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Merchant H, Zarco W, Prado L. Do we have a common mechanism
for measuring time in the hundreds of millisecond range? Evidence from
multiple-interval timing tasks. J Neurophysiol 99: 939–949, 2008. First
published December 19, 2007; doi:10.1152/jn.01225.2007. In the
present study we examined the performance variability of a group of
13 subjects in eight different tasks that involved the processing of
temporal intervals in the subsecond range. These tasks differed in their
sensorimotor processing (S; perception vs. production), the modality
of the stimuli used to define the intervals (M; auditory vs. visual), and
the number of intervals (N; one or four). Different analytical tech-
niques were used to determine the existence of a central or distributed
timing mechanism across tasks. The results showed a linear increase
in performance variability as a function of the interval duration in all
tasks. However, this compliance of the scalar property of interval
timing was accompanied by a strong effect of S, N, and M and the
interaction between these variables on the subjects’ temporal accu-
racy. Thus the performance variability was larger not only in percep-
tual tasks than that in motor-timing tasks, but also using visual rather
than auditory stimuli, and decreased as a function of the number of
intervals. These results suggest the existence of a partially overlapping
distributed mechanism underlying the ability to quantify time in
different contexts.

I N T R O D U C T I O N

Organisms have developed different mechanisms to quantify
time over a wide range of durations, from microseconds to
daily circadian rhythms. It has been suggested that in the
middle of these extremes there is a timing mechanism devoted
to the hundreds of millisecond scale (Harrington and Haaland
1999; Hazeltine et al. 1997), which is the range of durations
used in the present study. Interval timing in this range is a
prerequisite in several behaviors, including the perception and
production of speech, music, and dance, as well as the perfor-
mance of sports and estimation of the time that remains before
the occurrence of an important event, such as estimating time
to contact (Merchant and Georgopoulos 2006).

Different sources of information support the hypothesis of a
common timing mechanism in hundreds of milliseconds. First,
several psychological studies have shown that the temporal
performance follows the scalar property, which defines a linear
relationship between the variability of temporal performance
and interval duration, in conformity with Weber’s law (Matell
and Meck 2000). Thus Weber’s law is given as SD(T) � kT,
where k is a constant corresponding to the Weber fraction. In
this sense, the coefficients of variation (�/�) or the Weber

fractions show similar values in a variety of tasks and species,
suggesting a dedicated temporal mechanism in this time range
(Gibbon et al. 1997). For example, in a human discrimination
task of time intervals, Getty (1975) described a constant Weber
fraction for intervals between 200 and 2,000 ms. Now, another
concept in the literature is that the overall variability in a
timing task can be dissociated into both time-dependent and
time-independent sources of variation (Wing and Kristofferson
1973). Different quantitative and paradigmatic strategies have
been used to dissociate the total performance variability. The
slope method, for instance, uses a generalized form of Weber’s
law in which a linear regression between the variability and the
squared interval duration is performed. The resulting slope and
intercept correspond to the time-dependent and time-indepen-
dent processes, respectively (Ivry and Hazeltine 1995). It has
been demonstrated that the slopes of an interval-discrimination
and a repetitive-tapping task are similar for a range of intervals
from 325 to 550 ms (Ivry and Hazeltine 1995), again support-
ing the view of a general interval clock in a variety of contexts.
In addition, it has been shown that the temporal variability
among individual’s performance is correlated between tasks
involving explicit timing, such as interval-discrimination and
tapping tasks (Keele et al. 1985). This implies that subjects
who are good timers in one behavioral context are also good
timers in another. In contrast, no such correlations were ob-
served between the acuity on the interval-discrimination task
and the performance variability in a circle-drawing task, where
subjects used an implicit rather than an explicit timing strategy
(Roberstson et al. 1999; Spencer and Zelaznik 2003). Finally,
learning studies have demonstrated that intensive training in a
timing context can be generalized to other timing behaviors,
favoring the common mechanism hypothesis (Buonomano and
Karmarkar 2002). For example, training for many days to
discriminate time intervals caused an improvement in temporal
performance in a motor timing task (Meegan et al. 2000).

The existence of a common timing mechanism implies that
the neural substrate of the “internal clock” should be indepen-
dent of modality, task, and context, as long as the subject’s
sensorimotor performance requires a carefully timed behavior
(Buonomano and Karmarkar 2002; Zelaznik et al. 2002).
However, the subjective perception or production of time
intervals can be influenced by other factors in addition to actual
duration. For instance, temporal performance is more accurate
for 1) filled (continuous stimuli) rather than empty intervals
(Rammsayer and Lima 1991), 2) auditory rather than visual
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stimuli (Goldstone and Lhamon 1974), and 3) multiple iso-
chronous intervals rather than single intervals (Ivry and Hazel-
tine 1995). Since the interval structure has an important effect
on timing sensitivity, the obvious question is whether these
factors directly or indirectly modulate the “centralized clock,”
or whether it is more appropriate to start thinking of more than
one timing mechanism (Grondin 2001). Of course, heuristi-
cally, the concept of a single clock is simpler and well accepted
in the timing community. Indeed, most of the factors that
modify the temporal variability have been explained using a
conceptual framework where a single timing mechanism is
interacting in a context-dependent fashion with a trigger sys-
tem that defines the onset–offset of time accumulation, as well
as with memory and decision-making processes (Matell and
Meck 2000; Treisman et al. 1992). Nevertheless, few studies
have investigated how different aspects of the interval structure
interact simultaneously with the timing performance variability
and whether, in this case, the hypothesis of a single timing
mechanism still holds.

