
Do We Need Zero Training Loss After Achieving Zero Training Error?

Takashi Ishida 1 2 Ikko Yamane 1 Tomoya Sakai 3 Gang Niu 2 Masashi Sugiyama 2 1

Abstract

Overparameterized deep networks have the capac-

ity to memorize training data with zero training

error. Even after memorization, the training loss

continues to approach zero, making the model

overconfident and the test performance degraded.

Since existing regularizers do not directly aim to

avoid zero training loss, it is hard to tune their hy-

perparameters in order to maintain a fixed/preset

level of training loss. We propose a direct solution

called flooding that intentionally prevents further

reduction of the training loss when it reaches a

reasonably small value, which we call the flood

level. Our approach makes the loss float around

the flood level by doing mini-batched gradient

descent as usual but gradient ascent if the training

loss is below the flood level. This can be imple-

mented with one line of code and is compatible

with any stochastic optimizer and other regular-

izers. With flooding, the model will continue to

“random walk” with the same non-zero training

loss, and we expect it to drift into an area with

a flat loss landscape that leads to better general-

ization. We experimentally show that flooding

improves performance and, as a byproduct, in-

duces a double descent curve of the test loss.

1. Introduction

“Overfitting” is one of the biggest interests and concerns

in the machine learning community (Ng, 1997; Caruana

et al., 2000; Belkin et al., 2018; Roelofs et al., 2019; Wer-

pachowski et al., 2019). One way of identifying overfitting

is to see whether the generalization gap, the test minus the

training loss, is increasing or not (Goodfellow et al., 2016).

We can further decompose the situation of the generalization

gap increasing into two stages: The first stage is when both

the training and test losses are decreasing, but the training

1The University of Tokyo 2RIKEN 3NEC Corporation. Corre-
spondence to: Takashi Ishida <ishida@ms.k.u-tokyo.ac.jp>.

Proceedings of the 37
th International Conference on Machine

Learning, Online, PMLR 119, 2020. Copyright 2020 by the au-
thor(s).

(a) w/o Flooding (b) w/ Flooding

[B]

[C]training loss

test loss

Epochs

[A]

(c) C10 w/o Flooding

training loss

test loss

flooded area
Epochs

(d) C10 w/ Flooding

Figure 1. (a) shows 3 different concepts related to overfitting. [A]

shows the generalization gap increases, while the training and test

losses decrease. [B] also shows the increasing gap, but the test loss

starts to rise. [C] shows the training loss becoming (near-)zero.

We avoid [C] by flooding the bottom area, visualized in (b), which

forces the training loss to stay around a constant. This leads to

a decreasing test loss once again. We confirm these claims in

experiments with CIFAR-10 shown in (c)–(d).

loss is decreasing faster than the test loss ([A] in Fig. 1(a).)

The next stage is when the training loss is decreasing, but

the test loss is increasing.

Within stage [B], after learning for even more epochs, the

training loss will continue to decrease and may become

(near-)zero. This is shown as [C] in Fig. 1(a). If we continue

training even after the model has memorized (Zhang et al.,

2017; Arpit et al., 2017; Belkin et al., 2018) the training

data completely with zero error, the training loss can eas-

ily become (near-)zero especially with overparametrized

models. Recent works on overparametrization and double

descent curves (Belkin et al., 2019; Nakkiran et al., 2020)

have shown that learning until zero training error is mean-

ingful to achieve a lower generalization error. However,

whether zero training loss is necessary after achieving zero

training error remains an open issue.

In this paper, we propose a method to make the training

loss float around a small constant value, in order to prevent

the training loss from approaching zero. This is analogous

Do We Need Zero Training Loss After Achieving Zero Training Error?

to flooding the bottom area with water, and we refer to

the constant value as the flood level. Note that even if we

add flooding, we can still memorize the training data. Our

proposal only forces the training loss to become positive,

which does not necessarily mean the training error will

become positive, as long as the flood level is not too large.

The idea of flooding is shown in Fig. 1(b), and we show

learning curves before and after flooding with a benchmark

dataset in Fig. 1(c) and Fig. 1(d).1

Algorithm and implementation Our algorithm of flood-

ing is surprisingly simple. If the original learning objective

is J , the proposed modified learning objective J̃ with flood-

ing is

J̃(θ) = |J(θ)− b|+ b, (1)

where b > 0 is the flood level specified by the user, and θ is

the model parameter.2

The gradient of J̃ w.r.t. θ will point in the same direction as

that of J(θ) when J(θ) > b but in the opposite direction

when J(θ) < b. This means that when the learning objec-

tive is above the flood level, there is a “gravity” effect with

gradient descent, but when the learning objective is below

the flood level, there is a “buoyancy” effect with gradient

ascent. In practice, this will be performed with a mini-batch

and will be compatible with any stochastic optimizers. It

can also be used along with other regularization methods.

During flooding, the training loss will repeat going below

and above the flood level. The model will continue to “ran-

dom walk” with the same non-zero training loss, and we

expect it to drift into an area with a flat loss landscape that

leads to better generalization (Hochreiter & Schmidhuber,

1997; Chaudhari et al., 2017; Keskar et al., 2017; Li et al.,

2018). In experiments, we show that during this period of

random walk, there is an increase in flatness of the loss

function (See Section 5.3).

This modification can be incorporated into existing machine

learning code easily: Add one line of code for Eq. (1) after

evaluating the original objective function J(θ). A minimal

working example with a mini-batch in PyTorch (Paszke

et al., 2019) is demonstrated below to show the additional

one line of code:

1 outputs = model(inputs)

2 loss = criterion(outputs, labels)

3 flood = (loss-b).abs()+b # This is it!

4 optimizer.zero_grad()

5 flood.backward()

6 optimizer.step()

It may be hard to set the flood level without expert knowl-

1For the details of these experiments, see Appendix C.
2Adding back b will not affect the gradient but will ensure

J̃(θ) = J(θ) when J(θ) > b.

edge on the domain or task. We can circumvent this situation

easily by treating the flood level as a hyper-parameter. We

may exhaustively evaluate the accuracy for the predefined

hyper-parameter candidates with a validation dataset, which

can be performed in parallel.

