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Abstract

The influence of relative wealth on fairness considerations is analyzed in a

series of ultimatum game experiments in which proposers and receivers are given

large and widely unequal initial endowments. Subjects initially demonstrate a

concern for fairness. With time however, the dynamics of behavior become at

odds with both subgame perfection and fairness. Evidence of learning is detected

for both proposers and receivers in the estimation of a structural reinforcement

learning model. The estimation results suggest that, guided by foregone best re-

sponses and an acquired sense of deservingness, rich subjects become more selfish,

while poor subjects, influenced only by their past plays and outcomes, learn to

tolerate this behavior.
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1. Introduction

During the last two decades, experimental economics has clearly demonstrated that

agents do not maximize only their monetary payoffs.1 In particular, players in ultimatum

games are willing to sacrifice their own payoffs and often refuse “free money”.2 Such

behavior is widely believed to be motivated by equity or fairness concerns.3 Experimental

studies have also established that behavior in ultimatum games may be affected by

learning, as well as cultural, social, psychological and/or environmental factors. The

present paper is an attempt to analyze the influence of one such factor. Namely, a

series of ultimatum games experiments is conducted to try to determine whether fairness

considerations, and in particular their stability over time, are affected by observed wealth

differences between subjects.

The analysis of observed wealth differences in ultimatum games, although challeng-

ing, is important as it may help us better understand the nature of fair behavior. In

particular, it offers the possibility to test the robustness of recently proposed fairness

models compared to the more traditional game theoretic approach constructed around

self-interested agents. In addition, the influence of relative wealth on fairness considera-

tions may have important, and not yet well determined, real life consequences. Indeed,

traditional ultimatum games do not explicitly account for wealth differences that typ-

ically exist between participants in most real life bargaining situations such as wage

negotiations, international trade between developed and less developed countries, or

pre-trial settlements between (e.g.) a patient and a hospital in a malpractice case. The

analysis of wealth differences as one of the determinants of bargaining outcomes and

fairness perception, is therefore of academic and practical interests.

The ultimatum game corresponds to the last round of a two player bargaining process,

in which a proposer offers an ultimatum in the form of a share of a given pie. This

1See also Andreoni et al. (2001) or Bewley (1998) for field evidence.
2See Camerer and Thaler (1995), Roth (1995) or Güth (1995) for surveys of the ultimatum game

literature.
3The term fairness is used here broadly, and it encompasses several theories such as reciprocity,

inequality aversion, or altruism.
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offer can be either accepted or rejected by a receiver. If the offer is accepted, then an

agreement is reached and the pie is shared according to the offer. If the offer is rejected,

then the bargaining process stops and players receive no payoff. If players are assumed

to maximize their own monetary payoff, then subgame perfection predicts that proposers

offer the smallest possible positive portion of the pie and receivers always accept. In

sharp contrast with this theoretic prediction, the following facts have been consistently

observed in ultimatum experiments, independent of the experimental design: most offers

lay between 40% and 50% of the pie; there are almost no offers above 50% and below

15%; the probability of rejection decreases with the offer; and offers below 20% are rarely

accepted.

These experimental results were originally perceived as anomalies since it is tradi-

tionally assumed that the Homo economicus is self-interested (see Camerer and Thaler

1995). In the wake of mounting experimental evidence, some models incorporating static

fairness considerations have been recently developed.4 These models are able to organize

a large part of experimental data. However, they do not account for social, psycholog-

ical, and learning effects that have be shown to influence behavior in the ultimatum

game. For instance, anonymity (Hoffman et al. 1994), chivalry (Eckel and Grossman

2001), and deservingness or morally justifiable entitlement (Hoffman et al. 1994, Eckel

and Grossman 1996, Ruffle 1998) have be shown to affect behavior, either toward or

away from the subgame perfect equilibrium. In addition, we shall see in section 2 that

evidence of learning has been detected in ultimatum game experiments, suggesting that

fairness considerations may not be stable over time.