In the present study we examined the performance variabil-
ity of a group of 13 subjects in eight different tasks that
involved the temporal processing of intervals in the range of
350 to 1,000 ms. However, these tasks differed in their senso-
rimotor processing, the modality of the stimuli used to define
the intervals, and the number of intervals. Different analyses
were used to determine the weight of the time-independent
parameters of the tasks on the scalar property of interval
timing. The results showed a complex interaction between the
temporal accuracy of subjects and the sensorimotor processing,
modality, and interval number involved in the tasks.

M E T H O D S

Human subjects

Thirteen (six male, seven female) subjects, mean (SD) age of 27.2
(2.7) yr (range: 23–32 yr), participated in this study. They were
right-handed, had normal or corrected vision, and were naive about
the task and purpose of the experiment. All subjects volunteered and
gave consent for this study before commencement of experiments.

The experiments were approved by the appropriate local ethics com-
mittees.

Apparatus

Subjects were seated comfortably on a chair facing a computer
monitor (Dell 19-in. Optiplex) in a quiet experimental room and
tapped on a push button (4-cm diameter, Model 7717; Crest, Dassel,
MN) during the production tasks. In addition, during the perceptual
tasks subjects were asked to push a key on the computer keyboard to
reflect their decisions. Subjects could not see their hand during
tapping. The stimulus presentation and collection of the behavioral
responses were controlled by the computer on a custom-made Visual
Basic program (Microsoft Visual Basic 6.0, 1998). Auditory stimuli
were presented through noise-canceling headphones (MDR-NC50;
Sony) and the sampling rate of the push button was 200 Hz.

Task 1: production of multiple time intervals (MTTs)

EXPERIMENTAL TASK. Subjects were trained to produce tapping
movements on a push-button device synchronized to a sensory stim-
ulus and then to continue tapping with the same interval without
sensory stimulus (Fig. 1). At the beginning of the trial, the stimuli
were presented with a constant interval. Subjects were required to
push a button each time a stimulus was presented, which resulted in
a stimulus–movement synchronization. After five consecutive syn-
chronized movements the stimulus was eliminated, and the subjects
continued tapping with the same interval for four additional intervals.
Feedback was displayed on the screen, indicating the human subject’s
mean intertap interval and SD for the continuation phase of the trial.
The interval separating the synchronization and the continuation
phase was not included in this feedback measure or in further
analyses. The intertrial interval was 1.5 s.

STIMULI. The stimuli were tones (33 ms, 2,000 Hz, 50 dB) or visual
stimuli in the form of a green square (4-cm side) presented in the
center of a computer screen for 33 ms. The frame rate of the video
board (60 Hz) was accurately calibrated and the duration of visual
presentations was controlled precisely in terms of the number of
frames. Both the visual and auditory stimuli, although brief, were fully
detectable. The interval durations were 350, 450, 550, 650, 850, or
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interval tasks. S, stimulus; R, response.
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1,000 ms. Intervals were chosen pseudorandomly. Ten repetitions
were collected for each interval.

Task 2: production of a single time interval (STT)

EXPERIMENTAL TASK. For each interval there was a training and
an execution period (Fig. 1). In the training period, a target interval
(two stimuli separated by a particular duration) was presented at
the beginning of the trial. Then the subject tapped twice on the
push button to produce the same interval. This was repeated for
five training trials, after which the subject entered the execution
period, where he/she produced another 10 single intervals after a
go signal appeared on the screen. Again, feedback was displayed
on the screen, indicating the subject’s intertap interval and SD
across trials of the same interval during the execution period. The
intertrial interval was 1.5 s.

STIMULI. The same stimuli and interval durations as those for MTT
were used. Ten trials during the execution period were collected for a
particular interval duration before changing to another one. The
intervals were chosen pseudorandomly.

Task 3: categorization of time intervals (CAT)

EXPERIMENTAL TASK. The subjects were trained first to press the
“n” key on the keyboard after the presentation of an extremely short
interval, or to press the “m” key after the presentation an extremely
long interval. At least 20 trials (short/long) were performed in this
training phase. Categorization feedback was provided during the
training phase, with the word “correct” or “incorrect” on the screen.
Once the subject learned to associate the short and long intervals with
the response on the “n” key and the “m” key, respectively, interme-
diate intervals were also presented. Thus subjects were required to
push one of the keys to indicate their categorical decision for the eight
intervals using acquired category boundaries and an implicit standard
interval [middle interval (implicit base interval, IBI)] set during the
training period (Fig. 1). The intertrial interval was 1.5 s.