Previous regularization methods Many previous regu-

larization methods also aim at avoiding training too much

in various ways including restricting the parameter norm to

become small by decaying the parameter weights (Hanson

& Pratt, 1988), raising the difficulty of training by drop-

ping activations of neural networks (Srivastava et al., 2014),

avoiding the model to output a hard label by smoothing

the training labels (Szegedy et al., 2016), and simply stop-

ping training at an earlier phase (Morgan & Bourlard, 1990).

These methods can be considered as indirect ways to control

the training loss, by also introducing additional assumptions

such as the optimal model parameters are close to zero.

Although making the regularization effect stronger would

make it harder for the training loss to approach zero, it is

still hard to maintain the right level of training loss till the

end of training. In fact, for overparametrized deep networks,

applying small regularization would not stop the training

loss becoming (near-)zero, making it even harder to choose

a hyper-parameter that corresponds to a specific level of

loss.

Flooding, on the other hand, is a direct solution to the is-

sue that the training loss becomes (near-)zero. Flooding

intentionally prevents further reduction of the training loss

when it reaches a reasonably small value, and the flood level

corresponds to the level of training loss that the user wants

to keep.

2. Backgrounds

In this section, we review regularization methods (summa-

rized in Table 1), recent works on overparametrization and

double descent curves, and the area of weakly supervised

learning where similar techniques to flooding have been

explored.

2.1. Regularization Methods

The name “regularization” dates back to at least Tikhonov

regularization for the ill-posed linear least-squares prob-

lem (Tikhonov, 1943; Tikhonov & Arsenin, 1977). One

example is to modify X⊤X (where X is the design ma-

trix) to become “regular” by adding a term to the objective

function. ℓ2 regularization is a generalization of the above

example and can be applied to non-linear models. These

methods implicitly assume that the optimal model parame-

ters are close to zero.

It is known that weight decay (Hanson & Pratt, 1988),

Do We Need Zero Training Loss After Achieving Zero Training Error?

Table 1. Conceptual comparisons of various regularizers. “Indep.”/“tr.” stands for “independent”/“training” and X/× stands for yes/no.

Regularization and other methods
Target
tr. loss

Domain
indep.

Task
indep.

Model
indep.

Main assumption

ℓ2 regularization (Tikhonov, 1943) × X X X Optimal model params are close to 0
Weight decay (Hanson & Pratt, 1988) × X X X Optimal model params are close to 0
Early stopping (Morgan & Bourlard, 1990) × X X X Overfitting occurs in later epochs
ℓ1 regularization (Tibshirani, 1996) × X X X Optimal model has to be sparse
Dropout (Srivastava et al., 2014) × X X × Existence of complex co-adaptations
Batch normalization (Ioffe & Szegedy, 2015) × X X × Existence of internal covariate shift
Label smoothing (Szegedy et al., 2016) × X × X True posterior is not a one-hot vector
Mixup (Zhang et al., 2018) × × × X Linear relationship between x and y
Image augment. (Shorten & Khoshgoftaar, 2019) × × X X Input is invariant to the translations

Flooding (proposed method) X X X X Learning until zero loss is harmful

dropout (Srivastava et al., 2014), and early stopping (Mor-

gan & Bourlard, 1990) are equivalent to ℓ2 regularization un-

der certain conditions (Loshchilov & Hutter, 2019; Bishop,

1995; Goodfellow et al., 2016; Wager et al., 2013), implying

that they have similar assumptions on the optimal model

parameters. There are other penalties based on different

assumptions such as the ℓ1 regularization (Tibshirani, 1996)

based on the sparsity assumption that the optimal model has

only a few non-zero parameters.

Modern machine learning tasks are applied to complex prob-

lems where the optimal model parameters are not necessarily

close to zero or are not sparse, and it would be ideal if we

can properly add regularization effects to the optimization

stage without such assumptions. Our proposed method does

not have assumptions on the optimal model parameters and

can be useful for more complex problems.

More recently, “regularization” has further evolved to a

more general meaning including various methods that allevi-

ate overfitting but do not necessarily have a step to regularize

a singular matrix or add a regularization term to the objec-

tive function. For example, Goodfellow et al. (2016) defines

regularization as “any modification we make to a learning

algorithm that is intended to reduce its generalization er-

ror but not its training error.” In this paper, we adopt this

broader meaning of “regularization.”

Examples of the more general regularization category in-

clude mixup (Zhang et al., 2018) and data augmentation

methods like cropping, flipping, and adjusting brightness or

sharpness (Shorten & Khoshgoftaar, 2019). These methods

have been adopted in many state-of-the-art methods (Verma

et al., 2019; Berthelot et al., 2019; Kolesnikov et al., 2020)

and are becoming essential regularization tools for develop-

ing new systems. However, these regularization methods

have the drawback of being domain-specific: They are de-

signed for the vision domain and require some efforts when

applying to other domains (Guo et al., 2019; Thulasidasan

et al., 2019). Other regularizers such as label smoothing

(Szegedy et al., 2016) is used for problems with class la-

bels and harder to use with regression or ranking, meaning

that they are task-specific. Batch normalization (Ioffe &

Szegedy, 2015) and dropout (Srivastava et al., 2014) are

designed for neural networks and are model-specific.

Although these regularization methods—both the special

and general ones—already work well in practice and have

become the de facto standard tools (Bishop, 2011; Goodfel-

low et al., 2016), we provide an alternative which is even

more general in the sense that it is domain-, task-, and

model-independent.

That being said, we want to emphasize that the most impor-

tant difference between flooding and other regularization

methods is whether it is possible to target a specific level

of training loss other than zero. While flooding allows the

user to choose the level of training loss directly, it is hard to

achieve this with other regularizers.

2.2. Double Descent Curves with Overparametrization

Recently, there has been increasing attention on the phe-

nomenon of “double descent,” named by Belkin et al. (2019),

to explain the two regimes of deep learning: The first one

(underparametrized regime) occurs where the model com-

plexity is small compared to the number of samples, and

the test error as a function of model complexity decreases

with low model complexity but starts to increase after the

model complexity is large enough. This follows the classical

view of machine learning that excessive complexity leads

to poor generalization. The second one (overparametrized

regime) occurs when an even larger model complexity is

considered. Then increasing the complexity only decreases

test error, which leads to a double descent shape. The phase

of decreasing test error often occurs after the training error

becomes zero. This follows the modern view of machine

learning that bigger models lead to better generalization.3

As far as we know, the discovery of double descent curves

dates back to at least Krogh & Hertz (1992), where they

3https://www.eff.org/ai/metrics

https://www.eff.org/ai/metrics

Do We Need Zero Training Loss After Achieving Zero Training Error?

theoretically showed the double descent phenomenon under

a linear regression setup. Recent works (Belkin et al., 2019;

Nakkiran et al., 2020) have shown empirically that a similar

phenomenon can be observed with deep learning methods.