A previously unexplored psychological factor that may affect the outcomes in ul-

timatum games is the observed wealth difference between players. Indeed, one may

expect subjects to act more fairly when it is known that they are wealthier. Alterna-

tively, wealth may also provide some bargaining power that will be used to extract more

favorable and possibly more inequitable outcomes. The present paper proposes an exper-

4See e.g. Rabin (1993), Levine (1998), Fehr and Schimdt (1999), or Bolton and Ockenfels (2000).
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iment in an attempt to test these hypotheses, and to verify whether fairness preferences

are stable over time in the presence of wealth inequalities. As we shall see however,

the analysis of relative wealth in experimental economics is non-trivial and presents a

number of challenges. The experiment proposed to address these challenges consists in

three treatments. Treatment 0 is similar in nature to the traditional ultimatum exper-

iments. In treatment 1 (respectively 2) proposers (respectively receivers) are initially

endowed with a large amount of money. Then, they play the same ultimatum game

as in treatment 0. The allocation of the endowments by the experimenter is common

knowledge and purely arbitrary. It is therefore difficult to justify it morally. In addition,

the endowment is substantial enough that it can be assumed to create adequately wealth

differences between participants.

In a nutshell, the results are as follows: Subjects initially attempt to reach an egali-

tarian division of their overall earnings (i.e. the initial endowment plus the revenue from

the ultimatum game); with experience, however, rich (poor) proposers make smaller

(larger) offers, while rich (poor) receivers are more likely to reject (accept) small offers.5

In other words, the dynamics of behavior not only contrast with previous ultimatum

game experiments, but they are also at odds with both subgame perfection, and the no-

tion that fairness preferences at stable over time. To explain the dynamics of behavior,

a structural reinforcement learning model accounting for experience and foregone best

responses is estimated. The estimation results suggest that both proposers and receivers

learn to adjust their strategies. This result is remarkable since evidence of learning on

the part of receivers has rarely been collected in traditional ultimatum games. The esti-

mation results also suggest that the evolution of strategies may be essentially explained

by a combination of four factors: first, rich subjects acquire most bargaining power as

their opponents lose their ability to punish greedy behavior; second, the rich players’

learning process is mainly driven by foregone best responses rather than the actual pay-

off received; third, unlike their opponents, the monetary expectations of rich subjects

5To simplify, subjects (not) receiving the large initial endowment will be labelled as “rich” (“poor”).
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increase with time; fourth, poor players select their strategies based on their past payoffs

and actions. In other words, the dynamics of behavior in the experiment was affected by

wealth differences, as rich subjects appeared to become more selfish, while poor players

learned to tolerate their opponents increasingly aggressive behavior.

The paper is organized as follows: the related literature is summarized in section

2; the design of the experiment is presented in section 3, and discussed in section 4;

the experimental outcomes are analyzed in section 5; the general reinforcement model is

briefly explained in section 6; the estimation results are commented in section 7; finally,

section 8 concludes.

2. Related Literature

To the best of our knowledge, the effect of observed wealth differences on the behavior

of subjects in bargaining experiments has never been explicitly analyzed. Equal initial

endowments, however, are often implicitly provided to experimental subjects in the form

of a participation fees.6 Such fees usually vary between $3 and $10, which may represent

up to 100% of the pie to be divided in the bargaining game. No significant treatment

effect has been observed in bargaining experiments when participation fees are equally

provided to both parties. In other words, these experiments suggest that behavior in

ultimatum games is not affected by traditional absolute wealth effects. It may be argued,

however, that the participation fees may have been too modest to represent adequately

wealth. Although the object of the present paper is to concentrate on observed wealth

differences, it has to be acknowledged that the question of absolute wealth effects has

not been fully resolved.

Wealth differences between participants have rarely been introduced in bargaining

experiments. Güth et al. (1992) tried to induce behavior conforming to subgame perfec-

tion by providing receivers in ultimatum experiments with modest initial endowments.

