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Summary

Heart fatty-acid-binding protein (FABP) is a small
cytosolic protein that is abundant in the heart and
has low concentrations in the blood and in tissues
outside the heart. It appears in the blood as early as
1.5 h after onset of symptoms of infarction, peaks
around 6 h and returns to baseline values in 24 h.

These features of H-FABP make it an excellent
potential candidate for the detection of acute
myocardial infarction (AMI). We review the
strengths and weaknesses of H-FABP as a clinically
applicable marker of myocyte necrosis in the
context of acute coronary syndromes.

Introduction

The fatty-acid-binding proteins (FABP) are a family

of cytosolic proteins that shows a large degree of

structural homology. Discovered by Ockner in 1972

in studies on the intestinal absorption of fatty acids,1

they are called FABP because they exhibit a high

affinity for the non-covalent binding of fatty acids.

These proteins are widely distributed and are pre-

sent in the fatty-acid-metabolizing tissues of many

mammals. Their presence has also been reported in

various species, including birds, insects and fish.2

There are several types, and all have low molecular

mass (12–15 kDa), but they differ markedly in tissue

distribution, concentration within tissue, isoelectric

point (PI), binding capacity, and binding specifi-

city.3–10 The FABP are relatively tissue-specific, and

are designated by a letter that refers to their tissue

of origin, e.g. L-FABP, H-FABP, I-FABP, referring

to liver, heart and intestine FABP, respectively;11

tissue-specific FABP have also been reported in

muscle, adipose tissue, kidney, brain and nerve

cells. Tissue-specific FABP such as liver (L-FABP)

and intestinal (I-FABP) have been used to detect

pathologies in these tissues using specific anti-

bodies raised against these proteins.12,13 Different

FABP share between 30–80% amino acid sequence

homology. The heart and the liver contain the

highest concentrations of these proteins.9

Function

Fatty acids are the major energy source of the

heart.14 They are also important molecules for the

synthesis of membrane lipids and lipid mediators

such as prostaglandins, leukotrienes and thromb-

oxanes.15 In general, 50–80% of the heart’s energy

is provided by lipid oxidation. The heart is a poor

fatty acid synthesizer, and contributes only 0.1%

of total body fatty-acid synthesis,16 but accounts

for 10% of the total body turnover of fatty acids.17
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Fatty acids are insoluble in the intravascular and
extravascular space, and also in the intracellular
space. In plasma they are transported bound to
albumin, or as part of the lipoproteins complex.14,18

Heart-FABP may constitute the intracellular equiva-
lent of albumin for the intracellular transport of the
insoluble fatty acids within the cells. These proteins
are truly cytoplasmic, in the sense that they do not
exist anywhere else (e.g. plasma or extracellular
space) under normal conditions.19,20 Recent work
has suggested more complex regulatory functions
for these proteins beyond lipid transport,21–27 but
the precise physiological functions of these abun-
dant proteins are not fully understood.

Early diagnosis of acute
coronary syndrome and its
impact on patients’ care

Early diagnosis of acute coronary syndrome based
on multiple samples would contribute to patients’
care in the following ways.

1. Triage of patients from accident and
emergency department

Biochemical markers of early damage can help
with the triage of patients from the emergency
department. Those patients with positive results for
ischaemia need to be admitted to the CCU or to
a monitored bed. Those with ‘true negative’ results
(i.e. after sufficient time for liberation of marker
into the circulation) can be considered for early
discharge if there is a low probability of ischaemia
and of severe coronary artery disease, and the
patient remains free of recurrence. These strategies
will optimize the effective use of expensive
resources in the CCU and other acute units for the
appropriate groups of high and moderate risk
patients.28–30

2. Acute myocardial infarction and
non-diagnostic electrocardiogram

Early cardiac markers can be helpful in the diagnosis
of AMI in the following situations when there is
a high clinical suspicion of infarct. However the
diagnostic value of the admission ECG may be
limited: (i) when the ECG cannot be interpreted or
has reduced diagnostic accuracy, e.g. the presence
of conduction disorders including left bundle
branch block (LBBB) or paced rhythm; (ii) if Q
waves and ST-T changes are already present, e.g.
old infarcts and digoxin effects, respectively; (iv) with
ST-T changes of marked left ventricular hypertrophy

(LVH); (iv) in posterior infarct or right ventricular

infarct, which may produce no clear-cut diagnostic

ECG changes on the standard 12-lead ECG; (v) when

diagnostic changes of AMI are present in one lead

only; and (vi) In the 30% of patients who have

no diagnostic changes on their admission ECG.28–32

In clinical practice today reperfusion therapy,

thrombolysis or percutaneous coronary intervention

(PCI), is only given to patients with clinical evidence

of ischaemia and ST segment elevation.