Nakkiran et al. (2020) observed that the double descent

curves for the test error can be shown not only as a function

of model complexity, but also as a function of the epoch

number.

To the best of our knowledge, the epoch-wise double de-

scent curve was not observed for the test loss before but was

observed in our experiments after using flooding with only

about 100 epochs. Investigating the connection between

epoch-wise double descent curves for the test loss and pre-

vious double descent curves (Krogh & Hertz, 1992; Belkin

et al., 2019; Nakkiran et al., 2020) is out of the scope of this

paper but is an important future direction.

2.3. Avoiding Over-Minimization of the Empirical Risk

It is commonly observed that the empirical risk goes below

zero, and it causes overfitting (Kiryo et al., 2017) in weakly

supervised learning when an equivalent form of the risk

expressed with the given weak supervision is alternatively

used (Natarajan et al., 2013; Cid-Sueiro et al., 2014; du

Plessis et al., 2014; 2015; Patrini et al., 2017; van Rooyen &

Williamson, 2018). Kiryo et al. (2017) proposed a gradient

ascent technique to keep the empirical risk non-negative.

This idea has been generalized and applied to other weakly

supervised settings (Han et al., 2020; Ishida et al., 2019; Lu

et al., 2020).

Although we also set a lower bound on the empirical risk, the

motivation is different: First, while Kiryo et al. (2017) and

others aim to fix the negative empirical risk to become non-

negative, our original empirical risk is already non-negative.

Instead, we are aiming to sink the original empirical risk

by modifying it with a positive lower bound. Second, the

problem settings are different. Weakly supervised learning

methods require certain loss corrections or sample correc-

tions (Han et al., 2020) before the non-negative correction,

but we work on the original empirical risk without any

setting-specific modifications.

Early stopping (Morgan & Bourlard, 1990) may be a naive

solution to this problem where the empirical risk becomes

too small. However, performance of early stopping highly

depends on the training dynamics and is sensitive to the

randomness in the optimization method and mini-batch sam-

pling. This suggests that early stopping at the optimal epoch

in terms of a single training path does not necessarily per-

form well in another round of training. This makes it dif-

ficult to use hyper-parameter selection techniques such as

cross-validation that requires re-training a model more than

once. In our experiments, we will demonstrate how flooding

performs even better than early stopping.

3. Flooding: How to Avoid Zero Training Loss

In this section, we propose our regularization method, flood-

ing. Note that this section and the following sections only

consider multi-class classification for simplicity.

3.1. Preliminaries

Consider input variable x ∈ R
d and output variable y ∈

[K] := {1, . . . ,K}, where K is the number of classes.

They follow an unknown joint probability distribution with

density p(x, y). We denote the score function by g : Rd →
R

K . For any test data point x0, our prediction of the output

label will be given by ŷ0 := argmaxz∈[K] gz(x0), where

gz(·) is the z-th element of g(·), and in case of a tie, argmax
returns the largest argument. Let ℓ : RK × [K] → R denote

a loss function. ℓ can be the zero-one loss,

ℓ01(v, z
′) :=

{
0 if argmaxz∈{1,...,K} vz = z′,

1 otherwise,
(2)

where v := (v1, . . . , vK)⊤ ∈ R
K , or a surrogate loss such

as the softmax cross-entropy loss,

ℓCE(v, z
′) := − log

exp(vz′)∑
z∈[K] exp(vz)

. (3)

For a surrogate loss ℓ, we denote the classification risk by

R(g) := Ep(x,y)[ℓ(g(x), y)] (4)

where Ep(x,y)[·] is the expectation over (x, y) ∼ p(x, y).
We use R01(g) to denote Eq. (4) when ℓ = ℓ01 and call it

the classification error.

The goal of multi-class classification is to learn g that mini-

mizes the classification error R01(g). In optimization, we

consider the minimization of the risk with a almost surely

differentiable surrogate loss R(g) instead to make the prob-

lem more tractable. Furthermore, since p(x, y) is usually

unknown and there is no way to exactly evaluate R(g), we

minimize its empirical version calculated from the training

data instead:

R̂(g) :=
1

n

n∑

i=1

ℓ(g(xi), yi), (5)

where {(xi, yi)}
n
i=1 are i.i.d. sampled from p(x, y). We

call R̂ the empirical risk.

We would like to clarify some of the undefined terms used

in the title and the introduction. The “train/test loss” is the

empirical risk with respect to the surrogate loss function

ℓ over the training/test data, respectively. We refer to the

“training/test error” as the empirical risk with respect to ℓ01
over the training/test data, respectively (which is equal to

one minus accuracy) (Zhang, 2004). 4

4Also see Guo et al. (2017) for a discussion of the empirical
differences of loss and error with neural networks.

Do We Need Zero Training Loss After Achieving Zero Training Error?

Finally, we formally define the Bayes risk as

R∗ := inf
h

R(h),

where the infimum is taken over all measurable, vector-

valued functions h : Rd → R
K . The Bayes risk is often

referred to as the Bayes error if the zero-one loss is used:

inf
h

R01(h).

3.2. Algorithm

With flexible models, R̂(g) w.r.t. a surrogate loss can easily

become small if not zero, as we mentioned in Section 1;

see [C] in Fig. 1(a). We propose a method that “floods

the bottom area and sinks the original empirical risk” as in

Fig. 1(b) so that the empirical risk cannot go below the flood

level. More technically, if we denote the flood level as b, our

proposed training objective with flooding is a simple fix.

Definition 1. The flooded empirical risk is defined as5

R̃(g) = |R̂(g)− b|+ b. (6)

Note that when b = 0, then R̃(g) = R̂(g). The gradient

of R̃(g) w.r.t. model parameters will point to the same di-

rection as that of R̂(g) when R̂(g) > b but in the opposite

direction when R̂(g) < b. This means that when the learn-

ing objective is above the flood level, we perform gradient

descent as usual (gravity zone), but when the learning ob-

jective is below the flood level, we perform gradient ascent

instead (buoyancy zone).