STIMULI. The stimuli were tones (33 ms, 2,000 Hz, 50 dB) or visual
stimuli in the form of a green square (4-cm side), presented in the
center of a computer screen for 33 ms. Eight intervals were used for
each of the five different implicit intervals. For the 350-ms IBI the
intervals were 233, 283, 316, 333, 366, 383, 416, and 466. For 450-ms
IBI the intervals were 299, 366, 416, 433, 466, 483, 533, and 599. For
the 650-ms IBI the intervals were 433, 533, 583, 633, 666, 699, 766,
and 866. For the 850-ms IBI the intervals were 566, 666, 783, 816,
883, 916, 1,033, and 1,133. Finally, for the 1,000-ms IBI the intervals
were 699, 816, 933, 966, 1,033, 1,066, 1,183, and 1,299. These
intervals were carefully chosen to maximize the quality of the thresh-
old boundaries (Fig. 2). In all cases, the first four were considered
short intervals, whereas the last four were long intervals. One repeti-
tion of the task for each IBI included the categorization of the eight
intervals. The intervals were presented pseudorandomly for each IBI.
Ten repetitions were collected for one IBI before moving to the next
interval.

SD CALCULATION. The difference threshold is equivalent to one SD
from the implicit standard interval (Getty 1975; Keele et al. 1985). To
calculate this threshold a psychometric curve was constructed, plot-
ting the probability of long-interval categorization as a function of the
interval. A logistic function was fitted to these data and the SD was
computed as half the subtraction of the interval at 0.79p and that at
0.21p. Details about the logistic function fitting are subsequently
given.

Task 4: discrimination of time intervals (DIS)

EXPERIMENTAL TASK. The subjects were trained to discriminate
between a base and a comparison interval, pressing the “n” key on the
keyboard for a shorter comparison interval or the “m” key after the
presentation of a longer comparison interval. On each trial, partici-
pants heard a series of five tones (33 ms, 2,000 Hz, 50 dB) or viewed
five visual stimuli (green squares, 10-cm side, 33 ms). The first five
created the three isochronous base intervals. The sixth one produced
the comparison interval that was either shorter or longer than the base
(Fig. 1). Again, 10 trials (extreme short/long) were performed in the
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FIG. 2. A: psychometric functions (means � SE) for the
categorization task using auditory and visual markers.
B: psychometric functions for the discrimination tasks. The
probability of long-interval categorizations or discrimina-
tions is plotted as a function of the interval. Logistic
functions are fitted to the data.
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training phase, followed by 8 trials for each of the eight base/
comparison combinations. Feedback was provided, with the word
“correct” or “incorrect” on the screen during the training phase. The
intertrial interval was 1.5 s.

STIMULI. The intervals used in the categorization task were also
used in this task as comparison for each of the five different base
intervals (350, 450, 650, 850, and 1,000 ms). One repetition of the
task for each base interval included the discrimination of the eight
intervals, and eight repetitions were collected. In addition, in 20% of
the trials the base and comparison intervals were chosen at random
within the range of 330 to 1,100 ms. This was done with the purpose
of maintaining the subject’s attention to both interval durations across
all trials. Finally, the comparison intervals were presented pseudoran-
domly within each base interval and the order between base intervals
was chosen randomly.

SD calculation

The SD was calculated in the same fashion as in the categorization
task.

Timing task procedure

The subjects performed the tasks in random order in four sessions.
At least eight repetitions were collected for each condition and task.
Before data collection, practice trials were given in the four tasks until
the subjects acknowledged that they understood the tasks and were
comfortable with their performance.

Analysis of behavioral data

GENERAL. Standard statistical techniques were used for data analy-
sis including t-test, repeated-measures ANOVA, Pearson correlation,
and linear regression (Snedecor and Cochran 1989). The reported
P values in the repeated-measures ANOVAs correspond to the Green-
house–Geisser test, which corrects for possible deviations in sphericity.
The level of statistical significance to reject the null hypothesis was � �
0.05. Subroutines written in Matlab and the SPSS statistical package
(version 12 2003, SPSS, Chicago, IL) were used for the statistical
analyses.

LOGISTIC REGRESSION. This regression was used for the psycho-
metric data and was given by

y �
�p1 � p4�

1 � � x

p3
� p2

� p4 (1)

where p1 and p4 correspond to the maximum and minimum values of
y, y is the probability of long interval categorization, p2 is the
estimated slope, and p3 corresponds to the value of x (time interval) at
half of the maximum value of y. The percentage of variance explained
(R2) was �90% in all the fittings.

SLOPE ANALYSIS. A linear regression between the timing variance
(�2) and the interval duration squared (D2) was performed (see Eq. 3
of Ivry and Hazeltine 1995)

�2Total � k2D2 � c (2)

where k is the slope that approximates the Weber fraction and c is a
constant representing the time-independent variability component.

R E S U L T S

In the present study 13 subjects performed eight timing
tasks: two motor [single (STT) and multiple (MTT) interval

tapping] and two perceptual [categorization (CAT) and
discrimination (DIS)] paradigms in which the intervals were
defined by auditory (A) or visual (V) stimuli (Fig. 1). All
the tasks involved temporal processing of intervals in the range
of 350 to 1,000 ms; however, they also covered a wide range
of behavioral contexts, differing in their perceptual, decision-
making, memory, and execution requirements. Indeed, besides
the different modalities and the perceptual- versus motor-
timing comparison, these tasks can also be grouped by their
cyclic nature into single- or multiple-interval paradigms (Fig.
1). The single-interval tasks (STT and CAT) had two important
phases: a training phase where the subjects set an implicit
interval and a test phase were they used this implicit interval to
solve the tasks. In contrast, during the multiple-interval tasks
(MTTs and DIS) there was not only a periodic temporal
processing of one interval, but also a working-memory com-
ponent used to execute the tasks. Thus a great advantage of the
present database is that the subjects performed all the tasks,
and the temporal and nontemporal components of their behav-
ior were compared with high sensitivity within and between
subjects.