3. Unstable angina and non-Q-wave
myocardial infarction

Clinical trials have shown most benefit from treat-

ment in the unstable angina (UA) and non-Q-wave

MI groups with positive biochemical marker evi-

dence of ischaemia. Those patients with no bio-

chemical marker evidence of ischaemia show least

benefit (or no benefit) from treatment compared

to placebo.33 Cardiac markers can help with risk

stratification of patients early in the course of

ischaemia.33,34 In those patients with UA and non-

Q-wave MI, early diagnosis results in the admission

of these patients to the CCU or to a monitored

bed in a higher dependency area. Administration of

antithrombotic agents (aspirin, clopidogrel, LMWH,

and GPIIb/IIIa receptor antagonists) is associated

with a significant reduction of subsequent compli-

cations (AMI and death).35,36 In addition to early

identification and implementation of treatment,

further risk stratification in these patients can guide

the use of exercise tolerance testing, perfusion

scans or angiography and, where appropriate, PCI

or CABG (coronary artery bypass grafting).

4. Prevention of inappropriate discharge
of patients

In the very early stages of AMI, some patients may

present with atypical chest pain and non-diagnostic

ECG changes. Without an appropriately timed

biochemical marker to rule out AMI, these patients

could be misdiagnosed and inappropriately dis-

charged. Based on previous studies, between 2%

and 10% of patients with AMI are discharged from

A&E departments.37–39 This is more likely to happen

in high-volume medical institutions where the

turnover of patients is high and there is limited

availability of beds. Common features of cases of

missed AMI include factors such as age (young

patients), sex (females), ethnic factors, atypical

history of chest pain, absence of previous cardiac

history, and being reviewed by inexperienced

physicians.38,39
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5. Financial implications

Previous studies estimated that less than 30% of
patients admitted to the CCU with suspected AMI
were eventually diagnosed with AMI.37 Conserva-

tive policies that opt for the safe admission of
patients without clear-cut diagnosis of ischaemia,
rather than risking inappropriate discharge, result

in the admission of a large number of patients
without ACS. The cost of caring for such patients

is very substantial.37 Decisions based on cardiac
markers for the triage of patients result in a
considerable reduction of this financial burden

without compromising the safety of patients.40

Heart fatty-acid-binding protein

Heart-FABP is a small (15 kDa) soluble non-
enzyme protein. It is composed of 132 amino

acids.41 It is one of the most abundant proteins
in the heart, and comprises 5–15% of the total

cytosolic protein pool in the aqueous cytoplasm.
This is equal to 0.5mg/g wet weight of tissue.42–45

Minor concentrations of H-FABP specific to the

mitochondrial function have also been reported.46

The gene is located on chromosome 1.47 Heart-
FABP binds two molecules of fatty acids, and is

involved with the delivery of fatty acyl coenzyme
A for oxidation with the generation of energy in

the mitochondria.42 Myocardial ischaemia results
in a significantly higher level of fatty acids in the
plasma and the myocardial tissue, which can be

harmful to the heart.48–51 The presence of H-FABP
may serve a protective function for the myocardial
cells against the oxidation of these fatty acids while

still having these substances readily available for
the metabolic needs of the cell. During ischaemia

(e.g. AMI), H-FABP leaks out of myocardial tissue
and the concentration increases in plasma.44 The
leakage of H-FABP from the myocardium may

make the myocardium more vulnerable to the
harmful effects of fatty acids during reperfusion,
and may account for some of the complications

seen during reperfusion, e.g. arrhythmias. Some
reports have suggested another protective role for

H-FABP, as scavengers of free radicals that are
present in the heart during ischaemia.52,53 H-FABP
exists in high concentrations in the heart only.