6See e.g. Ochs and Roth (1989), Roth et al. (1991), Ruffle (1998), Duffy and Feltovich (1999), or
Cooper et al. (2003).
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The data suggested that initial endowments appeared to lower slightly offers, but no sig-

nificant support was provided in favor of either fairness or subgame perfection. However,

the authors concluded that the experimental outcomes may be explained by the combina-

tion of two factors: first, the roles of proposers and receivers were auctioned prior to the

ultimatum game, and second, subjects only played one round. In the present paper, po-

sitions are randomly attributed and the experiment consists of 60 periods which provides

ample opportunity to learn. Goeree and Holt (2000) use small asymmetric endowments

in a two stage bargaining model to differentiate fair from random behavior. They find a

prevalence of fair proposals that tend to equalize the overall earnings. Subjects, however,

were not given the opportunity to learn. Finally, Eckel and Grossman (1996) analyze a

dictator game where proposers face “needy” and/or “deserving” responders such as the

American Red Cross.7 The authors find that altruism is more common than usual, but

non-negligible greedy behaviors are still observed. Unlike Eckel and Grossman (1996),

the differences in wealth, and the needs of participants are difficult to justify morally in

the present study.

The first wave of bargaining experiments yielded conflicting results regarding the

importance of learning in ultimatum games. Indeed, Binmore et al. (1985) found an

effect of experience, while Güth and Tietz (1988), as well as Neelin et al. (1988), did

not find any evidence of learning. More recent studies however, clearly indicate that

proposers learn to lower slightly their offers (e.g. Slonim and Roth 1998). On the

other hand, with the notable exception of Cooper et al. (2003), very little evidence of

learning on the part of receivers has been collected. Erev and Roth (1998) argue that

this stylized fact is consistent with the prediction of a choice reinforcement learning

model, since accepting or rejecting small offers provide basically the same amount of

reinforcement. As we shall see in section 5.1, this observation may also be partially

explained by the fact that the receivers’ strategies are typically imperfectly observed in

traditional ultimatum experiments.

7The dictator “game” is similar to the ultimatum game except that the receiver has no alternative
but to accept the proposal.
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3. The Experimental Design

We present in this section the different experimental treatments. The main differences

with traditional ultimatum experiments are then discussed in a subsequent section.

The experiment was conducted with volunteers at the State University of New York

at Stony Brook. There were three experimental sessions, one for each treatment and each

with 60 subjects and 60 rounds. No subject participated in more than one session. Prior

to any session, the pool of 60 subjects was equally divided in two groups of proposers and

receivers. To preserve anonymity, each group was asked by E-mail to meet in a different

laboratory located in separated buildings. A small number of additional subjects were

also invited in each group in order to anticipate any potential withdrawal. At the

beginning of the session, players were assigned to an isolated computer and informed of

their role as receivers or proposers. Subjects remained in the same role for the entire

session. Subjects were told in advance how many rounds would be played, and they

knew that the experiment would not exceed 2 hours. Instructions were then read aloud,

followed by participants’ questions, and two dry runs in which the outcome did not count

toward the players’ final earnings.8 The analysis of the data begin with the first round

involving cash payoffs. At the beginning of each round, players were randomly matched

in pairs. To avoid reputation building, the subjects were informed that the assignment

was such that it was not possible to identify the other member of the pair, and no pair

was identical in two successive rounds.9

The design of treatment 0 is a hybrid between the ultimatum game in strategic and

extensive forms. As further discussed below, this design enables the experimenter to

observe fully the receiver’s strategy, while preserving subgame perfection as a relevant

equilibrium concept. In each round, each proposer and receiver participated in a two

stage game. In stage 1, the proposer makes an offer in cents between 0 and $50 while

8The complete list of instructions are available at this web address:
http://www.sunysb.edu/economics/research/workpap.html.