Psychometric performance in the perceptual tasks

The psychometric curves for the CAT (Fig. 2A) and DIS
(Fig. 2B) tasks were sigmoidal and well suited to measure
temporal acuity, with correct responses in the extremely short
and long intervals, and decision errors in the intermediate
intervals. Then, with the method of constant stimuli used here,
the thresholds were properly estimated (Getty 1975). It is
important to mention that similar results were obtained using a
staircase psychometric method (data not shown; Wright et al.
1997).

Distributions of the temporal performance across tasks

Figure 3 shows the distributions of internally generated
tap intervals in the MTT and STT tasks, as well as the mean
distributions for the perceived implicit or base intervals in
the CAT and DIS tasks, respectively. Of course in the
perceptual tasks the depicted distributions correspond to the
theoretical “interval representations” (Bassalou et al. 1998)
extracted from the psychometric performance of the sub-
jects. Thus the mean of perceptual distributions corre-
sponded to the point of subjective equality: the interval at
0.5p in the psychometric curve (see Fig. 2). Accordingly,
the SD was computed as half the difference between the
interval at 0.79p and the interval at 0.21p in the psychomet-
ric curve (Keele et al. 1985).

It is evident that the distributions showed an increase in SD
as a function of the interval and that the mean and variability
were different across tasks and sensory modalities. Using the
data depicted in Fig. 3 we carried out detailed analyses of the
variability of temporal performance for each of the eight task
conditions.

Temporal variability

Figure 4 shows that the temporal variance increased as a
function of the interval squared in all tasks, following the
scalar property of interval timing. However, this relation was
different across tasks and modalities. A repeated-measures
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ANOVA was carried out using the variance as dependent
variable and the target interval, task, and modality as the
within-subject factors. The results showed significant main
effects for target interval [F(4,48) � 25.5, P � 0.0001], task
[F(3,36) � 16.3, P � 0.0001], and sensory modality [F(1,12) �
16.6, P � 0.002]. In addition, all the paired interactions also

showed significant effects: the interval � task [F(12,144) � 9.4,
P � 0.0001], the interval � modality [F(4,48) � 5.2, P �
0.018], and the task � modality interactions [F(3,36) � 6.2, P �
0.012]. These results indicate that the variance differed across
intervals and that this change was dependent on task and
modality.

Auditory Visual
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FIG. 3. Distributions of internally generated tap intervals in the multiple-tap task (MTT) and single-tap task (STT), as well as the mean distributions for the
perceived implicit or base intervals in the categorization (CAT) and discrimination (DIS) tasks, respectively. Both auditory and visual conditions are shown. The
interval durations are grayscale coded (cf. bottom left). The right axes in MTT and STT represent frequency of tapped intervals.
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Slope analysis

We used the slope method to analyze further the temporal
variance across tasks. This analysis assumes that the total
variability in a timing task can be decomposed into the vari-
ability associated with the timing mechanisms and the variabil-
ity resulting from duration-independent processes. The slope
method uses a generalized form of Weber’s law in which a
linear regression between the variability and the squared inter-
val duration is performed. The resulting slope and intercept
correspond to the time-dependent and time-independent pro-
cesses, respectively (Ivry and Hazeltine 1995). The main ob-
jective here was to test whether the time-dependent variability
(slope) differed between the eight tasks. Table 1 shows the
intercept and slope (mean and SE across subjects) for all the
timing tasks. It is clear that both measures were different
between tasks and modalities. Nevertheless, the percentage of
variance accounted for in these linear fittings was quite high
across tasks (Table 1).

Focusing on the time-dependent variability, we performed a
repeated-measures ANOVA where the slope was used as
dependent variable and the sensorimotor context [S (perception
vs. production)], the modality [M (auditory vs. visual)], and the
number of intervals [N (one or four)] as within-subject factors.
The results showed significant main effects for S [F(1,12) �
22.9, P � 0.0001], N [F(1,12) � 14.3, P � 0.003],
and M [F(1,12) � 10.1, P � 0.008]. In addition, the S � M
[F(1,12) � 7.1, P � 0.021] and the S � N interactions [F(1,12) �
5.9, P � 0.031] also showed significant effects. However, the
M � N interaction [F(1,12) � 1.7, P � 0.215] was not signif-

icant. Thus the slope was larger for perceptual than for pro-
duction tasks [t-test, t(51) � 4.83, P � 0.0001] and larger for
the visual than for the auditory modality [t-test, t(51) � �3.18,
P � 0.003]. Furthermore, a t-test between the tasks with single
(CAT-STT) versus multiple (DIS-MTT) intervals, showed a
significantly larger slope in the former than in the latter
[t(51) � 3.95, P � 0.0001]. Therefore the present results
revealed a complex interaction between the scalar property of
interval timing and the context in which the subjects tempor-
alized their behavior, ranging from very small slopes in the
MTT-A to very large slopes in the CAT-V.

