiated lungs together with the main pathologies presented at the time of euthanization are
shown in Table 1 and as detailed in previous reports for rodents (12, 18, 19, 23, 24). Rhesus
macaques were anesthetized with ketamine and dexmedetomidine and placed supine with
arms extended overhead and lightly restrained to prevent movement. A single-fraction dose
of 10 Gy was delivered to the midline (nominal depth 4.5 cm), using 6 MV X rays from a
clinical linear accelerator (Varian Medical Systems, Palo Alto, CA). This dose was delivered
using isocentric setup for a pair of equally weighted (50% of the dose each) parallel-opposed
anterior and posterior beams, 10 × 12.5 cm2, at a nominal dose rate of 200 cGy/min. For the
anterior beam a 1-cm flexible slab of tissue-equivalent material was placed on the anterior
chest to ensure dose build-up to the anterior lung surface, and a 15° physical wedge was
placed in the beam, toe-inferiorly, to compensate for the superior-inferior slope of the NHP
chest and provide better dose homogeneity to the mediastinum.
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The physical condition of the animals were closely monitored and the animals were
euthanized during the period of respiratory distress as previously reported (22, 23, 25).
NHPs were euthanized 4 months postirradiation. Post-mortem, the rodents’ lungs were
inflated with 10% neutral buffered formalin and for NHPs, ~1 g samples were immersion
fixed in 10% neutral buffered formalin. Tissues were processed for histology and mast cells
were selectively stained heterochromatically with azure A (pH 1.5–1.7) or toluidine blue
(pH 2–4.6) and counted with a calibrated graticule to assess their numbers per mm2 lung
section.

RESULTS
The radiation doses applied in these studies proved to be lethal. The mast cells were
enumerated from animals exhibiting signs of respiratory distress, but at times that varied
depending on the strain and species. For most mouse strains (CBA, C57L, C57BR, BALB/c,
A/J, WHT and TO) this occurred over 10 to 26 weeks after 10–15 Gy WTI while C57BL/6
mice survived longer to 28–32 weeks after 15 Gy. The type of pathology present at autopsy
also varied, with CBA and C57L mice showing exclusive signs of severe pneumonitis
(reddened and firm lungs with increased tissue mass) while C57BR, BALB/c, A/J, WHT,
TO and C57BL/6 mice presented with a mixture of pneumonitis and pleural effusions (22,
23). August and WAG/Rij rats exhibited similar symptoms of pneumonitis and
accumulations of pleural fluid at 7 to 8 weeks after 14 or 15 Gy. While the five rhesus
macaques receiving 10 Gy WTI showed overt pneumonitis (multifocal to coalescing regions
of increased firmness with tan to grey discoloration) with significant increase in lung tissue
mass (average 59 g) compared to three unirradiated controls (average 33 g).

In unirradiated control mice (at 18–28 weeks after sham irradiation) very few mast cells
were found throughout the lung tissue (average of 4.4 cells/mm2 of all mouse strains) while
lungs from irradiated CBA, C57L, C57BL/6, A/J, C57BR, WHT and TO mice showed an
increase in mast cell numbers (0–62 cells/mm2), mostly confined to the interstitium (Fig. 1).
However, the level of this increase differed dramatically for irradiated BALB/c mice, which
showed significantly higher numbers of mast cells (91–369 cells/mm2) even at relatively
low-radiation doses (10 and 12.5 Gy) (Fig. 1). A large influx of interstitial mast cells was
also observed in both irradiated August and WAG/Rij rats (average 273 and 269 mast cells/
mm2, respectively), the latter being consistent with the values obtained previously by anti-
tryptase staining (18). The five rhesus monkeys receiving 10 Gy showed a much lower
average mast cell number (average 22 mast cells/mm2) than BALB/c mice or rats. This level
resembled many of the other mouse strains but was not significantly different from lung
sections obtained from three unirradiated control monkeys (average 45 mast cells/mm2).

Compiled in Fig. 2 are the average mast cell densities from each of the eight irradiated
mouse strains together with the values obtained from the two rat strains and the rhesus
macaques. Also included for comparison is the published data of mast cell numbers from
C3H, C57BL/6 (B6), AKR and KK mouse strains at the time of respiratory distress after 18
Gy WTI (16, 17). Thus an overall evaluation among 11 different mouse strains shows a
moderate increase in mast cell infiltrates except in BALB/c mice that exhibited about tenfold
higher levels. The latter was similar to the August and WAG/Rij rats while the rhesus
macaques had mast cell numbers at levels comparable to the other mouse strains.

DISCUSSION
The wide variation in the type, sensitivity and timing of radiation injury to the lung among
different mouse strains as well as among other laboratory animal species offers the
opportunity to causally link specific responses such as mast cell hyperplasia with clinically