The issue is that in general, we seldom know the optimal

flood level in advance. This issue can be mitigated by search-

ing for the optimal flood level b∗ with a hyper-parameter

optimization technique. In practice, we can search for the

optimal flood level by performing the exhaustive search in

parallel.

3.3. Implementation

For large scale problems, we can employ mini-batched

stochastic optimization for efficient computation. Suppose

that we have M disjoint mini-batch splits. We denote the

empirical risk (5) with respect to the m-th mini-batch by

R̂m(g) for m ∈ {1, . . . ,M}. Our mini-batched optimiza-

tion performs gradient descent updates in the direction of

the gradient of |R̂m(g) − b| + b. By the convexity of the

absolute value function and Jensen’s inequality, we have

R̃(g) ≤
1

M

M∑

m=1

(
|R̂m(g)− b|+ b

)
. (7)

This indicates that mini-batched optimization will simply

minimize an upper bound of the full-batch case with R̃(g).

5Strictly speaking, Eq. (1) is different from Eq. (6), since

4. Does Flooding Generalize Better?

In this section, we show experimental results to demonstrate

that adding flooding leads to better generalization. The

implementation in this section and the next is based on

PyTorch (Paszke et al., 2019) and demo code is available.6

Experiments were carried out with NVIDIA GeForce GTX

1080 Ti, NVIDIA Quadro RTX 5000 and Intel Xeon Gold

6142.

4.1. Synthetic Datasets

The aim of synthetic experiments is to study the behavior of

flooding with a controlled setup.

Data We use three types of synthetic data: Two Gaussians,

Sinusoid (Nakkiran et al., 2019), and Spiral (Sugiyama,

2015). Below we explain how these data were generated.

Two Gaussians Data: We used two 10-dimensional Gaus-

sian distributions (one for each class) with covariance ma-

trix identity and means µP = [0, 0, . . . , 0]⊤ and µN =
[m,m, . . . ,m]⊤, where m = 1.0. The training, validation,

and test sample sizes are 100, 100, and 20000, respectively.

Sinusoid Data: The sinusoid data (Nakkiran et al., 2019) are

generated as follows. We first draw input data points from

the 2-dimensional standard Gaussian distribution, i.e., x ∼
N(02, I2), where 02 is the two-dimensional zero vector,

and I2 2× 2 identity matrix. Then put class labels based on

y = sign(x⊤w + sin(x⊤w′)),

where w and w′ are any two 2-dimesional vectors such that

w ⊥ w′. The training, validation, and test sample sizes are

100, 100, and 20000, respectively.

Spiral Data: The spiral data (Sugiyama, 2015) is two-

dimensional synthetic data. Let θ+1 := 0, θ+2 , . . . , θ
+
n+ :=

4π be equally spaced n+ points in the interval [0, 4π], and

θ−1 := 0, θ−2 , . . . , θ
−
n−

:= 4π be equally spaced n− points

in the interval [0, 4π]. Let positive and negative input data

points be

x+
i := θi[cos(θi), sin(θi)]

⊤ + τν+
i ,

x−
i := (θ + π)[cos(θ), sin(θ)]⊤ + τν−

i

for i = 1, . . . , n, where τ controls the magnitude of

the noise, ν+
i and ν−

i are i.i.d. distributed according to

the two-dimensional standard normal distribution. Then,

we make data for classification by {(xi, yi)}
n
i=1 :=

{(x+
i ,+1)}n

+

i+=1 ∪{(x−
i ,−1)}n

−

i−=1, where n := n++n−.

The training, validation, and test sample sizes are 100, 100,

and 10000 per class respectively.

Eq. (1) can be a mini-batch version of Eq. (6).
6https://github.com/takashiishida/

flooding

https://github.com/takashiishida/flooding
https://github.com/takashiishida/flooding

Do We Need Zero Training Loss After Achieving Zero Training Error?

Table 2. Experimental results for the synthetic data. The average and standard deviation of the accuracy of each method over 10 trials.

Sub-table (A) shows the results without early stopping. Sub-table (B) shows the results with early stopping. The boldface denotes the best

and comparable method in terms of the average accuracy according to the t-test at the significance level 1%. The average and standard

deviation of the chosen flood level is also shown.
(A) Without Early Stopping (B) With Early Stopping

Data
Label
Noise

Without
Flooding

With
Flooding

Chosen
b

Without
Flooding

With
Flooding

Chosen
b

Two
Gaussians

Low 90.52% (0.71) 92.13% (0.48) 0.17 (0.10) 90.41% (0.98) 92.13% (0.52) 0.16 (0.12)

Middle 84.79% (1.23) 88.03% (1.00) 0.22 (0.09) 85.85% (2.07) 88.15% (0.72) 0.23 (0.08)

High 78.44% (0.92) 83.59% (0.92) 0.32 (0.08) 81.09% (2.23) 83.87% (0.65) 0.32 (0.11)

Spiral

Low 97.72% (0.26) 98.72% (0.20) 0.03 (0.01) 97.72% (0.68) 98.26% (0.50) 0.02 (0.01)

Middle 89.94% (0.59) 93.90% (0.90) 0.12 (0.03) 91.37% (1.43) 93.51% (0.84) 0.10 (0.04)

High 82.38% (1.80) 87.64% (1.60) 0.24 (0.05) 84.48% (1.52) 88.01% (0.82) 0.22 (0.06)

Sinusoid

Low 94.62% (0.89) 94.66% (1.35) 0.05 (0.04) 94.52% (0.85) 95.42% (1.13) 0.03 (0.03)

Middle 87.85% (1.02) 90.19% (1.41) 0.11 (0.07) 90.56% (1.46) 91.16% (1.38) 0.13 (0.07)

High 78.47% (2.39) 85.78% (1.34) 0.25 (0.08) 83.88% (1.49) 85.10% (1.34) 0.22 (0.10)

Settings We use a five-hidden-layer feedforward neural

network with 500 units in each hidden layer with the ReLU

activation function (Nair & Hinton, 2010). We train the

network for 500 epochs with the logistic loss and the Adam

(Kingma & Ba, 2015) optimizer with 100 mini-batch size

and learning rate of 0.001. The flood level is chosen from

b ∈ {0, 0.01, 0.01, . . . , 0.50}. We tried adding label noise

to dataset, by flipping 1% (Low), 5% (Middle), or 10%
(High) of the labels randomly. This label noise corresponds

to varying the Bayes risk, i.e., the difficulty of classification.