The significant S � M interaction in the preceding ANOVA
indicates an interesting aspect of the timing performance when
comparing our tasks: the increase in slope between the auditory
and visual modalities was more pronounced in the perceptual
than in the production tasks. In fact, a specific paired-samples
t-test revealed that the slope difference between the visual and
auditory modalities was statistically larger in the perceptual
[difference: 0.042 � 0.05 (mean � SD)] than in the motor
timing tasks [difference: 0.005 � 0.03; t(25) � 3.28, P �
0.003]. Thus these results suggest that, besides the fact that
there was a generalized increase in variability when the time
intervals were defined by visual rather than auditory stimuli,
the increase in the Weber fraction due to visual stimuli was
more important in perceptual than in motor contexts. Likewise,
the significant S � N interaction in the ANOVA indicates that
the decrease in slope in tasks with multiple intervals was more
pronounced in perceptual than in production paradigms. In-
deed, the slope difference between single and multiple inter-
vals was significantly larger in the perceptual (difference:
0.011 � 0.016) than in the motor timing tasks [differ-
ence: 0.0026 � 0.03; t(25) � 2.49, P � 0.02].

Overall, these results suggest that, although the generalized
form of Weber’s law adequately captured the performance
variability for all the tasks, the time-dependent element of the
model (slope) differed between the perception/production, the
visual/auditory, and the single-/multiple-interval dimensions.
These results can have at least two interpretations: the timing
mechanism is different across these dimensions or the timing
mechanism is modulated directly or indirectly by S, N, and
C. In this regard, it is important to consider the possibility that
slope is a measure that represents not only the time-dependent
source of variation, but also some other behavioral elements
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TABLE 1. Intercept (c), slope (k2), and R2 (mean � SE) from the
slope analysis for all tasks

Task c Slope R2

MTT-A 317.8 � 92.3 0.00142 � 0.0001 0.71 � 0.066
STT-A 245.8 � 184.1 0.00437 � 0.0009 0.68 � 0.068
CAT-A �630.7 � 336.6 0.0119 � 0.0016 0.79 � 0.047
DIS-A 476.5 � 301.9 0.00454 � 0.001 0.64 � 0.088
MTT-V 427.1 � 184 0.00265 � 0.0007 0.60 � 0.075
STT-V 245.8 � 225 0.00485 � 0.0003 0.74 � 0.039
CAT-V �2,065.2 � 1,151 0.0258 � 0.006 0.77 � 0.048
DIS-V 1,799.1 � 1,190 0.0109 � 0.02 0.63 � 0.095

Values are means � SE. A, auditory; V, visual.
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that are present in the timing paradigms. In fact, Ivry and
Hazeltine (1995) emphasized the importance of performing the
slope analysis under very similar task conditions.

Finally, we performed two additional repeated-measures
ANOVAs, where the intercept and the R2 of the slope analysis
were used as dependent variables and S, M, and N were the
within-subject factors. The results showed that only N showed
significant main effects in both the intercept [F(1,12) � 7.6, P �
0.017] and the R2 [F(1,12) � 8.5, P � 0.013] ANOVAs. The
remaining factors and all the interactions showed no significant
effects in these analyses. Therefore these results indicate, first,
that the intercept was not affected in the same way as the slope
by the different behavioral contexts. Second, the time-indepen-
dent sources of variance (the intercept) were significantly
lower for the CAT and STT than for the DIS and MTT, which
is evident in Table 1. Thus the sensory processing, motor
execution, and memory requirements for single-interval tasks
are probably less demanding than those for multiple-interval
timing tasks. In the case of CAT, the intercept showed negative
values, which is an indication that the generalized Weber law
is probably not the best model to explain the temporal vari-
ability as a function of duration in the intervals tested (Ivry and
Hazeltime 1995). Nevertheless, we tested other different re-
gression models (i.e., SD vs. Interval) for CAT and the result-
ing intercept was even more negative. On the other hand, the
linear fittings in the single-interval tasks were significantly
higher than those in DIS and MTT. However, it is important to
state that all the fittings were significant (Table 1) and thus is
not feasible that the reported slope differences among tasks
were mainly due to a poorer fit in the linear regression between
timing variance and the interval duration squared.

Correlation analysis

It has been reported that individual differences in the vari-
ability of a tapping task are correlated across different effectors
(Keele et al. 1985). Furthermore, a significant SD correlation
between production and perception tasks has also been docu-
mented (Spencer and Zelaznik 2003). This means that subjects
that are good timers in one behavioral context are good timers
in another one. Thus the existence of significant intrasubject
correlations in the temporal variability across different timing
tasks has been taken as an indication of a common timing
mechanism.

Consequently, here we exploited individual variation in
temporal performance to determine whether there was a com-
mon timing mechanism across the eight tasks. Correlations
were carried out on the Z-scored timing SD to analyze the
precision of individual subjects between pairs of tasks for all
interval durations. The Z-score values allowed for comparisons
of the subject’s timing precision without including the effect of
the scalar property of interval timing in the correlation. The
results are depicted as a correlation matrix in Fig. 5, where it
is evident that several tasks showed significant pairwise cor-
relations [Bonferroni correction: P � 0.0013 (P � 0.05/36
comparisons)]. Generally, the individual differences were more
consistent between the same tasks and different modalities. For
instance, the subjects’ SD correlation across visual and audi-
tory stimuli in the CAT task had an R � 0.47, which is a high
correlation for 13 subjects using the performance during the
five interval durations.

