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Given the vast range of lithium niobate (LiNbO3) appli-
cations, the knowledge about its electronic and optical
properties is surprisingly limited. The direct band gap
of 3.7 eV for the ferroelectric phase – frequently cited
in the literature – is concluded from optical experiments
[1]. Recent theoretical investigations [2] show that the
electronic band-structure and optical properties are very
sensitive to quasiparticle and electron-hole attraction ef-
fects, which were included using the GW approximation
for the electron self-energy and the Bethe-Salpeter equa-
tion respectively,

both based on a model screening function. The calcu-
lated fundamental gap was found to be at least 1 eV
larger than the experimental value. To resolve this dis-
crepancy we performed first-principles GW calculations
for lithium niobate using the full-potential linearized
augmented plane-wave (FLAPW) method [3]. Thereby
we use the parameter-free random phase approximation
for a realistic description of the nonlocal and energy-
dependent screening. This leads to a band gap of about
4.7 (4.2) eV for ferro(para)-electric lithium niobate.

1 Introduction Lithium niobate (LiNbO3, LN) is
due to its distinguished photo-refractive, electro-optic, and
nonlinear optical properties exploited in a number of de-
vices such as Pockels cells, optical parametric oscillators,
Q-switching devices for lasers and optical switches for
gigahertz frequencies. LN occurs in two phases of trig-
onal symmetry with ten atoms per unit cell, see Fig. 1.
The ground-state is ferroelectric with space group R3c.
The high-symmetric paraelectric phase with space group
R3̄c is stable above 1480 K. Given the vast range of LN
applications, our knowledge about its electronic and opti-
cal properties is surprisingly limited. For example, we are
not aware of a measured band structure. The direct band
gap of 3.78 eV for the ferroelectric phase – frequently
cited in the literature – is actually concluded from optical
experiments [4]. Therefore it is affected by electron-hole
attraction effects which may reduce the size of the actual
band gap, i.e., the difference between the ionization energy
and the electron affinity, substantially [5–8]. The situation
is additionally complicated by the fact that there are actu-
ally a number of band gap values reported, all concluded
from optical absorption experiments. They range from the
indirect gap of 3.28 eV reported in Ref. [9] to values of 4.0

or 4.3 eV [10,11]. The lack of experimental data may par-
tially be related to the fact that the crystal growing process
results in samples that are not stoichiometric, but Li defi-
cient. In fact, many LN applications depend on intentional
impurities of the material. Moreover, the paraelectric phase
is stable in a small temperature window only.

Only few calculations, however, address the optical and
electronic properties. Most first-principles band-structure
calculations, e.g., Refs. [12,13], are based on a single-
particle picture and neglect quasiparticle effects that typ-
ically widen the band gap between occupied and empty
states by a large fraction of its value [14]. The seemingly
good agreement between measured and calculated band
gaps for LN may therefore result from a fortuitous error
cancellation between the possibly large exciton binding
energy and the electronic self-energy. An early theoreti-
cal study by Ching et al. [15] indicates the importance of
self-energy effects: Using the approximate Sterne-Inkson
model [16], they predicted self-energy corrections of the
order of one eV. However, the single-particle gap in Ref.
[15] is much smaller (2.62 eV for the ferroelectric phase)
than in the work [13] (3.69 eV). The most recent study
[2] on the band structure found indirect band gaps of 3.48
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Figure 1 (color online) Primitive unit cell of the ferroelectric
(left) and paraelectric phase (right) of LN. Light, small and dark
balls indicate the positions of O, Li, and Nb, respectively.

and 2.47 eV for the ferro- and the paraelectric phase within
the single-particle approximation. On top of this quasipar-
ticle effects were included by using the GW approach [19]
where a model dielectric function [20] was used as a fur-
ther approximation to calculate W . With this scheme a
band gap of 6.3 eV was obtained for the ferroelectric phase
and 4.5 eV for the paraelectric phase respectively.