Note that the training with b = 0 is identical to the baseline

method without flooding. We report the test accuracy of

the flood level with the best validation accuracy. We first

conduct experiments without early stopping, which means

that the last epoch was chosen for all flood levels.

Results The average and standard deviation of the accu-

racy of each method over 10 trials are summarized in Table 2.

It is worth noting that the average of the chosen flood level

b is larger for the larger label noise because the increase

of label noise is expected to increase the Bayes risk. This

implies the positive correlation between the optimal flood

level and the Bayes risk.

From (A) in Table 2, we can see that the method with flood-

ing often improves test accuracy over the baseline method

without flooding. As we mentioned in the introduction,

it can be harmful to keep training a model until the end

without flooding. However, with flooding, the model at the

final epoch has good prediction performance according to

the results, which implies that flooding helps the late-stage

training improve test accuracy.

We also conducted experiments with early stopping, mean-

ing that we chose the model that recorded the best validation

accuracy during training. The results are reported in sub-

table (B) of Table 2. Compared with sub-table (A), we see

that early stopping improves the baseline method without

flooding in many cases. This indicates that training longer

without flooding was harmful in our experiments. On the

other hand, the accuracy for flooding combined with early

stopping is often close to that with early stopping, meaning

that training until the end with flooding tends to be already

as good as doing so with early stopping. The table shows

that flooding often improves or retains the test accuracy of

the baseline method without flooding even after deploying

early stopping. Flooding does not hurt performance but can

be beneficial for methods used with early stopping.

4.2. Benchmark Experiments

We next perform experiments with benchmark datasets. Not

only do we compare with the baseline without flooding, we

also compare or combine with other general regularization

methods, which are early stopping and weight decay.

Settings We use the following benchmark datasets:

MNIST, Kuzushiji-MNIST, SVHN, CIFAR-10, and CIFAR-

100. The details of the benchmark datasets can be found in

Appendix B. Stochastic gradient descent (Robbins & Monro,

1951) is used with learning rate of 0.1 and momentum of

0.9 for 500 epochs. For MNIST and Kuzushiji-MNIST, we

use a two-hidden-layer feedforward neural network with

1000 units and the ReLU activation function (Nair & Hin-

ton, 2010). We also compared adding batch normalization

(Ioffe & Szegedy, 2015). For SVHN, we used ResNet-18

from He et al. (2016) with the implementation provided

in Paszke et al. (2019). For MNIST, Kuzushiji-MNIST,

and SVHN, we compared adding weight decay with rate

1× 10−5. For CIFAR-10 and CIFAR-100, we used ResNet-

Do We Need Zero Training Loss After Achieving Zero Training Error?

Table 3. Benchmark datasets. Reporting accuracy for all combinations of early stopping and flooding. We compare “w/o flood” and “w/

flood” and the better one is shown in boldface. The best setup for each dataset is shown with underline. “–” means that flood level of

zero was optimal. “LR” stands for learning rate and “aug.” is an abbreviation of augmentation.

w/o early stopping w/ early stopping

Dataset Model & Setup w/o flood w/ flood w/o flood w/ flood

MNIST

MLP 98.45% 98.76% 98.48% 98.66%

MLP w/ weight decay 98.53% 98.58% 98.51% 98.64%

MLP w/ batch normalization 98.60% 98.72% 98.66% 98.65%

Kuzushiji

MLP 92.27% 93.15% 92.24% 92.90%

MLP w/ weight decay 92.21% 92.53% 92.24% 93.15%

MLP w/ batch normalization 92.98% 93.80% 92.81% 93.74%

SVHN
ResNet18 92.38% 92.78% 92.41% 92.79%

ResNet18 w/ weight decay 93.20% – 92.99% 93.42%

CIFAR-10
ResNet44 75.38% 75.31% 74.98% 75.52%

ResNet44 w/ data aug. & LR decay 88.05% 89.61% 88.06% 89.48%

CIFAR-100
ResNet44 46.00% 45.83% 46.87% 46.73%

ResNet44 w/ data aug. & LR decay 63.38% 63.70% 63.24% –

44 from He et al. (2016) with the implementation provided

in Idelbayev (2020). For CIFAR-10 and CIFAR-100, we

compared adding simple data augmentation (random crop

and horizontal flip) and learning rate decay (multiply by

0.1 after 250 and 400 epochs). We split the original train-

ing dataset into training and validation data with with a

proportion of 80 : 20 except for when we used data aug-

mentation, we used 85 : 15. We perform the exhaustive

hyper-parameter search for the flood level with candidates

from {0.00, 0.01, . . . , 0.10}. We used the original labels

and did not add label noise. We deployed early stopping in

the same way as in Section 4.1.

Results We show the results in Table 3. For each dataset,

the best performing setup and combination of regularizers

always use flooding. Combining flooding with early stop-

ping, weight decay, data augmentation, batch normalization,

and/or learning rate decay usually has complementary ef-

fects. As a byproduct, we were able to produce a double

descent curve for the test loss with a relatively few number

of epochs, shown in Fig. 2.

5. Why Does Flooding Generalize Better?

In this section, we investigate four key properties of flooding

to seek potential reasons for better generalization.

5.1. Memorization

Can we maintain memorization (Zhang et al., 2017; Arpit

et al., 2017; Belkin et al., 2018) even after adding flooding?

We investigate if the trained model has zero training error

(100% accuracy) for the flood level that was chosen with

validation data. The results are shown in Fig. 3.

All datasets and settings show downward curves, implying

that the model will give up eventually on memorizing all

training data as the flood level becomes higher. A more inter-

esting observation is the position of the optimal flood level

(the one chosen by validation accuracy which is marked

with ⋆, △, ⊳, ◦, ▽ or ⊲). We can observe that the marks are

often plotted at zero error. These results are consistent with

recent empirical works that imply zero training error leads

to lower generalization error (Belkin et al., 2019; Nakkiran

et al., 2020), but we further demonstrate that zero training

loss may be harmful under zero training error.