Even if some pairwise comparisons did not show significant
effects, in general, the CAT showed significant correlations
with the STT, the DIS with the MTT, the STT with the MTT,
and finally the DIS with the CAT. Thus correlation analysis
shows a complex picture of task associations where, again, the
behavioral dimensions of modality, number of intervals, and
sensorimotor processing played important roles in determining
the level of task correlation. Of course, these data can be
interpreted again in two ways: the notion of a common timing
mechanism that is modulated by these three behavioral dimen-
sions or the idea of multiple timers that are activated in a
context-dependent fashion.

Principal-component analysis

The correlation matrix in Fig. 5 depicts a complex multidi-
mensional interaction between the tasks’ variability. Therefore
to determine the number of dimensions that better explained
such interactions we performed a principal-component analysis
(PCA) on the subjects’ Z-scored timing SD across tasks. PCA
is a mathematical procedure that allows for the reduction
dimensions in a data set with multiple parameters. This method
generates a new set of variables, called principal components
(PCs). Each PC is a linear combination of the original vari-
ables, so that the PCs are orthogonal to each other. The first PC
accounts for as much of the variability in the data as possible
and each succeeding PC accounts for as much of the remaining
variability as possible. Thus PCA extracts the most meaningful
driving principles governing the behavior of a multidimen-
sional data set.

The percentage of variance explained by the different PCs
(from 1 to 8) on the correlation matrix (Fig. 5) are the

MMTTSTTDIS MTTSTTCAT DIS

MTT

STT

CAT

DIS

STT

CAT

DIS

)
R(

noitalerro
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0.6

0.2

0.3

0.4
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FIG. 5. Correlation matrix showing the Pearson R value in a grayscale
(inset, bottom left) for all possible pairwise task comparisons. Asterisks
indicate significant correlations (P � 0.05) between specific task pairs. Open
and closed fonts correspond to tasks with auditory and visual markers,
respectively.
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following: 42.6, 13.3, 12.7, 10, 7.5, 5.7, 4.9, and 3.3. It is
evident that the only clear break in the amount of variance
accounted for by each component was between the first and
second components. However, the first PC explained �45% of
the variance, when commonly the first PC explains �60% of
the variance. Therefore the PCA indicates that more than one
dimension is needed to explain the interaction in timing vari-
ability between our eight tasks. In fact, following both the
Kaiser criterion (Kaiser 1960), which considers PCs only with
eigenvalues �1, and the scree test (Cattell 1966) we retained
the first three PCs as important components. Thus the first three
PCs explained roughly two thirds of the total variability
(68.6%). Consequently, it is reasonable to suggest the exis-
tence of a distributed timing mechanism that depends on the
interaction of different components (i.e., S, N, and M). Never-
theless, it is important to emphasize that this analysis was
performed with the purpose of determining the number and not
the identity of variables explaining the multidimensional inter-
actions in the temporal variability between our eight tasks.

Multiple linear models

The preceding correlation and PCA analyses suggested a
complex interaction between tasks, where the S, N, and M had
an important role in the level of association among paradigms.
On the other side, the slope analysis indicated that the Weber
fractions were different across tasks and that these parameters
modulated the magnitude of the slope. Thus overall these
findings lean toward a distributed rather than a centralized
timing mechanism. However, a distributed system could have
at least two configurations, consisting of totally independent or
partially overlapping variables. We designed two multiple
linear regression models to test which configuration could
better explain the variability between tasks. The partially
overlapping distributed (POD) model integrated the informa-
tion about the scalar property of interval timing with the
influence of the three other behavioral dimensions (S, N, M)
across tasks (Merchant et al. 2004). The hypothesis behind this
analysis is that the total task variability can be decomposed in
the timing variability plus the variability related to the inter-
action between the timing and the other three behavioral
dimensions. The POD model is expressed as

�* � b0 � b1D � b2DS � b3DN � b4DM � b5DSM

� b6DSN � b7DNM � b8DSNM (3)

where �* is the log-transformed timing SD, b0–b8 are regression
coefficients, D is the interval duration, S is the sensorimotor context
(perception � 1, production � 0), N is the number of intervals (1 or
4), and M is the modality (auditory � 1, visual � 0). The log
transformation was performed on the SD to correct for het-
eroscedasticity (Draper and Smith 1981). However, it is im-
portant to mention that the results of the two models (Eqs. 3
and 4) were very similar with or without the log transforma-
tion.

On the other hand, the totally distributed (TD) model as-
sumed that the task variability was the sum of independent
sources of variance associated with each task. Thus the model
is expressed as

�* � b0 � b1t1 � b2t2 � b3t3 � b4t4 � b5t5 � b6t6 � b7t7 (4)

where �* is the log-transformed timing SD; b0–b7 are regres-
sion coefficients; and t1–t7 are the tasks in the following
incremental order: CAT-A, CAT-V, DIS-A, DIS-V, STT-A,
STT-V, and MTT-A. Since each task was a dummy variable
with a value of 0 or 1, the last task (MTT-V) was the reference
task and thus was not included explicitly in the model.