However, this protein is not totally cardiac-specific
and occurs in other tissues, although at much
lower concentrations.54,55 It occurs in skeletal

muscles in concentrations varying between 0.05
and 0.2mg/g wet weight of tissue, depending

on muscle fibre type studied.45 It has also been
reported in very low concentrations in tissues such

as the kidney, aorta, testes, mammary glands,

placenta, brain, adrenal glands, adipose tissue,

and stomach.54–56 However, the detection of

H-FABP in these tissues does not necessarily

means its presence in all cells of that tissue. Also,

the evidence was obtained in some of these studies

by immunohistochemical methods using anti-

bodies to H-FABP. The different FABP from heart,

liver and intestine share between 20–35% amino

acid sequences homology, and heart, nerve, and

adipose tissue FABP share 60–80% amino acid

sequence homology.9 Antibodies raised against

heart, liver, or intestine in the earlier studies may

thus have up to 5% cross-reactivity with each

other, and have a detection limit of around 1 ng/ml.

It is therefore possible that cross-reactivity with

other FABP, or other as yet unidentified proteins, in

these tissues is an alternative explanation for the

reported presence of H-FABP in these tissues.57–61

The newer assays have a much improved sensitiv-

ity and can detect H-FABP in concentrations as

low as 0.25 ng/ml; the cross-reactivity with other

tissues FABP is < 0.005%.62,63 The use of these

newer assays might show a more accurate picture

of the true distribution of H-FABP in the various

tissues outside the heart.

The rationale for the use of
H-FABP as a marker for
the early diagnosis of
myocardial injury

The rationale for the use of H-FABP as a marker

for the early diagnosis of myocardial injury is based

on the following features: (i) the presence of this

soluble protein in the myocardium in high con-

centration; (ii) virtual confinement to the cytoplas-

mic space; (iii) small molecular size; (iv) relative

tissue specificity, with a relative distribution of

H-FABP outside the heart similar to that of creatine

kinase muscle brain (CK-MB),45 and (v) early

release into plasma and urine (within 2 h) after

onset of myocardial injury. Heart-FABP bears a

considerable resemblance to myoglobin (a well-

accepted early marker of myocardial injury within

6 h) in terms of size, location within the cell,

release and clearance kinetics. However, when

compared to myoglobin, H-FABP concentration in

the heart muscle is greater than that in skeletal

muscle, and its normal baseline concentration is

several fold lower than myoglobin. These advan-

tages make H-FABP potentially a more suitable

cardiac marker than myoglobin.64–66
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Measurement of H-FABP and
normal range

The method of measurement is based on sand-
wich enzyme-linked immunosorbent assay (ELISA)
using two monoclonal antibodies specific for
H-FABP.22,55,63,67,68 The normal ranges reported
for H-FABP in plasma and serum are assay-
and method-dependent. Tanaka et al. (1991) has
reported the normal range for H-FABP to be
0.0–2.8 mg/l;69 Wodzig et al. (1997) reported
0.3–5 mg/l as the normal limit;63 and Tsuji et al.
(1993) used 3mg/l (normal range 0.0–0.6 mg/l).70

One study used a cut-off concentration of 19mg/l
(mean� 2 SD of controls).71 Heart-FABP is not
likely to be found in the blood stream under normal
conditions. The normal plasma H-FABP is likely to
be due to the continuous release of this protein
from damaged skeletal muscle cells.

Plasma H-FABP and acute
myocardial infarction

Heart-FABP was introduced by Glatz in 1988 as
a potential novel biochemical marker for the early
diagnosis of AMI.73 This assumption was soon
confirmed in several studies.44,45,66,69,71,74,75

Under normal conditions H-FABP is not present
in plasma or interstitial fluid, but is released into
the blood upon cellular injury. The cytoplasmic to
vascular concentration of H-FABP is of the order of
200 000:1.76 The plasma concentration of H-FABP
under normal conditions is < 5mg/l. This makes the
plasma estimation of H-FABP suitable for the early
detection and quantification of myocardial tissue
injury. The H-FABP is released into plasma within
2 h after symptom onset and is reported to peak
at about 4–6 h and return to normal base line value
in 20 h.75 Within the period of 30–210min after
symptom onset, H-FABP has > 80% sensitivity for
the diagnosis of AMI.71 Within the interval of 0–6 h
after symptom onset, the other cardiac markers
such as creatine kinase, CK-MB mass or activity,
cardiac troponin I (cTnI) and cardiac troponin
T (cTnT) will only be starting to accumulate in
the plasma, and their sensitivity has been reported
to be around 64%.77