The present study aims at a more accurate calcula-
tion of the LN electronic excitation energies by replacing
the model dielectric screening used in the GW calcula-
tions of Ref. [2] by a screening function calculated from
first principles. We use density functional theory in gen-
eralized gradient approximation (DFT-GGA) to determine
the structurally relaxed ground state of both the ferro-
and paraelectric LN phase. The reliability of our scheme
is demonstrated by comparing the structural properties
with earlier theoretical data and experiment. DFT-GGA
also provides the Kohn-Sham eigenvalues and eigen-
functions that enter the single- and two-particle Green’s
functions. The the electronic quasiparticle spectrum is ob-
tained within the GW approximation (GWA) [19] to the
exchange-correlation self-energy.

2 Methods In detail, we start from first-principles
projector augmented wave (PAW) calculations, using
the VASP implementation of the DFT-GGA [21,22]. A
4×4×4 mesh is used to sample the Brillouin zone. The
mean-field effects of exchange and correlation in GGA are
modeled using the PBE functional [23]. The plane-wave
cutoff for the wave-function expansion is 30 Ry. We per-
formed bulk calculations using the unit cell containing 10

atoms. The shape as well as the positions of the atoms were
relaxed until the remaining forces on the atoms are below
5 meV / Å. The obtained equilibrium geometries are used
in all subsequent calculations.

While the plane-wave pseudopotential approach works
well for sp-bonded semiconductors and simple metals, it
becomes inefficient for transition metals and rare earths,
where a large number of plane waves are needed to ac-
curately describe the localized d or f orbitals. A similar
problem occurs in oxides and other compounds involving
first-row elements due to the hard pseudopotentials that
only contain minimal screening of the ionic core by the
innermost 1s electrons. Therefore, these materials are best
studied within an all-electron scheme that treats core and
valence shells on an equal footing and already incorporates
the rapid oscillations of the wave functions close to the nu-
clei in the basis functions themselves. So we used a full-
potential linearized augmented-plane-wave (FLAPW) [24]
approach to DFT, which is implemented in the FLEUR
package [25] to calculate the electronic structure of LN.
The FLAPW method divides space into nonoverlapping
muffin-tin spheres centered at the atomic positions and
into the interstitial region. The basis functions inside the
muffin-tin spheres are constructed from numerical solu-
tions of the radial Schrödinger equation with fixed energy
parameters, whose products lie outside the vector space
spanned by the original basis functions. Therefore, prod-
ucts of the original basis functions may instead be used
to construct a mixed product basis [26], in which the ma-
trix elements of the Coulomb potential with initial and fi-
nal states are then accurately represented. For the muffin-
tin radii we choose rO = 1.74 a.u., rNb = 1.74 a.u. and
rLi = 1.94 a.u. The plane-wave cutoff for the interstitial
region is 4.3 a.u. and the Brillouin zone is sampled by a
4×4×4 k-point mesh. Furthermore it was necessary to de-
fine one local orbital for the lithium and two local orbitals
for the niobium atoms respectively.

In the second step, we include electronic self-energy
effects, i.e., replace the GGA exchange and correlation po-
tential by the nonlocal and energy-dependent self-energy
operator Σ(r, r′; E). We calculate Σ in the GW approxi-
mation (GWA) [17–19], from the convolution of the single-
particle green function G and the dynamically screened
Coulomb interaction W .

A full quasiparticle calculation in the GW approxi-
mation involves several difficulties such as the calcula-
tion of the frequency-dependent dielectric function and the
solution of a Schrödinger-like equation with a nonlocal
and energy dependent self-energy operator which is non-
Hermitian as opposed to the case of most eigenvalue prob-
lems involving a local energy independent potential. On
top of these difficulties the calculations should actually be
carried out self-consistently meaning that the output quasi-
particle wave functions and energies should be used in cal-
culating the self-energy operator from which the results are
obtained.
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The results above indicate good agreement between
the DFT-GGA calculations and experiment concerning the
structural ground state properties of LN. On this basis we
can start to analyze the electronic properties. In Fig. 3 and
4 we plot the Kohn-Sham energies along high symmetry
lines of the hexagonal Brillouin zone (cf. Fig. 2) of ferro-
and paraelectric LN. Within the single-particle approxi-
mation, the ferro- and paraelectric phases have indirect
band gaps of 3.61 and 2.57 eV, respectively. These values
agree well with other recent DFT calculations [2], which
predict 3.48 and 2.52 eV, respectively. The valence-band
maximum (VBM) occurs at the Γ point for both phases,

Performing a self-consistent GW calculation is a heavy
undertaking. It is well known that a non-self-consistent
calculation, i.e., approximating GW by G0W0, where the
screening W0 is taken from the random-phase approx-
imation (RPA), gives reasonable results. Therefore this
approximation-scheme was used. Due to the size of the
supercell a 2×2×2 sampling of the Brillouin zone is rea-
sonable.

