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A b s t r a c t .  This article raises the problem of errors caused by the metrol- 

ogy of a calibration pattern to the accurate estimation of the intrinsic 

and extrinsic calibration parameters modeling the video system. In order 

to take into account these errors a new approach is proposed that enables 

us to compute in the same time the traditional calibration parameters 

and the 3D geometry of the calibration pattern using a multi-images 

calibration algorithm. Experimental results shows that the proposed al- 

gorithm leads to reliable calibration results and proves that calibration 

errors no longer depend on the accuracy of calibration point measure- 

ment, but on the accuracy of calibration point detection in the image 

plane. 
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1 Introduction 

Video cameras are becoming more and more widely used in Computer Vision for 

3D measurements. To obtain accurate results, calibration is often necessary in 

order to determine the intrinsic parameters modeling the video camera system. 

Well known calibration technics [BroT1], [Tsa86], [FT87] usually require a 

3D known object, called the calibration target. This object has to be well defined 

and accurately measured to insure that the calibration parameters are stable. 

Nowadays, the wide range of application tasks in robotics has encouraged the 

use of long focal lengths (i.e. zooming applications ILL96] ) as well as very 

short ones (3.5ram fish-Eye) to obtain a large inspection field. By doing so, it is 

almost impossible to use the same calibration pattern in the experimental set-up 

for both zoom and fish-eye applications. Specific patterns have to be setout for 

a given range of focal lengths. 

In order to achieve accurate measurements and calibration results, particular 

care has to be taken in the way that a 3D calibration pattern is constructed and 
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also the way the calibration points are measured. This is expensive and time 

consuming. 

In this article we shall examine the influence of errors induced by the metrol- 

ogy of calibration points on the accuracy of the intrinsic calibration parameters.  

First, we briefly outline the photogrammetr ic  calibration approach used in the 

article and the way the correlation matr ix  associated to each camera parame- 

ter is estimated. Then, in the second part ,  the accuracy of the intrinsic camera  

parameters  is analyzed with respect to measurement  errors introduced in the 

3D calibration points, and also with respect to the 2D errors introduced by the 

target  detection in the camera image plane. 

As a result of the conclusions deduced from the previous analysis, a new 

calibration approach is proposed so that  the traditional calibration parameters  

and the 3D geometry of the calibration pat tern  can be estimated. Experimental  

results using first synthetic, then real data, show that  the proposed approach 

enables us to take into account large errors in 3D calibration point measurements.  

2 M a t h e m a t i c a l  T o o l s  f o r  S i m u l t a n e o u s  C a l i b r a t i o n  

U s i n g  a L e a s t  S q u a r e s  T e c h n i q u e  

In our s tudy we use a simplified camera model, i.e., the p i n - h o l e  model, as 

depicted in Figure 1. Through this section, the following notations are used: 

- W - X Y Z  is a right-handed 3-D coordinate system as the world reference 

coordinate system. 

- o - u v  is the 2-D image pixel system with the origin at the top-left corner of 

the image. 

- o - x y  is a 2-D image coordinate system with x and y parallel to those of 

o - u v  and with origin at the principal point o. 

- c - x y z  is the 3-D camera coordinate system with origin at the optical center 

c and z-axis coincides with the optical axis and x, y parallel to those of o - x y .  

The intrinsic parameters  we need to calibrate are: the principal point (u0, u0), 

the focal length f ,  the pixel sizes of the CCD array or their aspect ratio and the 

distortion parameters  of the optical system. 

The extrinsic parameters  are the rotation matr ix  R as well as the translation 

vector T between W - X Y Z  and c - x y z .  

The method presented in this section is strictly a least squares technique 

in the sense that  we minimize the errors of the measurements.  Notations and 

reference systems are those used in Photogrammetry .  

2.1 T h e  M a t h e m a t i c a l  M o d e l  

We assume a perspective projection between a 2-D image and a 3 D object 

(under the pin-hole camera model ). The relationship between a 3-D point and 

its 2-D image is described by the following equations: 
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R ~ j u ~ u O  z x 

Fig. 1. The pin-hole camera model, image geometry and coordinate systems. 