Down et al. Page 3

Radiat Res. Author manuscript; available in PMC 2014 August 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



relevant outcomes. This approach has been employed extensively in associating distinct
radiobiological phenotypes with certain candidate genes aimed at allowing the recognition
of sensitive patients undergoing radiation therapy and identifying targets for therapeutic
intervention (26–28). However, some mouse models produce a response that are not
reflected in the human phenotype and may therefore render the applicability of genetic
analyses invalid. The major problem has been the inclusion of the C57BL/6 mouse strain in
many of these genetic studies based on earlier histological studies that they are “fibrosis
prone” (20, 21) and often used with the assumption that they succumb to lethality attributed
to this particular lesion. Large accumulations of compressive pleural fluid can, however,
account for mortality rather than fibrosis at late times after WTI (12, 23). Thus the elongated
time of onset required for complete expression of lung injury and the intrusion of unrelated
pleural effusions compromises the proper histological evaluation of pulmonary pathology in
this strain. This may limit their application in evaluating therapeutics destined for FDA
approval under the so-called “animal rule” (21 CFR Parts 314 and 601) (22, 29, 30). In the
current study, C57BL/6 mice showed a significant increase in mast cell numbers that were
comparable to many other mouse strains including those that exhibit severe pneumonitis at
earlier times and without the problem of pleural effusions (CBA and C57L mice). In the
previous study of Haston et al. (16) comparing C3H and C57BL/6 strains also at the time of
respiratory distress but at a higher dose of 18 Gy, the C57BL/6 strain appeared to show a
lower mast cell response. As the issue of survival-limiting pleural effusions was not
considered as possibly preventing the full development of both lung injury and mast cell
hyperplasia, the claimed association with the pneumonitis (alveolitis) phenotype remains
questionable. Additionally, we found that the mast cell numbers were similarly low in the
C57L mouse strain but that this is more sensitive to both pneumonitis and fibrosis (23, 30).
This enables us to strengthen our conclusion that the pneumonitis or fibrosis phenotypes are
not strictly genetically linked to the mast cell response.

The BALB/c mouse strain displayed a remarkable increase in mast cell infiltrates amounting
to about tenfold higher cell numbers as compared to the other 10 mouse strains. Indeed, this
mouse strain stands out as producing mast cell numbers that are comparable to the high
levels found in August and WAG/Rij rats and provides an opportunity to more definitively
assess other features that may be causally related to excessive mast cell hyperplasia. Of
importance in this regard are the potent vasoactive mediators such as histamine and
serotonin that are traditionally known to be secreted by mast cells and are known to be also
elevated in the irradiated rat lung (15). These in turn may produce secondary neointimal
vascular changes that are typically reported on histological examination of the lungs from
irradiated rats (18, 31, 32) and may be causally related to the presentation of pulmonary
arterial hypertension and right ventricular hypertrophy (31–33).

The release of renin triggers angiotensin formation as the rate-limiting enzyme in the renin-
angiotensin system (RAS) cascade and has recently been documented to be produced locally
by mast cells (34) but it remains speculative as to how this would play a role in pulmonary
pathophysiology. Incidentally, treatment of rats with captopril, that interferes in the renin-
angiotensin system cascade downstream of renin as an inhibitor of angiotensin-converting
enzyme (ACE) produced by pulmonary endothelial cells, affords significant mitigation of
radiation lung injury (35, 36). Captopril is additionally capable of reducing the number of
infiltrating mast cells (37). Further studies are therefore warranted to investigate whether the
radiation-induced increase in lung mast cell numbers and local renin release set the stage for
renin-angiotensin system in radiation injury and provide a new target for therapeutic
intervention. Other treatments known to decrease and/or delay both radiation lung injury and
mast cell numbers include anti-CD40 ligand antibody in C57BL/6 (38) and the tyrosine
inhibitor imatinib in C3H, AKR and KK mice (17). These agents are pleotropic and known
to affect various cell types, thus this correlation does not establish whether a reduction in
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mast cell numbers is an effect or cause of the disease. Furthermore, these investigations
were limited to mouse strains that exhibit a relatively moderate elevation in mast cell
numbers after WTI (Fig. 2) and where there would be an interest to include high mast cell
responders such as BALB/c mice.

Our enumeration of mast cells in the lungs of NHPs is of particular relevance to assessing
how the mast cell response can be extrapolated to humans experiencing radiation lung
injury. In this case, rhesus macaques exhibited severe and potentially lethal radiation
pneumonitis at the upper threshold of 10 Gy and at 4 months after WTI; this is entirely
consistent with the picture in patients receiving wide-field radiotherapy (3, 4, 30). The mast
cell counts, however, were not significantly increased among the five treated monkeys
compared to three control animals and clearly contrasted with the high levels observed after
irradiation in rats and in the BALB/c mouse strain. A lack of an overt mast cell response was
similarly reported in baboons showing radiation lung damage (39). This evidence implies
that most primates may not usually be predisposed to the large mast cell infiltrates as
witnessed in rats and BALB/c mice. Nonetheless, these comparisons do not exclude the
possibility that a certain subpopulation of patients may be identified as being susceptible to
mast cell hyperplasia during radiation injury and could benefit from interventional therapies
aimed at ameliorating its pathological consequences.
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FIG. 1.
Mast cell counts in the lungs from individual mice at the time of respiratory distress after
WTI compared and the standard deviation (SD) from unirradiated control mice of all strains.
Mast cells in irradiated BALB/c mice were significantly higher than any of the other mouse
strains (P > 0.05, Mann-Whitney U test).

Down et al. Page 8

Radiat Res. Author manuscript; available in PMC 2014 August 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



FIG. 2.
Comparison of mean mast cell counts (± 1 SEM) from the irradiated lungs of the different
mouse and rat strains and NHPs. Mast cells were enumerated using toluidine blue staining
except for lung sections from WHT and TO mice and for August rats where azure A staining
was used. Also included for comparison are the mean mast cell numbers reported for
C57BL/6 and C3H mice* (16) and for C3H, AKR and KK mice** (17) after 18 Gy WTI.
The number of animals per group are indicated.
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