9During the course of the experiment, each proposer was matched twice with each receiver. However,
the one-shot nature of the game was essentially preserved since the probability of playing against a given
player in a given period was negligible.
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the receiver simultaneously announces a minimum acceptable offer (hereafter MAO)

corresponding to the smallest offer he is willing to accept. At the beginning of stage 2, the

proposer’s offer is revealed to the receiver. The receiver is then given the opportunity to

revise his strategy by accepting (rejecting) an offer below (above) the MAO he announced

in stage 1. To promote truthful announcements in stage 1, the revision is only randomly

approved by the computer with probability 0.5. In other words, a receiver could reject

(accept) in stage 2 an offer he originally declared he would accept (reject), but the

revision had only a fifty percent chance of being implemented.

The money is allocated exactly according to the proposer’s offer under two scenarios.

In the first scenario, the offer exceeds the MAO and either no revision takes place in

stage 2, or a revision to reject the offer is not approved. In the second scenario, a revision

to accept the offer is approved. As we shall see, to ensure that the hybrid and traditional

ultimatum games have the same (subgame) perfect equilibrium, we have to impose that,

although considered accepted, an offer exactly equals to the MAO yields only half of the

offer to the receiver, while the proposer receives his entire share of the proposed division

(i.e. $50 minus his offer). In such cases, the receiver could still revise his strategy by

rejecting the offer in stage 2, in order to try to deprive both players of their payoffs.10

Finally, in all situations not previously mentioned, neither players receives any money

for this round.

After choices are made, both members of the pair are informed of each others ac-

tions (offer, MAO and possible revision) and payoffs. In addition, the computer screen

displayed the subject’s own history of plays for the last five rounds. At the end of the

session a round and six pairs of subjects who were matched during that round were

drawn randomly. Each selected player was paid in cash the amount of money earned

during the selected round. In addition, every subjects received $5 just to participate.

The experimental design was slightly modified in treatments 1 and 2. The object

of these treatments is to analyze the effect of known wealth differences between pro-

10Given the wide range of offers and MAOs available to subjects, a situation in which the proposer’s
offer equal the receiver’s MAO never arose in the subsequent experiments.
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posers and receivers. This implies that, prior to the ultimatum game, both players

should have positive but unequal levels of wealth. Therefore, the experimental design

remained identical to treatment 0, except that widely unequal endowments were now

allocated at the beginning of each round. Namely, proposers (receivers) received $50

in treatment 1 (2) while receivers (proposers) were given only $10.11 The distribution

of initial endowments, as well as the rules of the game were common knowledge. The

payment method was identical to treatment 0, except that the selected players received

their initial endowments for the randomly chosen round in addition to their earnings

from the ultimatum game. In addition, every subject received $5 just to participate.

Note also that rich players (if selected) received a more than adequate remuneration

for their participation in the experiment, even when the ultimatum game resulted in a

disagreement. The difference in initial endowments is therefore assumed to represent

adequately wealth inequality between players.

Each session lasted approximately an hour and a half. Although no time limit was

imposed on subjects, the length of a round (roughly a minute) was constant within

and across sessions, suggesting that subjects exercised the same amount of introspection

at the beginning and the end of each experiment. On average, the selected proposers

(receivers) earned $20.53 ($17.21) in treatment 0, $78.33 ($21.4) in treatment 1 and

$24.7 ($72.5) in treatment 2.12

4. Comments on the Experimental Design

The design of an ultimatum game experiment to analyze relative wealth effects and

learning presents a number of challenges. We now discuss some of the solutions proposed

to address these challenges.