] Yi = Ai R Yi + T (1) 

z~ Zi 

where in (1), (xi, yi, zi) is the image point in the camera system as defined in 

Figure 1 and 2i = f ,  i.e., the focal length of the camera, (Uo, vo) the coordinates 

of the principal point, Ai is a scale factor which maps a point in the camera 

coordinate system to the image plane, (X i ,Y i ,  Zi) is the object point in the 

world-coordinate system W X Y Z ,  (Tx, Ty, Tz) is the translation vector, and R 

is the rotation matrix, which is constructed by three independent rotation angles: 

a rotating around X-axis,/3 around Y-axis, and ~ around Z-axis: 

If we eliminate Ai in (1) and omit the subscript i, we have the following so-called 

eollinearity equations in photogrammetry:  

frllX+rl2Y+rlaZ+Tz I X JralX+r32Y+raaZ+T~ 
(2) 

f r21 X-l-r22 r~-r23 Z-~-Ty 
Y = JralX+r32Y-l-r33Z+T~ 

If we transform (x, y) into the pixel coordinate system (u, v), that  is 

x = (u + vx - uo)dx - dox 1 
y (v + v~ - vo)dy - doy ~ (3) 

Here vx, Vy are errors of the measurements x and y, i.e., corrections to the mea- 

surements so that  they fit the function values, dox, cloy are the lens distortion 

components, which consist of two parts: radial and tangential distortions, i.e., 

do~ = dozr + doxt and doy -- doy~ + doyt. We use two models which are often 

used in photogrammetry [Ame84]: 

doxr = ( u -  uo)dX(alr  2 + a2r 4 + a3r 6) 1 

doyr (v vo)dy(alr  2 + a2r4 + a3r6 ) ~ (4) 

doxt = pl[r 2 + 2(u - Uo)2dx 2] + 2p2(u - uo)dx(v  - vo)dy "[ 

doyt = p~[r 2 + 2(v Vo)2dy 2] + 2pl(u  - uo)dx(v  - vo)dy f (5) 
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where in (3), (4), and (5), u, v are the image coordinates in the pixel system, 

uo, Vo define the principal point in the pixel system, al,  a2, a3 are the radial lens 

distortion parameters,  Pl, P2 are the tangential distortion parameters, and d~, dy 

are the scale factors of the pixel system in x and y directions respectively, and 

r = X/(u - uo) 2 + (v - v0) 2, is the radial distance from the principal point. 

Substituting (3), (4) and (5) into (2), we have the following: 

Uv + + vyV= == UOvo + + (dour(d~ ++ d~176 ++ (d-~y) (djT~) r21X+r22Y+r23Z+TVr31X+r32Y+r33Z+T=r"X+r12Y+rl'~Z+T=r31 X+r32 Y+r33 Z+T= := P(~)Q(~) } 

that  can also be rewritten, 

(6) 

vx = P(4~) - u } F(4~) (7) 
vy v 

As the perspective projection is always defined up to a scale factor, we usu- 

ally set dx parameter to 1. If we define fx --- ~ and fy = d-~, the calibration 

parameters to be estimated have the following expression: 

= [uo, vo, al,  a2, a3,Pl ,P2, fx, fy, T~, T~, Tz, a, fl, ,~]T 

2.2 Solv ing  the  P r o b l e m  

The problem is to estimate the vector �9 by minimizing ~in=l (v~ + v2~). In (6) 

P ( ~ )  and Q(~)  are non-linear functions of ~,  the minimization is a non-linear 

optimization problem. One way of solving the problem is to linearize (6) with 

some initial value ~0 and solve for A ~ .  Then by adding A ~  to ~0 as the new 

initial value and repeating the process until a certain convergency is satisfied. 

Given n 3D points and their corresponding 2D image points, we can write 

the 2 • n linearized measurement or error equations in matrix form: 

V = L + A A4~ (8) 

, 5F with L = V(~o) and A = F~o - (iqs[~=~ ~ 

Let the weight matrix of the measurements be W ,  the least squares solution to 

(8) is a minimization problem of 

min (vTwv) (9) 

The solution to (9) can be obtained as: 

A4, = (ATWA)-I (ATWL) (10) 
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2.3 M u l t i - i m a g e  C a l i b r a t i o n  

One major source of calibration errors is the results of measurement errors. These 

errors can be located on the 3d coordinates of the calibration points but also in 

the image plane when the target point coordinates are estimated. 

One way to improve this is to combine more than one image taken by the 

same camera but from different (rotated and/or  translated) positions. In such a 

case, the intrinsic parameters remain the same for all images and the calibration 

task means computing a parameter vector of 

~1~9+6 m [UO,UO,al,a2 a3,Pl,P2,fx,fy,T1 T1 ,~1 1 ~ 1  1 = , l z , a  ,P ,V , 

m m ra m ] T  
�9 . . , T ;  ,T~ , T  z , a  , f lm,Vm 

. I  

If m is the number of images and n is the number of points on each image, 

the total number of equations will be (2ran) and the total number of parameter 

is (9 + 6m). The redundancy number r is r = 2ran - 9 - 6m, which is much 

larger than the one in the single-image calibration case. As we will show in the 

next subsection, the larger the redundancy the higher the reliability. 