3 Results and discussion The relaxed ground-
state geometries for ferro- and paraelectric LN are the
starting points for all further investigations. In paraelec-
tric LN, the Li and Nb atoms are at Wyckoff positions 6a
and 6b (hexagonal axes), respectively, while the O atoms
are located at 18e, with internal parameter x. We deter-
mine lattice constants a = 5.219 Å, c = 13.756 Å, and
x = 0.041. The measured values amount to 5.289 Å,
13.848 Å, and x = 0.06 [27]. The usage of GGA often
leads to a slight overestimation of lattice constants. The
fact that an underestimation of about 1% occurs here may
be related to the thermal expansion of the sample – the
paralelectric phase is stable for temperatures above 1480
K – which is not included in our ground-state calculations.
Earlier GGA results [12] are in fact quite similar to our
findings: a = 5.255 Å, c = 13.791 Å, and x = 0.048.

In ferroelectric LN, Li and Nb are located at Wyckoff
position 6a (hexagonal axes) with internal parameter zNb;
oxygen atoms are at 18b with parameters u, v, and w. Fol-
lowing the notation in Ref. [12], we determine a = 5.161
Å, c = 13.901 Å, zNb = 0.0339, u = 0.01205, v =
0.0278, and w = 0.0191. The deviation from experiment
[27] (a = 5.151 Å, c = 13.876 Å, zNb = 0.0329, u =
0.00947, v = 0.0383, w = 0.0192) is much smaller than
for the paraelectric phase, corroborating our assumption
that thermal expansion may be responsible for much of the
deviation in the paraelectric case. Again, close agreement
with the GGA results of Veithen and Ghosez is observed
[12].

Figure 3 (Color online) Calculated band structures of ferroelec-
tric LN right calculated within the DFT-GGA (dashed lines) and
the GW approximation (solid lines).

Figure 4 (Color online) Calculated band structures of paraelec-
tric LN right calculated within the DFT-GGA (dashed lines) and
the GW approximation (solid lines).

Figure 2 (color online) Notation of high symmetry Brillouin
zone points used in the present work.
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while the conduction-band minima (CBM) are located at
0.4 Γ − K and the K point for the ferro- and paraelectric
phase, respectively.

The single-particle excitations are accompanied by the
rearrangement of the remaining electrons in the solid, that
screen the excited electrons (above the Fermi level) and
excited holes (missing electrons below the Fermi level).
Polar materials like LN, however, feature longitudinal op-
tical phonons that give rise to macroscopic electric fields
that couple to the excited electrons and holes and modify
their motion. It can be expected that the lattice polarizabil-
ity contributes to the dressing of the quasiparticles. This
effect is not included in the GWA band structures shown in
Fig. 3 and 4, that rest on the assumption of a pure electronic
screening. To study the effect of the lattice polarizability
on the single-particle excitation energies, in principle the
electron-phonon coupling needs to be considered which is
part of our future investigations.

Method paraelectric ferroelectric
DFT (FLAPW) 2.57 3.61
DFT (plane wave) [2] 2.48 3.47
GW (FLAPW) 4.21 4.71
GW (plane wave) [2] 5.37 6.53
Exp. [1] - 3.78

Table 1 Comparison of band gap energies (eV) for the para- and
the ferroelectric phase of LN.

Thus the band gap of ferroelectric LN is calculated to
be 4.71 eV, while we obtain 4.21 eV for paraelectric LN.
A comparison with earlier GW calculations [2] where a
model dielectric model function was used, we observe that
our results for the band gap are significantly smaller. How-
ever, the present work nevertheless corroborates the find-
ing of Ref. [2] that the LN band gap is indeed substantially
larger than the value frequently cited in the literature.
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