The first challenge consists in artificially creating in a laboratory wealth differences

between subjects. The solution adopted is to provide half of the subjects with an initial

11The initial endowment should not be confused with an outside option which is allocated only after
a negotiation breakdown (e.g. Binmore et al. 1989 or Kahn and Murnigham 1993).
12These amounts include the initial endowments and the ultimatum game outcomes.
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endowment sufficiently large to represent adequately wealth inequality. However, the

potential profits of rich players in the ultimatum game must remain commensurate to

their initial endowment, in order to promote rational-like behavior, and avoid the so

called “satiety effect” (see Friedman and Sunder 1994). Moreover, a pilot experiment

indicated that providing poor subjects with no initial endowment was perceived as to

unfair, which led a substantial number of poor subjects to either refuse to participate in

the experiment, or to act in an apparently random manner.13 It was therefore decided

to conduct the experiment with i) unequal but strictly positive endowments for both

types of subjects, and ii) a large amount of money to be divided in the ultimatum game.

The second challenge is to design an experiment that may be financed with a rea-

sonable research budget. Indeed, it would be extremely costly to provide every subjects

with sufficiently large initial endowments to create artificially wealth differences. To ad-

dress this problem, a random payment approach was adopted, in which only 1 out of 5

subjects received a payment associated with his performance.14 This payment method,

however, differs from most ultimatum games where subjects are either paid their cumu-

lative payoffs during the entire session (e.g. Bolton and Zwick 1995 or Abbink et al.

2001b), or one round is drawn at random and every subject receives the payoff he earned

for this specific round (e.g. Ochs and Roth 1989 or Slonim and Roth 1998). Although

the payment mechanisms have not been found to generate a significant treatment effect

in ultimatum games, one may still wonder whether the random payment method may

affect how subjects behave in the experiment.15 Indeed, a potential drawback of this

method is that subjects may become unmotivated realizing that their decision in each

13This pilot experiment already provides some information on the effect of observed wealth inequality
on behavior in the ultimatum game. However, one should be prudent not to extrapolate unreasonably
from this result, as it may be argued that providing poor subjects with no endowment, while their
opponents receive $50, is a too extreme treatment.
14An alternative approach, adopted for some costly experiments, consists in conducting the exper-

iment in a country with lower standard of living (see e.g. Slonim and Roth 1998). This approach,
however, raises the question of potential cultural effects.
15Starmer and Sugden (1991), as well as Cubitt et al. (1998) find no treatment effect when a randomly

selected period is used to pay subjects. See also Camerer and Hogarth (1999) for an analysis of the
effects of incentives on experimental outcomes.
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period has in fact little bearing, in expectation, on their final earnings. Although this

issue has not been fully resolved in experimental economics, Bolle (1990), Straub and

Murnighan (1995), as well as Murnighan and Saxon (1998) found no treatment effect in

ultimatum game experiments when adopting a random payment method similar to the

one used here.16 Likewise, we shall see in the next section, that the outcomes observed in

treatment 0 are consistent with previous ultimatum game experiments. Note also that

subjects were allowed to leave the experiment with the show-up fee of $5 immediately

after they were informed of the payment method, or at any point during the experiment.

Only two subjects out of 182 decided to do so before the experiment started. Finally,

a post-experiment survey, and the statistical analysis of the data in the subsequent sec-

tion, did not provide any evidence of boredom, lack of motivation, or random behavior

on the part of subjects.

The third challenge consists in finding a proper balance between conducting a suffi-

cient number of periods per subject to analyze adequately learning, and preserving the

one shot nature of the ultimatum game. To avoid reputation building stemming from

rematching the same subjects together, it has been decided to conduct a single session

per treatment, consisting of a large number of periods, and including all the subjects

recruited for that treatment. The number of rounds played in the present experiment

may appear large by traditional standards, but it is not unprecedented (see e.g. Winter

and Zamir 1997, Duffy and Feltovich 1999, Cooper et al. 2003). Likewise, it is infre-

quent but not uncommon to group all subjects in a single session (see e.g. Ochs and

Roth 1989 or Bolton and Zwick 1995 for examples in the ultimatum game literature).