An important  advantage of the multiple images approach is to provide a 

better estimate of distorsion paramaters when a short focal length has to be 

calibrated. Actually, in most application cases, the calibration target only covers 

a short part of the image. Using a multiple images approach, you can move the 

camera to obtain measurement information in all the CCD matrix surface and 

insure the radial parameters are more reliable. 

3 A c c u r a c y  A s s e s s m e n t  

3.1 T h e o r e t i c a l  p o i n t  o f  v iew 

From the least squares estimation of (8) and (9), we can compute the estimates 

of the residual vector V as 

= [I + A(ATWA)-IATW]L (ii) 

and the estimate of the so called standard error of unit weight, which is the 

posteriori estimation of the noises a0 of the image coordinates if the model is 

correct and there are no system errors: 

v T w v  
^ (12) 
a ~ -  N - r  

and the estimate of the covariance matrix of the parameters 4~: 

C~ = ( A T W A )  -1 (13) 

And for each individual parameter r we can then compute the estimate of its 

precision, or the standard deviation: 

&~ = 5~cii (14) 
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3.2 E x p e r i m e n t a l  f a c t o r s  

There are many factors which affect the accuracy of the computed parameters, 

and thus the reconstructed 3D data using these parameters. In the previous 

paragraph we have shown some error sources. Let us summarize the major fac- 

tors: 

- The number and accuracy of the measurements.  How well we can measure 

2D points in the image, and the accuracy of the 3D object points are the 

main factor which effect the accuracy of the calibration. Usually, we assume 

the 3D points are free of error, which is not quite true. Assuming both errors 

are random errors (with a certain distribution), this type of error will result 

in a random residual error in the image after the least squares adjustment.  

- Geometrical  configuration of the set up, i.e., the relation between the camera 

and the calibration object. This factor determines the internal strength of 

the least squares solution, i.e., the design matr ix  A of the system. Improper  

geometrical configuration will result in poor accuracy and reliability ILL96]. 

- The mathemat ica l  models used for the calibration. We model the camera 

lens as a pin-hole model, which is just an approximation,  and so the lens 

distortion is modelled as radial and tangential distortion. The lens system 

is a very complicated optical and mechanical construction, and there is no 

exact model for it. The imperfect model will result in a systematic error in 

the image after the calibration. 

- J i t ter  effects can also be underlined. They are directly influenced by with 

the electronic stability of the frame grabber,  and [Bey92] shows tha t  their 

influence can induce systematic errors in the video images - up to 0.5 pixel. 

3.3 I n f l u e n c e  o f  t h e  c a l i b r a t i o n  p a t t e r n  

The influence of the calibration pat tern  on the parameters  est imated during the 

calibration process can be analysed in different ways. 

In ILL96] the authors show that  the geometrical configuration of the cali- 

brat ion pat tern  (several grids, cubes ...) is highly connected to the correlation 

matr ix  form of the computed parameters.  

In this section we want to analyse the influence of random errors introduced 

in the coordinates of the calibration points, on the accuracy of the computed 

parameters .  

Experimental  setup 

Let us define a set of 11 synthetic images, that  represents a calibration pat tern  

of 11 points observed with a video camera equipped with a 10mm lens. The image 

set is computed in order to allow the calibration pat tern  to be observed from 

highly different view points. 

Table 1 describes the calibration results obtained for different ranges of noise 

(in millimeters) introduced in the coordinates (x,y,z) of the calibration points. 

The total  dimensions of the calibration object are approximately (0.6 x 0.6 x 

0.4m3). The target  is observed at a mean distance of 1.5m. 
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Table 1. Calibration results in relation to a gaussian noise added to the coordinates 

x, y, z of the calibration points 

[ noise (~,y,z) 

ao = 0 . 0  

fx(pix) = 1670.0 

fy(pix) = 1671.0 

uO(pix) = 391.0 

vO(pix) = 278.0 

[ noisc (~,y,# 

ao = 0.006 (pix) 

fx= 1668.92 a f x =  0.21 

f y= 1669.98 a f y =  0.21 

uO= 391.27 auO= 0.15 

vO= 277.89 av0= 0.17 

noise (x,y,z) 0.5ram ~ 

ao = 0.28 (pit) 