The adjusted R2 was computed to compare the explanatory
power of two models with different degrees of freedom (Zar
1998). The results showed that the adjusted proportion of
variance accounted for was considerably larger for the POD of
Eq. 3 (adjusted R2 � 0.504) than that for the TD model of Eq. 4
(adjusted R2 � 0.209). Nevertheless, both regression models
were significant [F(8,519) � 67, P � 0.0001 for the former;
F(7,512) � 20.5, P � 0.0001 for the latter]. Overall, the results
suggest that a partially overlapping mechanism for temporal
processing is the best candidate. Neither a totally centralized
nor a totally distributed mechanism seemed appropriate, as
indicated by the slope and multiple regression analyses, respec-
tively. Then, the partially overlapping mechanism may include
a core of brain areas involved in the underpinnings of the scalar
property and a set of other areas interacting with the core in a
context-dependent fashion (see DISCUSSION).

Finally, the standardized regression coefficients of the POD
were rank-ordered to determine the relative explanatory power
of each parameter in the model. The results of this analysis are
shown in Table 2, where it is evident that the interval duration
was the most important parameter, followed by the DS, DM,
DSM, DNM, and DS interactions. Thus the results showed that
the scalar property was the most prevalent parameter for
explaining the total performance variability across tasks. In
addition, these results indicate that the interaction between
timing variability and the other three parameters had a prom-
inent effect, corroborating the importance of S, N, and M in the
subject’s performance across tasks.

D I S C U S S I O N

This study confirmed the presence of the scalar property of
interval timing in eight different tasks that required temporal
processing in the subsecond range. Nevertheless, all the per-
formed analyses suggested that S, N, and M and the interaction
between these parameters had a critical effect on the temporal
accuracy of subjects studied across all these conditions.

TABLE 2. Rank-ordered standardization coefficients for the
different parameters of the POD model of Eq. 3

Variable
Standardized
Coefficient t-Value P

D (main effect) 0.7103 17.0037 0.0000
D � S �0.4597 �7.0335 0.0000
D � M �0.4317 �6.6058 0.0000
D � S � M 0.2010 2.6051 0.0095
D � N � M 0.1957 2.5358 0.0115
D � N 0.1327 2.0312 0.0427
D � S � N 0.0533 0.6901 0.4905
D � S � N � M �0.0625 �0.7575 0.4491
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Scalar property

Experimental psychologists have focused more on the vari-
ability of temporal processing than on the time-constant error.
This is due, in large part, to the ubiquitous scalar property of
interval timing, which is a form of Weber’s law. The scalar
property has been observed in many timing tasks and species.
In addition, the scalar property is not followed by subjects with
timing deficiencies, such as Parkinson’s disease patients
(Artieda et al. 1992; Merchant et al. 2007). Thus similar Weber
fractions across timing contexts and durations have justified the
view of a unified mechanism of temporal processing (Gibbon
et al. 1997). Nevertheless, some empirical demonstrations have
revealed that the Weber fraction is not always homogeneous
with a maximal sensitivity at particular interval durations
(Drake and Botte 1993; Fetterman and Killeen 1990; Grondin
1992). Thus even the support of Weber’s law for a central
timing mechanism has some exceptions.

On the other hand, a number of information-processing
models have been proposed based on the scalar property. All
these models include clock, memory, and decision components
and can account for human and animal timing performance in
a variety of tasks (Matell and Meck 2000). However, apart
from their heuristic value, it is very difficult to translate the
psychological mechanism of such models into a feasible neu-
rophysiological substrate of interval timing (Buhusi and Meck
2005). In fact, all functional magnetic resonance imaging
(fMRI) studies have shown that temporal processing is per-
formed by a distributed system of brain areas (Harrington and
Haaland 1999; Rao et al. 2001). Consequently, these neuro-
physiological findings argue against the hypothesis of a cen-
tralized timing mechanism. The contemporary consensus sug-
gests that interval timing is ingrained in basic sensorimotor
processes (Buonomano and Karmarkar 2002; Penney 2003).

The present study found that the linear increase in variability
as a function of interval duration was modulated by the three
nontemporal parameters of the tasks. From the central mech-
anism point of view, it could be argued that these parameters
have a differential impact on the memory, decision, or motor
components of the tasks. In contrast, the distributed hypothesis
will support the notion of different neural circuits engaged in
time processing according to S, N, and M (Karmarkar and
Bounomano 2007). Since our correlation and multiple regres-
sion analyses indicate a common relation between some tasks,
we suggest an intermediate hypothesis: a large distributed
system is devoted to temporal processing in different circum-
stances, but the processing weight of the different nodes of the
distributed system will change according to the task contin-
gencies. Recent fMRI studies are starting to describe the
structures involved in different time-processing contexts
(Lewis and Miall 2003). Thus our hypothesis is testable using
different imaging and neurophysiological techniques and can
account for most of the previous timing literature.

Perception versus production

The slope and multiple regression analyses showed that the
sensorimotor context was the most important nontemporal
parameter affecting the subjects’ performance. In contrast, the
correlation analysis showed that the individual pattern of vari-
ability was similar between some perceptual and production

tasks. These contradictory results can be explained considering
a partially overlapping neural network. In this sense, Lewis and
Miall (2003) carefully grouped the fMRI timing literature on
the basis of the different task parameters used. They found two
main networks: 1) an “automatic” timing system that is pri-
marily involved in the continuous measurement of predictable,
subsecond intervals defined by movement; and 2) a “cogni-
tively controlled” timing system that is more involved in the
measurement of suprasecond intervals not defined by move-
ment and occurring as discrete epochs. The former depends on
motor circuits including the motor cortex and the dorsal and
ventral premotor areas, whereas the latter involves prefrontal
and parietal regions. The production tasks used in the present
study can be clearly included in the automatic timing system.
In contrast, the perception tasks can be included in the cogni-
tive timing system, but with less certainty, since these tasks
were also in the subsecond range. Nevertheless, it has been
shown that the parietal cortex is engaged in time processing
during a discrimination task (Leon and Shadlen 2003), sup-
porting the hypothesis that perception tasks depend on the
“cognitive” timing system.