5.2. Performance and gradients

We visualize the relationship between test performance (loss

or accuracy) and gradient amplitude of the training/test loss

in Fig. 4, where the gradient amplitude is the ℓ2 norm of the

filter-normalized gradient of the loss. The filter-normalized

gradient is the gradient appropriately scaled depending on

the magnitude of the corresponding convolutional filter, sim-

ilarly to (Li et al., 2018). More specifically, for each filter

of every convolutional layer, we multiply the corresponding

elements of the gradient by the norm of the filter. Note that

a fully connected layer is a special case of convolutional

layer and is also subject to this scaling.

For the sub-figures with gradient amplitude of training loss

on the horizontal axis, “◦” marks (w/ flooding) are often

plotted on the right of “+” marks (w/o flooding), which

implies that flooding prevents the model from staying at a

Do We Need Zero Training Loss After Achieving Zero Training Error?

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

0 100 200 300 400 500
epoch

0.05

0.10

0.15

0.20

0.25

0.30

0.35

te
st

 lo
ss

(a) MNIST, MLP

0 100 200 300 400 500
epoch

0.2

0.3

0.4

0.5

0.6

0.7

0.8

te
st

 lo
ss

(b) KMNIST, MLP

0 100 200 300 400 500
epoch

0.3

0.4

0.5

0.6

0.7

0.8

0.9

te
st

 lo
ss

(c) SVHN, ResNet18

0 100 200 300 400 500
epoch

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

te
st

 lo
ss

(d) C10, ResNet44

0 100 200 300 400 500
epoch

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

te
st

 lo
ss

(e) C10, ResNet44, DA & LRD

0 100 200 300 400 500
epoch

2.5

3.0

3.5

4.0

4.5

5.0

te
st

 lo
ss

(f) C100, ResNet44

0 100 200 300 400 500
epoch

1.75

2.00

2.25

2.50

2.75

3.00

3.25

3.50

te
st

 lo
ss

(g) C100, ResNet44, DA & LRD

Figure 2. Learning curves of test loss. The black dotted line shows the baseline without flooding. The colored lines show the results for

different flooding levels specified by the color bar. DA and LRD stand for data augmentation and learning rate decay, respectively. We

can observe that adding flooding will lead to lower test loss with a double descent curve in most cases. See Fig. 6 in Appendix for other

datasets.

0.00 0.02 0.04 0.06 0.08 0.10
Flood Level

96

97

98

99

100

Tr
ai

ni
ng

 A
cc

. o
f T

ra
in

ed
 M

od
el

MNIST(MLP)
MNIST(MLP&BN)
KMNIST(MLP)
KMNIST(MLP&BN)
SVHN(ResNet18)
C10(ResNet44)
C100(ResNet44)
C10(ResNet44+DA+LRD)
C100(ResNet44+DA+LRD

(a) w/o early stopping

0.00 0.02 0.04 0.06 0.08 0.10
Flood Level

96

97

98

99

100

Tr
ai

ni
ng

 A
cc

. o
f T

ra
in

ed
 M

od
el

MNIST(MLP)
MNIST(MLP&BN)
KMNIST(MLP)
KMNIST(MLP&BN)
SVHN(ResNet18)
C10(ResNet44)
C100(ResNet44)
C10(ResNet44+DA+LRD)
C100(ResNet44+DA+LRD

(b) w/ early stopping

Figure 3. Vertical axis is the training accuracy and the horizontal

axis is the flood level. Marks are placed on the flood level that was

chosen based on validation accuracy.

local minimum. For the sub-figures with gradient amplitude

of test loss on the horizontal axis, the method with flooding

(“◦”) improves performance while the gradient amplitude

becomes smaller.

5.3. Flatness

We give a one-dimensional visualization of flatness (Li et al.,

2018). We compare the flatness of the model right after

the empirical risk with respect to a mini-batch becomes

smaller than the flood level, R̂m(g) < b, for the first time

(dotted blue) and the model after training (solid blue). We

also compare them with the model trained by the baseline

method without flooding, and training is finished (solid red).

In Fig. 5, the test loss becomes lower and flatter during the

training with flooding. Note that the training loss, on the

other hand, continues to float around the flood level until the

end of training after it enters the flooding zone. We expect

that the model makes a random walk and escapes regions

with sharp loss landscapes during the period. This may be

a possible reason for better generalization results with our

proposed method.

5.4. Theoretical Insight

We show that the mean squared error (MSE) of the flooded

risk estimator is smaller than that of the original risk estima-

tor without flooding, with the condition that the flood level

is between the original training loss and the test loss, in the

following theorem.

Theorem 1. Fix any measurable vector-valued function g.

If the flood level b satisfies b ≤ R(g), we have

MSE(R̂(g)) ≥ MSE(R̃(g)). (8)

If b further satisfies b < R(g) and Pr[R̂(g) < b] > 0, the

inequality will be strict:

MSE(R̂(g)) > MSE(R̃(g)). (9)

See Appendix A for formal discussions and the proof.

Do We Need Zero Training Loss After Achieving Zero Training Error?

0.00 0.02 0.04 0.06
Amplitude of Train Loss Gradient

0.050

0.055

0.060

0.065

0.070

0.075

0.080

0.085

0.090
Te

st
 L

os
s

w/ flooding
w/o flooding

100

200

300

400

500

(a) MNIST, x:train

0.2 0.4 0.6 0.8 1.0
Amplitude of Test Loss Gradient

0.050

0.055

0.060

0.065

0.070

0.075

0.080

0.085

0.090

Te
st

 L
os

s

w/ flooding
w/o flooding

100

200

300

400

500

(b) MNIST, x:test

0.0 0.2 0.4 0.6 0.8 1.0
Amplitude of Train Loss Gradient

0.5

0.6

0.7

0.8

0.9

1.0

Te
st

 L
os

s

w/o flooding
w/ flooding

100

200

300

400

500

(c) CIFAR-10, x:train

1 2 3 4 5
Amplitude of Test Loss Gradient

0.5

0.6

0.7

0.8

0.9

1.0

Te
st

 L
os

s

w/o flooding
w/ flooding

100

200

300

400

500

(d) CIFAR-10, x:test

Figure 4. Relationship between test loss and amplitude of gradient (with training or test loss). Each point (“◦” or “+”) in the figures

corresponds to a single model at a certain epoch. We remove the first 10 epochs and plot the rest. “◦” is used for the method with flooding

and “+” is used for the method without flooding. The large black “◦” and “+” show the epochs with early stopping. The color becomes

lighter (purple → yellow) as the training proceeds. See Fig. 7 in Appendix for other datasets.