fx= 1626.55 a f x =  10.26 

f y= 1630.40 a f y =  10.36 

uO= 402.47 auO= 7.42 

vO= 276.10 avO= 8.13 

O. 0 rnm ~ ] 

(pi~) 
a f x =  1.0e-9 

a f y =  1.0e-9 

ouO-- 1.0e-9 

avO= 1.0e-9 

noise (~,y,z) o . 1 ~ - - ~  

~o = o.05 (pi~) 
rx-- 1659.68 a f x =  2.12 

fy= 1661.24 a f y =  2.15 

uO= 393.66 auO= 1.55 

vO= 277.10 avO= 1.72 

noise (x,y,z) 2.0mm ~ 

ao -- 1.16 (pix) 

~x= 1610.26 a f x =  44.04 

fy= 1623.36 a f y =  44.59 

uO= 422.83 auO= 30.01 

vO= 296.10 avO= 32.00 

a0 represents the standard deviation of unit weight estimated from expres- 

sion (12). The standard deviation associated to each parameter of the calibration 

vector is estimated from expression (14). The first experiment is performed with- 

out adding any noise. It gives the synthetical calibration results according to the 

images set. 

Through these tables, we can notice the major infuence of the metrological 

quality of the calibration target on the accuracy of the calibration results. 

It can be underlined: 

- on the one hand that the intrinsic parameters are soon affected by a random 

noise added on target points, 

- moreover that an error greater than (2mm 3) leads to the non-convergence 

of the optimization process. This critical value is conditionned by the exper- 

imental setup. For example the calibration of a fish-eye lens will lead to the 

non covergence of the algorithm for a smaller value of measurement errors. 

Noise added to each calibration point coordinates, was generated during this 

experimental setup, under a uniform law. The influence of the calibration pat tern 

metrology could also be analysed with systhematic errors introduced, for example 

by the non orthogonality between the different faces of a calibration cube. 
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3.4 I n f l u e n c e  o f  calibration point  detect ion  

Table 2. Calibration results in relation to a gaussian noise added to calibration point 

detection in the image plane 

noise (u,v) 0.0 pix 2 ] 

ao = 0.0 (pix) 

fx(pix) = 1670.0 a f x =  1.0e-9 

fy(pix) = 1671.0 a f y =  1.0e-9 

uO(pix) = 391.0 auO= 1.0e-9 

vO(pix) = 278.0 avO= 1.0e-9 

[ noise (u,v) O.02pi-~-] noise (u,v) O.05pix-~-] 

~o = o . o z  (pi~:) ~o = 0 . 0 5  (p i~)  

fx= 1670.16 a f x =  0.77 

fy= 1671.24 a f y =  0.78 

nO= 391.66 :an0= 0.56 

vO= 278.76 avO= 0.63 

~x= 1670.58 a f x =  1.94 

fy= 1671.79 a f y =  1.96 

nO= 392.63 auO= 1.41 

vO= 279.93 avO= 1.58 

[ noise (u,v) 0.5 pix "z [ noise (u,v) 1.0 pix 2 ] 

~o = o .51  (p i~)  

fx= 1704.82 

fy= 1708.11 

~o = 1.06 (pi~) 

a f x =  20.63 ~x= 1837.14 a f x =  51.85 

a f y =  20.77 fy= 1842.94 a f y =  52.00 

nO= 402.92 auO= 14.70 nO= 400.93 auO= 33.58 

vO= 303.34 avO= 16.53 vO= 346.98 avO= 40.94 

Experimental setup 

The experimental setup remains similar to the previous one. In this section 

the 3D coordinate of the calibration points are supposed to be noise free. 

Table 2 describes experimental calibration results obtained for different ranges 

of noise (in pixel) added to each coordinate (u, v) of the calibration points pro- 

jected in the image plane. 

The first table, which is noise free, gives the theoretical solution according 

to the synthetic data. The noise ranges used in this experiment are classified 

from an accurate subpixel detector (or0 = O.02pix) to a rough estimate of the 

calibration point coordinates (a0 = 1.0p/x) . 

A precise analysis of the table shows that accurate calibration results can only 

be achieved with a s u b p i x e l  d e t e c t o r .  Errors greater than 0.5pix in coordinate 

point estimates lead to significant variation in the calibration parameters. 
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4 N e w  C a l i b r a t i o n  F o r m u l a t i o n  

High quality calibration pat terns  are often difficult to achieve. They have to be 

mechanically stable in t ime (compared with the tempera ture  change), and an 

accurate measurement  of the location of points carried out by a metrology com- 

pany is expensive. Futhermore, the large range of application fields in robotics 

means we use short as well as long focal lengths. This implies that  the laboratory 

must have several calibration pat terns associated to specified applications. 