Urinary H-FABP and acute
myocardial infarction

Urinary indicators of myocardial injury are almost
unknown, and only myoglobin has been tested
as a urinary indicator of myocardial injury.78–80

Heart-FABP is eliminated from the circulation by
the kidney, but the precise mode of renal handling
of H-FABP is unknown. A rise in serum and urine
H-FABP concentration above normal values is seen
in patients who present with AMI as early as 1.5 h
after symptom onset.69 Studies in animals have
also shown decreased myocardial tissue content
and rising plasma and urine concentrations of
H-FABP very early after coronary artery ligation.44,81

Measurement of plasma or urine concentration of
H-FABP was diagnostic of AMI as early as 30min
after ligation. Assays that measure H-FABP in urine
samples were able to accurately diagnose patients
with AMI and provide reliable estimation of infarct
size.82 However, the measurement of infarct size
based upon urinary H-FABP may be influenced
by several factors, such as renal blood flow, per-
fusion pressure, glomerular filtration rate, tubular
absorption, and diseases of the kidney. Measure-
ment of urinary and plasma H-FABP in the presence
of kidney diseases may lead to underestimation and
overestimation, respectively, of the size of infarct
due to impairment of excretion of H-FABP.83 Heart-
FABP circulates for longer (> 25 h) after AMI in
the presence of renal failure.71 Several sensitive
assays that can measure H-FABP in urine samples
are available.67,69,70,82

Limitations of H-FABP assays

The human skeletal muscle FABP has been reported
to be identical to that of H-FABP.56 The H-FABP
content of skeletal muscle is variable, and is
reported to range between 0.05 and 0.2mg/g wet
weight of tissue, depending on muscle type.72,84

Skeletal muscle damage during the course of AMI
(e.g. intramuscular injections, electric cardioversion,
traumatic cardiopulmonary resuscitation) may result
in the leakage of H-FABP, and this could interfere
with the results of the assays.84 Diagnosis of AMI
in these groups of patients using H-FABP alone
can be difficult. H-FABP is increased in the plasma
of healthy volunteers after strenuous exercise as
a result of release from skeletal muscle, but in
these patients the ratio of myoglobin to H-FABP
is below the 6% cut-off value considered specific
for skeletal muscle injury.85 One study however did
not report any increase of H-FABP in urine or serum
in a patient with crush injury, whereas myoglobin
was markedly elevated.69

Surgery (both cardiac and non-cardiac) causes
elevation of H-FABP concentration. H-FABP is
excreted by the kidney, and renal insufficiency
results in decreased clearance of H-FABP, thereby
elevating the concentration and prolonging the
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circulation time.86 In situations of AMI and renal
failure, measurement of plasma H-FABP could lead
to overestimation of myocardial infarct size, and
could interfere with its use for the detection of
re-infarction.83 However, renal failure is readily
detectable in standard biochemical analysis and
should not confound the diagnostic specificity of
H-FABP, (as distinct from infarct size measurements)
for the vast majority of patients.

Isoforms of H-FABP

Heart-FABP could be an ideal early marker of
myocyte injury in ACS, if there is an isoform of this
protein that is 100% specific to the heart. Several
investigators have addressed the possibility for the
existence of possible isoforms of H-FABP.87 Glatz
et al. (1985) isolated FABP from the human heart.
This protein had a molecular mass of 15 kDa and
an isoelectric point of 7.5.88 Unterberg et al. (1986)
reported the isolation of H-FABP with a molecular
mass of 15.5 kDa, pI of 5.3, and a an amino acid
sequence that included two cysteine residues.89

Offner et al. (1988) also reported the isolation of
H-FABP, with a molecular mass 14 768 Da; pI 5.25,
and an amino acid sequence that contained no
cysteine residues.41 These results suggest that
isoforms of H-FABP may exist in the human heart.
Similarly, in some studies in rats, the nucleotide
sequence of two rat H-FABP cDNAs differed in
the 50 and 30 untranslated regions. The existence of
H-FABP isoforms has also been reported in bovine
species.92–95 Further studies using more sensitive
techniques are needed to resolve this matter.