−1.0 −0.5 0.0 0.5 1.0
Perturbation

0

2

4

6

8

10

Tr
ai

ni
ng

 L
os

s

w/o flooding
w/ flooding (start)
w/ flooding (end)

(a) SVHN (train)

−1.0 −0.5 0.0 0.5 1.0
Perturbation

0

2

4

6

8

10

Te
st

 L
os

s

w/o flooding
w/ flooding (start)
w/ flooding (end)

(b) SVHN (test)

−0.4 −0.2 0.0 0.2 0.4
Perturbation

0

2

4

6

8

10

Tr
ai

ni
ng

 L
os

s

w/o flooding
w/ flooding (start)
w/ flooding (end)

(c) CIFAR-10 (train)

−0.4 −0.2 0.0 0.2 0.4
Perturbation

0

2

4

6

8

10

Te
st

 L
os

s

w/o flooding
w/ flooding (start)
w/ flooding (end)

(d) CIFAR-10 (test)

Figure 5. One dimensional visualization of flatness of training/test loss with respect to perturbation. We depict the results for 3 models:

the model when the empirical risk with respect to training data is below the flooding level for the first time during training(dotted blue),

the model at the end of training with flooding (solid blue), and the model at the end of training without flooding (solid red). See Fig. 8 in

Appendix for other datasets.

6. Conclusion

We proposed a novel regularization method called flooding

that keeps the training loss to stay around a small constant

value, to avoid zero training loss. In our experiments, the

optimal flood level often maintained memorization of train-

ing data, with zero error. With flooding, our experiments

confirmed that the test accuracy improves for various syn-

thetic and benchmark datasets, and we theoretically showed

that the MSE will be reduced under certain conditions.

As a byproduct, we were able to produce a double descent

curve for the test loss when flooding was used. An important

future direction is to study the relationship between this and

the double descent curves from previous works (Krogh &

Hertz, 1992; Belkin et al., 2019; Nakkiran et al., 2020).

Acknowledgements

We thank Chang Xu, Genki Yamamoto, Jeonghyun

Song, Kento Nozawa, Nontawat Charoenphakdee, Voot

Tangkaratt, and Yoshihiro Nagano for the helpful discus-

sions. We also thank anonymous reviewers for helpful com-

ments. TI was supported by the Google PhD Fellowship

Program and JSPS KAKENHI 20J11937. MS and IY were

supported by JST CREST Grant Number JPMJCR18A2

including AIP challenge program, Japan.

References

Arpit, D., Jastrzebski, S., Ballas, N., Krueger, D., Bengio,

E., Kanwal, M. S., Maharaj, T., Fischer, A., Courville,

A., Bengio, Y., and Lacoste-Julien, S. A closer look at

memorization in deep networks. In ICML, 2017.

Belkin, M., Hsu, D. J., and Mitra, P. Overfitting or perfect

fitting? Risk bounds for classification and regression rules

that interpolate. In NeurIPS, 2018.

Belkin, M., Hsu, D., Ma, S., and Mandal, S. Reconcil-

ing modern machine-learning practice and the classical

bias–variance trade-off. PNAS, 116:15850–15854, 2019.

Berthelot, D., Carlini, N., Goodfellow, I., Papernot, N.,

Do We Need Zero Training Loss After Achieving Zero Training Error?

Oliver, A., and Raffel, C. A. MixMatch: A holistic

approach to semi-supervised learning. In NeurIPS, 2019.

Bishop, C. M. Regularization and complexity control in

feed-forward networks. In ICANN, 1995.

Bishop, C. M. Pattern Recognition and Machine Learning

(Information Science and Statistics). Springer, 2011.

Caruana, R., Lawrence, S., and Giles, C. L. Overfitting in

neural nets: Backpropagation, conjugate gradient, and

early stopping. In NeurIPS, 2000.

Chaudhari, P., Choromanska, A., Soatto, S., LeCun, Y., Bal-

dassi, C., Borgs, C., Chayes, J., Sagun, L., and Zecchina,

R. Entropy-SGD: Biasing gradient descent into wide

valleys. In ICLR, 2017.

Cid-Sueiro, J., Garcı́a-Garcı́a, D., and Santos-Rodrı́guez, R.

Consistency of losses for learning from weak labels. In

ECML-PKDD, 2014.

Clanuwat, T., Bober-Irizar, M., Kitamoto, A., Lamb, A.,

Yamamoto, K., and Ha, D. Deep learning for classical

Japanese literature. In NeurIPS Workshop on Machine

Learning for Creativity and Design, 2018.

du Plessis, M. C., Niu, G., and Sugiyama, M. Analysis of

learning from positive and unlabeled data. In NeurIPS,

2014.

du Plessis, M. C., Niu, G., and Sugiyama, M. Convex

formulation for learning from positive and unlabeled data.

In ICML, 2015.

Goodfellow, I., Bengio, Y., and Courville, A. Deep Learning.

MIT Press, 2016.

Guo, C., Pleiss, G., Sun, Y., and Weinberger, K. Q. On

calibration of modern neural networks. In ICML, 2017.

Guo, H., Mao, Y., and Zhang, R. Augmenting data with

mixup for sentence classification: An empirical study. In

arXiv:1905.08941, 2019.

Han, B., Niu, G., Yu, X., Yao, Q., Xu, M., Tsang, I. W., and

Sugiyama, M. Sigua: Forgetting may make learning with

noisy labels more robust. In ICML, 2020.

Hanson, S. J. and Pratt, L. Y. Comparing biases for minimal

network construction with back-propagation. In NeurIPS,

1988.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual

learning for image recognition. In CVPR, 2016.

Hochreiter, S. and Schmidhuber, J. Flat minima. Neural

Computation, 9:1–42, 1997.