Is it poss ible  inside a mult ip le  images  cal ibrat ion approach to es- 

t imate  the  cal ibrat ion point  coordinates  in space at the  same t ime  as 

the  intrinsic  and extrinsic  cal ibrat ion parameters  ? 

Let us rewrite the colinearity equations: 

( j_)r1~,X~-r12Y'~-rI3Z-F'T= : p(~)  ] 
u + vx = uo + (doxT + d o x t ) / d x  + d~ r31X+r3:Y+T3~Z+Tz (15) 

I ( ff--'~ r21X+r22Y-{-r'~3ZWTu 
v + v u = vo + (dour + d o u t ) / d y  + duJr31X+r3:Y+r33Z+T~ = Q(4 , )  

The new calibration vector to be determined, if the 3D coordinates of cali- 

brat ion points have to be est imated with the traditional calibration parameters ,  

takes the following form: 

~9-F6m-F3*n = [Uo, VO, al ,  a2, a 3 , P l , p 2 ,  f x ,  fy, X 1 , y 1  
Z a , . . . ,  X n , y n ,  Z n , 

1 1 , 1~,0~ , p  ,"y , . . . , T ~ n , r ? , o L m , ~ r n , ' - y  m 

where n represents the total  number of target  points and m the total  number  

of images taken during the calibration setup. 

4.1 R e d u n d a n c y  

Total number  of unknown parameters  : 

9 (intrinsic parameters)  + 3*n (calibration point coordinates) + 6*m (ex- 

trinsic parameters) .  

Number  of equations : 2*m*n. 

The redundancy of the system to be solved, r = 2 �9 m * n - (9 + 3 * n + 6 * m),  

can be obtained easily. According to the the synthetic experiments previously 

used, in which the calibration pat tern  was achieved with 11 points (n = 11), a 

minimal set of 3 images is sufficient to over-determine the system. 

4.2 Init ial  cond i t ions  to insure a lgor i thm convergency  

The system to be solved is a non-linear optimisation. It  requires an initial value 

of the calibration vector not too far from the solution in order to insure algorithm 

convergency. 

In the final experimental  results, we will show tha t  this initial value is not 

really difficult to obtain, and that  a good convergency can be achieved if the 
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calibration views of the pat tern  are taken from different orientation observations. 

This is equivalent to insuring very constrained tr iangulation angles in space for 

the 3D point reconstruction. As underlined in [BroT1], we have noticed that  

multiple views taken with a 90 degree rotat ion around the optical axis leads to 

a bet ter  est imate (better  convergency and bet ter  accuracy) of the calibration 

parameters .  

4.3 C a l i b r a t i o n  s o l u t i o n  d e t e r m i n e d  u p  t o  a sca le  f a c t o r  

1. Intrinsic parameters  

In the traditional approach to photogrammetr ic  calibration, the intrinsic 

parameters  are always determined up to a scale factor. The usual assignation 

of the x-size of the CCD matr ix  to one (dx = 1), means the other parameters  

can be expressed in an arbi t rary unit defined in pixels. 

2. Extrinsic parameters  

Since the 3D coordinates of the calibration points are simultaneously esti- 

mated  with the calibration parameters,  the extrinsic geometry of the vision 

system is also determined up to a scale factor. Actually, in these conditions 

the reconstruction of a bigger calibration pat tern  observed from a farther 

distance will provide an identical image. 

This loss of metric dimension does not have great consequences on a single 

camera calibration. Key information for further application tasks are only 

contained in the intrinsic parameters.  Let us recall that  extrinsic parameters  

gives the 3D location of the calibration pattern,  expressed in the camera 

frame, and in accordance with a given view of the image set. However if a 

stereo (or more) vision system has to be calibrated it will be necessary to 

introduce a metric dimension to fix the extrinsic geometry of the camera con- 

figuration. Such a task can easily be performed with the accurate knowledge 

of the euclidian distance between 2 points among n. 

5 E x p e r i m e n t a l  r e s u l t s  

In this section, an experimental  s tudy is performed. It  is divided into two parts. 

first, synthetic da ta  previously used is tested with the new calibration approach. 

Then, the algorithm is evaluated with real da ta  taken from camera devices 

equipped with different fixed focal-lens lenses. 