H-FABP and myoglobin

Myoglobin has been introduced as a marker for
early diagnosis of AMI (within 3 h after symptom
onset).96–101 In a 1994 study, myoglobin was
superior to CK-MB mass and cTnT for ruling out
AMI within the period of 3–6 h after symptom
onset.102 Myoglobinuria has long been known to be
useful in the diagnosis of AMI.78,103 Myoglobin and
H-FABP share many key features:104 (i) low mole-
cular mass (17 and 15 kDa, respectively); (ii) found
in abundant concentrations in the cytosol of
myocardial cells; (iii) provide substrates for mito-
chondrial oxidation (oxygen and fatty acids, respec-
tively); and (iv) released within 2 h after symptom
onset, peak early (6 h) and return to normal baseline
concentration within 24 h. Both are present in the
heart and skeletal muscle. However, concentration
of myoglobin is approximately two-fold lower in
cardiac than skeletal muscle (2.5 and 4.0mg/g wet

weight of tissue, respectively). In contrast, H-FABP
concentrations are 2–10-fold higher in heart than
in skeletal muscle (0.5 vs. 0.05–0.2mg/g wet
weight).84,104 In addition, the normal plasma con-
centration of H-FABP (< 5 mg/l) is 10–15-fold lower
than that of myoglobin (20–80 mg/l). H-FABP is
therefore more cardiospecific than myoglobin and
because of this superior specificity, the use of
H-FABP as a marker may be preferable for the
early diagnosis of AMI.65,66,104

The main disadvantage of myoglobin or H-FABP
as early markers of myocardial injury is lack of
complete specificity, due to the presence of both in
skeletal muscle. Severe skeletal muscle injury may
result in the release of both proteins in sufficient
quantity to interfere with the specificity of the assay.
Both proteins are released into plasma after injury
at about the same time and in a ratio similar
to the concentration of the proteins in the tissue
of origin, therefore the measurement of the
myoglobin: H-FABP ratio could be useful for
discriminating between cardiac and skeletal
muscle damage. A myoglobin:H-FABP ratio �5 is
considered to be specific for the heart; a ratio �21–
70 is more indicative of skeletal muscle damage.84

The combination of the two markers in a ratio has
been reported by some investigators to increase the
diagnostic specificity for the diagnosis of AMI more
than relying on either marker alone. However, the
use of this ratio should not be a rigid criterion, as
overlaps do occur. Some investigators did not find
any additional value in myoglobin:H-FABP ratio
over the measurement of H-FABP alone.66,84,105

H-FABP and unstable angina

H-FABP may be useful for the identification of
patients with UA based upon detection of myocyte
injury. However, there have been no detailed
studies evaluating its usefulness for the diagnosis,
or risk stratification in patients with UA. In a study
by Tsuji (1993) using H-FABP with a normal range
of 0.0–0.6 mg/l and an upper limit of normal of
3mg/l, in patients suspected with a diagnosis of UA,
the concentration of H-FABP was 3.5� 1.7 mg/l. In
patients with AMI, the range was 12.3� 9.6 mg/l.70

Other investigators have also observed an increase
in H-FABP serum concentration in UA patients.66

One study reported that H-FABP was normal in
a patient diagnosed with UA.71 In this study, a
relatively high upper limit of normal concentration
was used (19 mg/l), and this high cut-off concentra-
tion may have affected the sensitivity, or could be
due to UA without myocardial necrosis. At present
we have limited information on the ischaemic
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threshold for leakage of H-FABP from myocytes.
Preliminary results from our pilot study have
suggested a possible role for H-FABP in the
diagnosis of UA (Figure 1). There is a need for
larger-scale studies designed to look specifically
at the role of H-FABP for the diagnosis of patients
with UA.

H-FABP and acute myocardial
infarction after surgery

H-FABP peaks early, and may be useful for the
early detection of myocardial injury after surgery.
The plasma concentration of H-FABP is increased
relatively early, compared to CK-MB and cTnT,
after aortic declamping in CABG surgery. The time
to peak concentration was significantly shorter
for plasma H-FABP (1.4� 0.5 h) than for CK-MB
(2.5� 0.5 h) or cTnT (6.6� 1.3 h).106 Similar find-
ings were reported in other studies.107 H-FABP
was not increased in low-risk patients after CABG
surgery without cardiopulmonary bypass.108 The
myoglobin to H-FABP ratio (see ‘H-FABP and
myoglobin’ above) was useful in the diagnosis
of AMI after non-cardiac surgery. However, the
sensitivity of this ratio for the diagnosis of AMI in
patients after cardiac surgery was less clear, and
ranged from 11.3� 4.7 to 32.1� 13.6.84