Idelbayev, Y. Proper ResNet implementation for CI-

FAR10/CIFAR100 in PyTorch. https//github.

com/akamaster/pytorch_resnet_cifar10,

2020. Accessed: 2020-05-31.

Ioffe, S. and Szegedy, C. Batch normalization: Accelerating

deep network training by reducing internal covariate shift.

In ICML, 2015.

Ishida, T., Niu, G., Menon, A. K., and Sugiyama, M.

Complementary-label learning for arbitrary losses and

models. In ICML, 2019.

Keskar, N. S., Mudigere, D., Nocedal, J., Smelyanskiy,

M., and Tang, P. T. P. On large-batch training for deep

learning: Generalization gap and sharp minima. In ICLR,

2017.

Kingma, D. P. and Ba, J. L. Adam: A method for stochastic

optimization. In ICLR, 2015.

Kiryo, R., Niu, G., du Plessis, M. C., and Sugiyama, M.

Positive-unlabeled learning with non-negative risk esti-

mator. In NeurIPS, 2017.

Kolesnikov, A., Beyer, L., Zhai, X., Puigcerver, J., Yung, J.,

Gelly, S., and Houlsby, N. Big transfer (BiT): General

visual representation learning. In arXiv:1912.11370v3,

2020.

Krogh, A. and Hertz, J. A. A simple weight decay can

improve generalization. In NeurIPS, 1992.

Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-

based learning applied to document recognition. In Pro-

ceedings of the IEEE, pp. 2278–2324, 1998.

Li, H., Xu, Z., Taylor, G., Studer, C., and Goldstein, T.

Visualizing the loss landscape of neural nets. In NeurIPS,

2018.

Loshchilov, I. and Hutter, F. Decoupled weight decay regu-

larization. In ICLR, 2019.

Lu, N., Zhang, T., Niu, G., and Sugiyama, M. Mitigating

overfitting in supervised classification from two unla-

beled datasets: A consistent risk correction approach. In

AISTATS, 2020.

Morgan, N. and Bourlard, H. Generalization and parameter

estimation in feedforward nets: Some experiments. In

NeurIPS, 1990.

Nair, V. and Hinton, G. Rectified linear units improve

restricted boltzmann machines. In ICML, 2010.

Nakkiran, P., Kaplun, G., Kalimeris, D., Yang, T., Edelman,

B. L., Zhang, F., and Barak, B. SGD on neural networks

learns functions of increasing complexity. In NeurIPS,

2019.

https//github.com/akamaster/pytorch_resnet_cifar10
https//github.com/akamaster/pytorch_resnet_cifar10

Do We Need Zero Training Loss After Achieving Zero Training Error?

Nakkiran, P., Kaplun, G., Bansal, Y., Yang, T., Barak, B.,

and Sutskever, I. Deep double descent: Where bigger

models and more data hurt. In ICLR, 2020.

Natarajan, N., Dhillon, I. S., Ravikumar, P. K., and Tewari,

A. Learning with noisy labels. In NeurIPS, 2013.

Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B.,

and Ng, A. Y. Reading digits in natural images with

unsupervised feature learning. In NeurIPS Workshop

on Deep Learning and Unsupervised Feature Learning,

2011.

Ng, A. Y. Preventing “overfitting” of cross-validation data.

In ICML, 1997.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,

Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,

L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Rai-

son, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang,

L., Bai, J., and Chintala, S. PyTorch: An imperative

style, high-performance deep learning library. In NeurIPS,

2019.

Patrini, G., Rozza, A., Menon, A. K., Nock, R., and Qu, L.

Making deep neural networks robust to label noise: A

loss correction approach. In CVPR, 2017.

Robbins, H. and Monro, S. A stochastic approximation

method. Annals of Mathematical Statistics, 22:400–407,

1951.

Roelofs, R., Shankar, V., Recht, B., Fridovich-Keil, S.,

Hardt, M., Miller, J., and Schmidt, L. A meta-analysis of

overfitting in machine learning. In NeurIPS, 2019.

Shorten, C. and Khoshgoftaar, T. M. A survey on image

data augmentation for deep learning. Journal of Big Data,

6, 2019.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I.,

and Salakhutdinov, R. Dropout: A simple way to prevent

neural networks from overfitting. Journal of Machine

Learning Research, 15:1929–1958, 2014.

Sugiyama, M. Introduction to statistical machine learning.

Morgan Kaufmann, 2015.

Szegedy, C., Vanhoucke, V., Ioffe, S., and Shlens, J. Re-

thinking the inception architecture for computer vision.

In CVPR, 2016.

Thulasidasan, S., Chennupati, G., Bilmes, J., Bhattacharya,

T., and Michalak, S. On mixup training: Improved calibra-

tion and predictive uncertainty for deep neural networks.

In NeurIPS, 2019.

Tibshirani, R. Regression shrinkage and selection via the

lasso. Journal of the Royal Statistical Society: Series B

(Methodological), 58:267–288, 1996.

Tikhonov, A. N. On the stability of inverse problems. Dok-

lady Akademii Nauk SSSR, 39:195–198, 1943.

Tikhonov, A. N. and Arsenin, V. Y. Solutions of Ill Posed

Problems. Winston, 1977.

Torralba, A., Fergus, R., and Freeman, W. T. 80 million tiny

images: A large data set for nonparametric object and

scene recognition. In IEEE Trans. PAMI, 2008.

van Rooyen, B. and Williamson, R. C. A theory of learn-

ing with corrupted labels. Journal of Machine Learning

Research, 18:1–50, 2018.

Verma, V., Lamb, A., Kannala, J., Bengio, Y., and Lopez-

Paz, D. Interpolation consistency training for semi-

supervised learning. In IJCAI, 2019.

Wager, S., Wang, S., and Liang, P. Dropout training as

adaptive regularization. In NeurIPS, 2013.

Werpachowski, R., György, A., and Szepesvári, C. De-

tecting overfitting via adversarial examples. In NeurIPS,

2019.

Zhang, C., Bengio, S., Hardt, M., Recht, B., and Vinyals, O.

Understanding deep learning requires rethinking general-

ization. In ICLR, 2017.

Zhang, H., Cisse, M., Dauphin, Y. N., and Lopez-Paz, D.

mixup: Beyond empirical risk minimization. In ICLR,

2018.

Zhang, T. Statistical behavior and consistency of classifi-

cation methods based on convex risk minimization. The

Annals of Statistics, 32:56–85, 2004.