5.1 S y n t h e t i c  d a t a  

Without  noise on image point detection 

In this sub-section the experimental  conditions used to create the synthetic 

da ta  set remain the same as those defined in section 3.2. A random noise (inside 

a given standard deviation) is added to each coordinate of the 3D calibration 

points. Point detection in the image plane is first of all supposed to be noise free. 
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Table  3. Calibration results from synthetic data in relation to a gaussian noise added 

to the calibration point coordinates 

Starting conditions 
(fx---3000 fy--3000) 
(uO=3OO vO=3OO) 

noise convergency results 

xyz nb k ak fx fy uO vO 
rnm ~ itera (pix) (pix) (pix) (pix) 
0.01 45 0.9838 0.0 1670 1671 391 278 

0.1 45 0.9838 0.0 1670 1671 391 278 

1.0 47 0.9832 0.0 1670 1671 391 278 

10.0 48 0.9767 0.0 1670 1671 391 278 

Table 3 shows tha t  the new calibration formula enables us to take into ac- 

count errors (up to 10.0mm 3) introduced into the calibration pa t te rn  and con- 

verges at any t ime to the same values of intrinsic parameters.  Note, that  the 

start ing conditions are far from the true solution and are directely correlated to 

the number  of iterations required by the process to find the solution. 

Paramete r  k indicates the scale factor of the extrinsic geometry obtained at 

the convergency. I t  is est imated as followed 

k -  1 f i  lP~ - P~_ll (16) 

n - l i = 2 1 ~ i  b~-ll 

where P~ is a reconstructed points of the calibration pat tern  and/6/  its cor- 

responding point in the true solution. 

ak gives the s tandard deviation of this distribution. In table 3 it can be noted 

that  cr k is systematically equal to zero, because the algorithm has accurately 

est imated the calibration target  geometry, as well as the intrinsic and extrinsic 

parameters  that  give the perfect correspondance of colinearity equations (6). 

Results described in this table have to be compared with experiment Table 1 

using the tradit ional calibration formulation. 

Adding noise to image point detection 

For this experiment two different noises added on each image coordinate have 

been considered (respectively 0.01 pix and 0.1 pix). Given an image noise, the 

3d coordinates of all the calibration points have been modified using a gaussian 

distribution with a s tandard deviation of respectively O.lmm 3 and 10.0ram 3. 

Fo r  a g i v e n  r a n g e  o f  i m a g e  no i se  (0.01 and 0.1 pix), the analysis in 

table 4 shows tha t  the algorithm computes the same extrinsic geometry of the 

calibration set-up (up to a scale factor) and converges to the same values of the 

intrinsic parameters  (focal length, principal point). 
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Tab le  4. Calibration results from synthetic data in relation to a gaussian noise added 

to the calibration points coordinates and the image point detection 

Initial conditions (results in pixel) 

(Ix=S000 ]y=3000) 

(~o=soo vo=soo) 

image  noise  (u ,v)  0.01 pix  

calib, target noise calib, target noise 

(x,y,z) 0 . 1 m , r  (x,y,z) 10.0ram 3 

rx= 1666.64 a = 0.35 ~x= 1666.64 a = 0.35 

fy= 1668.03 a = 0.36 fy= 1668.03 a = 0.36 

uO= 391.49 a = 0.26 uO= 391.49 a = 0.�89 

vO--- 278.73 a = 0.31 vO= 278.73 a = 0.31 

nb itera=47 nb itera=48 

aO=O.01 aO=O.01 

k = 0.975381a = 0.000101 k= 0.97433 [a = 0.000103 

image  noise  (u,v)  0.1 pix 

ealib, target noise calib, target noise 

(x,y,~) o. l .~m 3 (z,y,z) lO.Om.r 

r 1651.35 a = 3.50 

fy= 1652.99 a = 3.54 

uO= 396.03 a = 2.60 

VO--- 285.10 a = 3.01 

nb itera=,~8 

rx= 1651.35 a = 3.50 

fy= 1652.99 a = 3.54 

uO= 396.03 a = 2.60 

vO= 285.10 a = 3.01 

nb itera=~9 

a0=0.094 aO=O.094 

k = 0.97538 a = 0.000910 k= 0.97433 la = 0.000910 

Conclusion 

The  ca l ibra t ion  errors compared with the t rue  synthet ic  solut ion no longer 

depend  on the accuracy of the cal ibra t ion point  measurement ,  bu t  on the accu- 

racy of ca l ibra t ion  poin t  detect ion in the image plane. The  first pa r t  of table  4 

indiquates  tha t  a subpixel  (0.01pix) point  detector  leads to ca l ibra t ion  results 

very close to the t rue  solut ion even if the 3d ca l ibra t ion  points  are es t imated  

roughly. It  can be under l ined  tha t  a good numer ica l  convergency of the a lgor i thm 

great ly depends  on the choice of the target  observat ion points  of view. 