H-FABP and detection of reperfusion

Establishment of reperfusion in the infarct-related
artery is associated with significant reduction in
morbidity and mortality. However, thrombolytic
treatment is associated with successful reperfusion
in only 50–80%.109,110 New or alternative treatment
options are being examined to try to see the best
way to deal with patients who do not reperfuse
after the first course of thrombolytic treat-
ment.111–113 Clinical trials are now underway

randomizing patients who do not reperfuse to

either another course of thrombolytic treatment,

PCI, or conservative treatment. In clinical practice,

reperfusion is ascertained indirectly by the reliance

on clinical features such as disappearance of chest

pain, resolution of ST segment elevation, and

occurrence of reperfusion arrhythmias (e.g. acceler-

ated idioventricular rhythm).114 Reliance on clinical

features alone is not sensitive for the detection of

reperfusion, but H-FABP has been reported to be a

sensitive marker for the detection of reperfusion after

thrombolytic treatment. Abe et al. (1996) demon-

strated that a rise of H-FABP ratio of � 1.5

(compared to pre-treatment concentration), 30min

after thrombolytic treatment, was associated with

100% accuracy for the detection of reperfusion. This

accuracy dropped to 94% at 60min after thrombo-

lytic treatment.74 The advantage of using H-FABP

is that reperfusion is ascertained very quickly, in

some studies as early as 15min. In a study by Ishii

et al. (1995), the predictive accuracy of H-FABP

ratio > 1.8 for the detection of reperfusion within

60min of initiation of treatment was 93% at 15min,

98% at 30min, and 100% at 60min after reper-

fusion.115 The few additional studies that have

examined the role of H-FABP for the detection of

reperfusion also support this view.64

H-FABP and detection of
re-infarction

Re-infarction is a well-recognized complication

following AMI, but one which may be difficult

to detect clinically. This may be attributable to

re-occlusion of the infarct-related artery after an

initial successful reperfusion or to a vessel occlu-

sion at another site. Re-infarction can manifest as

a recurrence of chest pain, or haemodynamic

deterioration such as hypotension, acute pulmonary

oedema, and arrhythmia with or without new ST

segment changes. In the presence of AMI, recur-

rence of chest pain with or without ST segment

changes could be misinterpreted and without a

confirmatory test, the diagnosis of re-infarction

could be missed. Re-infarction carries a worse

prognosis, and may necessitate further pharmaco-

logical, supportive (e.g. balloon pump) or interven-

tion treatment with PCI, or (rarely) urgent CABG.

It is vital that this complication is recognized and

appropriate interventions implemented. The most

definitive method for the confirmation of re-infarc-

tion is coronary angiography, but the diagnosis of

re-infarction may be possible using cardiac markers.

The high sensitivity, simplicity, cost and safety

Figure 1. Concentrations of H-FABP in patients with

unstable angina and non-cardiac chest pain. Data from

our pilot study in patients with acute chest pain.
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profile make cardiac markers a practical option for
the detection of re-infarction.

The features of an ideal marker for early
re-infarction are early release and clearance from
the circulation, thus permitting a prompt return
to pre-infarction concentrations. H-FABP fulfils
these features, appearing within 3 h after infarction,
peaking early at about 5 h, and returning to baseline
concentrations about 20 h after symptom onset.71

Re-infarction is shown by a rapid rise in H-FABP
concentration in serum compared to the previous
value. Heart-FABP can detect re-infarction when it
occurs 10 h after symptom onset (Figure 2).84 Other
cardiac markers such as CK-MB, cTnI, cTnT, and
LDH take several days to return to the pre-infarction
levels, and thus are not sufficiently sensitive for the
detection of re-infarction.