On the other hand, recent studies have shown that the
supplementary motor area (SMA) and the basal ganglia are
probably the main overlapping elements of the timing network.
These areas are activated in production and perception tasks
using a variety of interval structures (Macar et al. 2002, 2006;
Meck and Benson 2002; Pouthas et al. 2005; Rao et al. 1997,
2001; Schubotz et al. 2000). Thus the significant correlations
between individual performance in perceptual and production
tasks could be due to the prevalence of these areas during
time-processing behaviors.

Number of intervals

In both perceptual and production tasks, it has been demon-
strated that temporal variability decreases as a function of the
number of intervals to be timed (Ivry and Hazeltine 1995;
Keele et al. 1989). For example, Schultze (1989) found that the
difference limen decreased as a function of the number of base
intervals in a discrimination task. Here we found that tasks
involving temporal processing of multiple intervals decreased in
performance variability with respect to single-interval tasks.
In addition, this decrease was more pronounced in percep-
tual than in production tasks, suggesting that the strength of
the reference interval representation also depends on the con-
text in which the multiple intervals are processed. From the
perspective of a distributed network, the decrease in variability
with the number of timed intervals could be related to a change
in activity within and between the different nodes of the system
and/or the participation of other areas. In this sense, it has been
reported that the cerebellum is activated during discrete but not
during continuously timed movements (Spencer et al. 2007).
To our knowledge, however, no fMRI study has investigated
the neural networks activated during single- and multiple-
interval timing tasks.

Modality dimension

The sensory modality used to define the intervals is an
important parameter for inducing major changes in temporal
processing. In both perceptual and production tasks, visual
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stimuli produce more variable time estimates than auditory
ones (Goldstone et al. 1959; Repp and Penel 2002; Wearden
et al. 1998). In discrimination tasks this applies not only to
filled intervals but also to empty intervals (Grondin et al.
1998). Our present results corroborate that timing variability is
larger with visual than with auditory markers. In fact, the slope
analysis showed that the time-dependent source of variation
was larger in the visual than that in the auditory condition. In
contrast, the correlation analysis showed that the individual
performance was more consistent between the same tasks using
visual or auditory stimuli to define the intervals. These findings
can be explained if we consider that sensory markers are
probably processed at the initial processing stages of the
hypothetical distributed timing system, whereas the remaining
aspects of a specific timing task may engage similar and larger
parts of this distributed system. Thus even if the temporal
variability is larger in visual than that in the auditory condition,
the overall performance of the subjects is quite consistent
within the context of a given task. Favoring this notion are
fMRI studies that reported that early and late visual or auditory
areas are activated during production and perception tasks of
intervals using visual or auditory markers, respectively (Jancke
et al. 2000; Jantzen et al. 2005; Schubotz et al. 2000). In
addition, these studies have found that a larger set of areas was
activated in both sensory conditions, including SMA, dorsal
premotor cortex, posterior parietal cortex, putamen, and the
cerebellum.

Now, the picture becomes more complicated when we con-
sider that the increase in variability for intervals defined by
visual rather than auditory stimuli was more pronounced in
perceptual than in motor contexts. The interaction between
these nontemporal parameters is probably due to the well-
known network division of visual processing for perception
and action (Goodale and Milner 1992). Thus the parietofrontal
system is specialized in the visual control of action, whereas
the occipitotemporal system is dedicated to the perception of
the visual world. Support for the perception–action hypothesis
has come from experiments showing that visually guided
actions are largely refractory to perceptual illusions (Goodale
and Westwood 2004). Under this scenario the network engaged
in motor timing probably has direct access to visual informa-
tion through the efficient parietofrontal system, resulting in a
small difference in temporal processing between modalities. In
contrast, the perceptual timing network, which may include
parietal and prefrontal areas, could have indirect access to
visual information though the occipitotemporal visual path-
way, explaining why the temporal variability in the perceptual
timing tasks was considerably larger with visual rather than
auditory markers.

Conclusions

Allan and Kristofferson (1974) argued that the independence
of temporal judgments from sensory characteristics supports
the idea of a central timing mechanism. Here, on the contrary,
we found that the S, N, and M and their interactions had an
important effect on the subjects’ temporal accuracy. Thus the
present results support the notion of a distributed system for
time processing. Neurophysiological evidence for the existence
of task-dependent timing processes has come from recent fMRI
research, demonstrating that the specific neural structures re-

cruited for temporal processing may be at least partially deter-
mined by the way in which timing information is presented
(Jantzen et al. 2004). Thus different nodes of the distributed
system may change their level of participation in the network
depending on nontemporal parameters such as S, N, and M. In
addition, structures such as SMA and the basal ganglia could
be the core of this network, participating in most of the timing
contexts. These last areas may be closely related to the expres-
sion of the scalar property in different timing tasks.
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