5.2 R e a l  D a t a  

T e s t  s e q u e n c e  n - 1  Table 5 describes the results of a t r ad i t iona l  mult iple-  

images ca l ibra t ion  algori thm,  exper imented  on a set of 11 images. The  target  

p a t t e r n  is composed of 30 points.  The  t r id imens iona l  geometry  of the ca l ibra t ion  

points  is known with an  accuracy of 0 .02ram 3. The  tota l  volume of the ca l ibra t ion  

pa t t e rn  is equal  to (0.6 • 0.6 • 0.4m3). Each ca l ibra t ion  point  is ob ta ined  using 
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Fig. 2. CEA calibration pattern 

a photo-reflector material  to insure an accurate detection. 

Da ta  was tested in two different laboratories and algorithms were also im- 

plemented in C and Fortran with two different numerical optimisation librairies 

(Numerical Recipies and dMinPack). 

The classical calibration approach leads to a residual value of 0.033 and 0.026 

pixel respectively along the coordinates (u,v) of the 289 measurement  points. 

According to a recent experiment performed by the European Space Agency 

(ESA) [Pa97], these results seem quite good. 

Table 6 describes results obtained with the new calibration algorithm. Solu- 

tion of intrinsic parameters  are quite similar. The residual value at convergency 

is slightly smaller. Even if calibration points coordinates are modified (noise up 

to 10.0mm3), the solution at convergency remains the same. 

As the true values of the calibration points are known in this section, the 

factor ak  gives us information about  the relationship between the reconstructed 

target  and the true one. We can notice tha t  modification of 1.2e - 4% has been 

found by the algorithm to allows a bet ter  fitting of the colinearity equations. 

Conclusion 

To conclude, we can say that  while accurate observation of n points from a 

set of m different points of view is possible, an accurate knowledge of the 3d 

calibration point coordinates does not seem to be necessary to achieve accurate 

values of intrinsic calibration parameters.  

Tes t  s e q u e n c e  n-2  In this experiment,  our aim is to achieve calibration of a 

fisheye lens (3.8mm) tha t  induces a high radial distorsion in the image plane. The 

target  used for calibration was rapidely setup using two little circular objects 

composed of 12 photo-reflector points. 



171 

T a b l e  5. Calibration results on real da ta  

camera 

lens 

frame grabber 

algorithm 

calibration target  

: Sony XC75CE 

: 10mm Ang@nieux 

: Silicon Graphics 

: Traditional multiple image calibration 

: CEA-Saclay 

Number of images : 11 

Number of measurements : 289 

vx residual: mean and std-dev (pix) -9.150e-06! 

vy residual: mean and std-dev (pix) 1.233e-05 

Std error of unit weight (pix) 

3.344e-02 

2.634e-02 

3.686107e-02 

G 

fx(pix) 1672.89 2.08e-01 

fy(pix) 1676.03 2.09e-01 

u0(pix)l 386.74 4.26e-01 

v0(pix) 276.86 3.65e-01 

O" 

al  1.538e-01 5.12e-03 

a2 -8.758e-01 1.44e-0 

a3 6.121e+00 1.23e+00 

p l  6.478e-04 7.12e-05 

p2 7.684e-05 6.41e-05 

F ig .  3. Fish-eye calibration 

T h e  g e o m e t r y  of each e l emen ta ry  t a rge t  was roughly  known (_~ 1ram). The  

re la t ive  loca t ion  be tween  the  two ob jec t s  was set to  zero at  the  begin ing  of 

the  process  convergency.  F igure  3 shows one of the  eight  views used dur ing  the  
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Table  6. Calibration results on real data with added noise on the 3D coordinates of 

the calibration points 

New approach 

camera : Sony XC75CE 

lens : 10mm Ang6nieux 

frame grabber : Silicon Graphic 

algorithm : New Approach. 