H-FABP and estimation of
infarct size

The measurement of infarct size after AMI can have
important prognostic implications.116–118 It may
also have therapeutic applications in the selection
of patients for ACE inhibitor or anticoagulation
treatment. Those patients with large infarcts who
are deemed at higher risk for complications such
as congestive cardiac failure, adverse remodelling
of the ventricles or intramural thrombosis may
be selected for higher intensity treatment options.
However, the measurement of infarct size is not
performed routinely. This may be partly due to the
complicated blood sampling protocol, which is
both prolonged (several days) and time-consuming,
but is necessary to establish a complete time-
concentration curve profile necessary for this type
of measurement. In clinical practice, infarct size
is estimated indirectly (or qualitatively) by methods
such as nuclear perfusion imaging, echocardio-
graphy (wall motion abnormalities, measurement
of ejection fraction), ECG changes (e.g. number of

leads involved; conduction abnormalities in ante-
rior infarction), the presence of heart failure, and by
reference to the maximum rise of cardiac marker
concentrations after infarction. Accurate measure-
ment of infarct size is possible using nuclear stu-
dies, but is not practical for routine use because it
is expensive, requires high technology, and exposes
patients to additional radiation.
Cardiac markers offer an alternative for the

estimation of infarct size. The rapid and quantita-
tively robust release of H-FABP into plasma after
symptom onset and its rapid clearance from the
circulation within 24 h, make it potentially suitable
for the early estimation of infarct size, provided that
blood is sampled sufficiently frequently.83 Sohmiya
et al. (1993) showed good correlation between
myocardial infarct size measured from plasma
H-FABP and infarcted myocardium estimated from
triphenyl tetrazolium chloride (TTC) staining.82

A study by Glatz et al. (1994) using H-FABP for
the early estimation of infarct size, showed a good
correlation between H-FABP, CK-MB and a-hydro-
xybutyrate dehydrogenase (a-HBDH) for the esti-
mation of infarct size. The advantage of H-FABP
is that this measurement is completed much earlier
than with the other two markers: 24 h, 48 h, and 72 h
for H-FABP, CK-MB, and a-HBDH, respectively.76

Excretion of heart fatty acid
binding protein

It is not clear at present whether H-FABP reaches
the circulation trans-endothelially, or via the lym-
phatic system, or both, after its release from the cell
into the intercellular space. The rapid appearance
from blood may suggest the first route. The route of
elimination from the circulation is assumed to be the
kidney, based on direct and indirect evidence.
The indirect evidence comes from observa-

tions in clinical studies. Patients presenting with
AMI demonstrate rising levels of plasma and urine
H-FABP within 1.5 h after symptom onset.70 Patients
with renal insufficiency have raised levels of
H-FABP, and circulation time is prolonged com-
pared to those with normal renal function.71,83

The direct evidence comes from radioactive
iodine-H-FABP excretion studies in animals. The
compound is concentrated within the kidney and
appears in the bladder within very short period
after intravenous injection.82 However, the reported
amount of radioactive H-FABP excreted in the urine
is variable. One study reported that only 14–29%
of the total intravenous dose injected was excreted in
the urine. The total clearance was 0.33ml/min and
the half-life value of total elimination was estimated

Figure 2. Release pattern in a patient with recurrent

AMI.62
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to be 270min.81 A study by Sohmiya (1993)
reported only 6.5� 1.0% recovery of the radio-
active H-FABP in the urine, and its disappearance
half-time was 27.5� 8.4min. They suggested that
the administered H-FABP might be degraded else-
where in the body and the undegraded H-FABP
is excreted in the urine. The authors concluded that
their results were comparable to the excretion
studies of myoglobin (known to be excreted by the
kidney).119

Pathological confirmation of
acute myocardial infarction
using anti-H-FABP antibodies
on autopsy materials

Pathological confirmation of AMI is possible using
autopsy material from the heart. The diagnosis can
be established microscopically or macroscopically
using immunohistochemical methods. Haematoxy-
lin and eosin (H&E) staining of the tissue sections
can establish the microscopic diagnosis, whereas
the macroscopic diagnosis is based on nitro blue
tetrazolium (NBT) staining methods. This macro-
scopic technique reflects the intracellular activity of
the enzyme. In viable tissue, this enzyme converts
the NBT into dark blue insoluble pigment (forma-
zan), while infarcted tissue remains unstained.120