Number of images : 11 

Number of measurements : 271 

vx residual: mean and std-dev (pix) 2.934e-07 

vy residual: mean and std-dev (pix) -5.486e-09 

Std error of unit weight (pix) 

scale factor (k and ak) 0.98733 

1.875e-02 

1.337e-02 

1.972624e-02 

0.00012 

(Y 

fx(pix) 1672.85 1.33e-01 

fy(pix) 1675.96 1.34e-0 

u0(pix) 386.48 2.68e-01 

v0(pix) 277.26 2.34e-01 

al 1.458e-01 3.20e-03 

a2-6.749e-01 9.02e-0 

a3 4.685e+00 7.69e-01 

pl 5.960e-04 4.44e-05 

p2 5.599e-05 4.04e-05 

calibration setup and shows the radial distorsion phenomenon. During the images 

sequence the camera  is moved to obtain measurement  points throughout  all the 

CCD surface. 

We must underline that  approximate  knowledge of the circular object allows 

us to compute an initial value of rotation and translation parameters  (R/, Ti) 

that  locates the target  in each image. We hope in further works to improve this 

point using shape from motion approaches as those proposed by Kanade [PK94]. 

In this experiment (table 7), the new calibration approach enables us to re- 

construct the calibration pat tern  and provides a solution of intrinsic parameters  

leading to quite small residual values (0.030 et 0.026 pix). The s tandard devia- 

tion for this last experiment is larger than for the previous da ta  set (Tab 6). The 

difference is mainly due to the less accurate adequation of the distorsion model 

in this case. 
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Table 7. Calibration results with real data 

New approach 

camera : JAI M50 

lens : 3.8mm Ernitec 

frame grabber : Silicon Graphics 

!algorithm :new approach. 

Nomber of images :8-~ 

Nomber of measurements : 185 

vx residual mean and std-dev (pix) 

vy residual mean and std-dev (pix) 

Std error of unit weight (pix) 

-7.135e-05 3.080e-02 

-6.216-05 2.663e-02 

3.565e-02 

o- 

fx(pix) 459.70 2.65e-01 

fy(pix) 460.44 2.67e-01 

u0(pix) 365.97 2.26e-01 

v0(pix) 299.96 2.49e-01 

al 3.746e-01 a 1.56e-03 

a2 1.120e-01 4.58e-03 

a3 ! 1.729e-01 4.68e-03 

14.635e-04 1.03e-04 pl 
i 

p2 -1.232e-03 1.15e-04 

6 D i s c u s s i o n  and C o n c l u s i o n  

Calibration point detection 

Accuracy of calibration parameters achieved by the algorithm described in 

this article is greatly dependent on the quality of calibration point detection in 

the image plane. We have shown with synthetic data that  a sub-pixel detector 

(0.01 or 0.02 accurate) leads to almost perfect calibration parameters. 

In practice, we have noticed that  the sub-pixel detection of image dots gives 

more reliable results than cross detection. In [Pa97] the authors arrive at the 

same conclusions. Experimental results described in the paper use a subpixel spot 

detector based on an affine transformation associated with a scale factor, that 

transform the photonic response of a theoretical spot to fit the image content. 

Experimental accuracy achieved by this way is less than 0.02 pixel. 

Introduction of a metric distance 

As previously stated the extrinsic geometry between the different points of 

view of the calibration set-up is determined up to a scale factor. To eliminate 

this unknown factor, it is sufficient to introduce among the n calibration points 

the distance between 2 points. Actually, we can imagine that each calibration 
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pat tern  is roughtly achieved in connection with the adopted focal-length. An 

accurate metric distance determined by two photorefiector points in a very stable 

material  (invar) could be added in the set of calibration images. The final cost 

of the calibration pat tern  is limited to the accurate measurement  of the distance 

between these two points. Most optical firms can provide this kind of calibration 

metrics. 

Convenient to use 

The calibraton algorithm described in this article is really convenient to use, 

and makes it possible to obtain rapid, perfectly defined calibration targets  for 

short as well as long focal-lengths. The residual values obtained during the ex- 

periments are similar to those given by traditional algorithms, and show the 

reliability of the proposed algorithm. In practice, the convergency is assured 

without problem if the 3d geometry of the target  is approximately known. For 

critical cases where no 3D information is available, we usually start  the process 

with a fiat model located in front of the camera. This case could be improved 

by start ing the algorithm with an initial value given by a shape from motion 

estimator.  

F~rther works 

Instead of using photo-reflector calibration points that  are well defined in the 

images, we should like to experiment the same approach on natural  scenes. Using 

texture information contained about  specific points of interest, we are working 

on accurate matching between these points along the set of calibration images. In 

this way we hope to perform accurate camera calibration with natural  textured 

objects. 
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