These two methods are only positive after at least
4–6 h after AMI. Anti-H-FABP has been used for
the confirmation of AMI on autopsy materials.
Using anti-H-FABP, it was possible to diagnose
infarcts < 4 h old. In all biopsies that were positive
by either H&E or NBT staining, the anti-H-FABP
staining showed an absent or noticeably decreased
staining of H-FABP in these tissues. Some biopsy
material from patients with AMI who died within
4 h were positive using anti-H-FABP, but the H&E
and NBT staining were negative. The authors of
the study concluded that anti-H-FABP antibody
is more sensitive than either H&E or NBT staining
methods for the detection of subtle changes of AMI
or very small or very recent (< 4 h) AMI on autopsy
materials.121,122

Discussion

Heart-FABP is a novel cytosolic protein with the
potential for accurate early diagnosis of AMI, early
detection of re-infarction, detection of reperfusion,
and estimation of infarct size. However, there is
uncertainty in clinical practice about its additional
value compared to the currently available markers
such as myoglobin, CK-MB and troponins. Many

studies have convincingly shown that the latter
markers (with the exception of myoglobin) are
relatively insensitive for the early detection of AMI
in the first 6 h after symptom onset.77 Reperfusion in
this interval is associated with the greatest reduc-
tions in morbidity and mortality.110,116,117,123–126

Consistently negative serial samples within 6 h
after symptom onset can be used to rule out
AMI with high predictive accuracy. Measurement
of H-FABP before and at 30 or 60min after the
administration of thrombolytic treatment can detect
reperfusion of the infarct-related artery with high
sensitivity, and permit further reperfusion therapy to
be planned for those patients who do not reperfuse
successfully. Early re-infarction is a well-recognized
complication after initial infarct. Given the release
kinetics of H-FABP, it is more suited to the detection
of re-infarction than other markers (with the excep-
tion of myoglobin, which lacks specificity). The
accurate estimation of myocardial infarct size has
important prognostic and therapeutic applications.
Heart-FABP can provide a reliable estimate of
infarct size. The advantage of H-FABP over other
markers is that this measurement can be provided
within 24 h of admission.

It is premature to attach a specific clinical value
for the detection of AMI from measurement of H-
FABP in the urine. Further studies are needed to
characterize the renal handling and metabolism of
H-FABP under normal and disease states. Until such
essential details are available, it can only be
assumed that, if H-FABP is excreted mainly by the
kidney, urinary H-FABP might offer an alternative
method for the detection of AMI. Urinary H-FABP
testing might be useful as a qualitative test for
general practitioners to rule in or rule out AMI in
the community.

Heart-FABP distribution outside the heart has
been equated with that of CK-MB, which is currently
regarded as the gold standard marker for the diag-
nosis of AMI.45 Creatine kinase-MB lacks the
required sensitivity to be of value for the very early
diagnosis of AMI in the first 3 h after symptom onset.
During this interval, the sensitivities of CK-MB and
H-FABP for the diagnosis of AMI were 20% and
91.4%, respectively.70 Heart-FABP shares many key
features with myoglobin, but is more cardiospecific,
because its concentration in the skeletal muscle
is only a fraction of that of myoglobin. The normal
concentration of H-FABP in the blood is 10–15-fold
lower than that of myoglobin. Compared to the
troponins, H-FABP is less cardiac specific. The value
of cTnT and cTnI for the late diagnosis of AMI
and for the diagnosis and prognosis and risk stratifi-
cation of patients with UA is well-established. How-
ever, these markers have little role in the very early
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diagnosis of AMI, i.e. within the first 4 h after
symptom onset. They achieve their greatest sensi-

tivity and specificity in the interval 12–16 h after
symptom onset.

Conclusions

Heart-FABP is a sensitive marker for the detection
of AMI, but is not 100% cardiac-specific, because

of its presence in tissues outside the heart. In renal

failure and skeletal muscle disease, it has limited
diagnostic value for AMI, as it tends to overestimate

infarct size. However, the features of H-FABP,
which combine very early release after onset of

symptoms and relative cardiac specificity suggest
that it has great potential. Serial measurement

of H-FABP within 24 h after symptom onset can:
(i) define patients with AMI who need CCU

admission and thrombolysis within 6 h after infarc-

tion; (ii) distinguish patients who reperfuse their
infarct-related artery from those who do not and

who need further intervention, as early as 30min
after starting thrombolytic treatment; (iii) detect

re-infarction if it occurs 10 h after symptom onset;
(iv) permit accurate estimation of myocardial infarct

size and thus provide information concerning
prognosis.
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