However, multiple sessions per treatment are preferred in general, as it may be argued

that the behavior of subjects interacting within the same session cannot be assumed to

be fully independent. Indeed, with a small pool of symmetric players frequently matched

together, the actions of a participant may have a lasting effect on the behavior of the

16Bolle (1990) actually argues that paying experimental subjects large amounts of money with low
probability is preferable to paying them small amounts with certainty. Moreover, other recent appli-
cations of a similar random payment method include Franck and Schulze (2000), and Fershtman et al.
(2000).
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other subjects, after they are paired with him, and then with each other. However, the

risk of propagation is lower in the present context, as the number of subjects is large,

and the same participants are rarely matched with each other. Note also that the play-

ers facing each other in the ultimatum game (i.e. the proposers and receivers) are not

symmetric. Therefore, the contamination of the proposer’s (respectively receiver’s) pop-

ulation is more difficult in this context, as it can only be carried out indirectly (e.g. from

a proposer, to a receiver, back to a proposer). As we shall see, this intuition is confirmed

by an econometric analysis which provides no evidence of a systematic dependency in

the data collected in each treatment.

The fourth challenge consists in designing an experiment producing data that enables

to analyze adequately learning. The overwhelming majority of ultimatum experiments

have been conducted under the extensive form of the game, in which the receivers observe

the offer before making a decision. A drawback of this approach is that it creates a data

imbalance since, unlike the proposer strategy, the receiver’s actions are not observed for

all possible offers but only for the actual offer made by the proposer. This data restric-

tion makes it difficult to analyze properly the dynamics of the strategies for each type of

players, and it prevents in particular the estimation of structural models such as adjust-

ments or learning models. The implementation of the strategic form of the game enables

one to correct the data imbalance. Indeed, both players’ strategies are fully observed by

the experimenter, as offers and MAOs are stated simultaneously. However, the timing

of the ultimatum game is modified from a two stage game to a one-shot simultaneous

move game. As a consequence, subgame perfection is lost as a solution concept. In ad-

dition, Roth (1995) argues that the strategy method may generate different behaviors,

as receivers may regret their choice when they observe the actual proposer’s offer. In

fact, a recent comprehensive study of thirty two published papers on ultimatum games,

indicates that the strategic implementation does not affect the actions of proposers, but

it influences how responders behave (see Oosterbeck et al. 2001). This study therefore

reinforces the need to use the hybrid design, as it appears to offer the advantages of both

the strategic and extensive approaches, without some of the obvious drawbacks. Indeed,
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both players strategies should be fully observable, since subjects have a strict incentive

to make truthful announcements in stage 1. In particular, the receivers must reveal his

strategy in stage 1 in order to avoid the potential cost associated with the revision lottery

in stage 2. However, receivers also have an incentive to correct any mistake or regret

in stage 2.17 In addition, subgame perfection remains a relevant equilibrium concept in

this two stage game. Indeed, if subjects are self interested, then receivers have a strictly

dominant strategy consisting in announcing a MAO strictly smaller than the offer. In

addition, an offer equal to the MAO is strictly dominant for proposers. Therefore, the

(subgame) perfect equilibrium consists for proposers to offer the smallest possible share

of the pie in stage 1, and for receivers to always accept this offer by setting a MAO of

zero in stage 1, and by accepting any strictly positive offer in stage 2.18 In other words,

the hybrid model has the same (subgame) perfect equilibrium, and the same equilibrium

payoffs as the ultimatum game.

5. Experimental Results

The experimental results are summarized in Graphs 0.1 to 2.6 and Tables 1 to 4.19

For the analysis to be consistent with previous studies (in which the pie is often $10)

offers and MAOs have been divided by 5. Therefore, the players’ strategies may also be

interpreted as deciles of the total pie.

[Table 1 Here]

Before describing the experimental outcomes, we conduct a statistical analysis of the

data collected in each treatment to verify whether i) conducting a unique session per

17As we shall see in section 5.1, however, receivers appear to reveal their true preferences in stage 1,
since they rarely exercised their right to revise their strategy in stage 2.
18A proposer may not want to take the risk of making a $0 offer, since it may be rejected in stage 2

by the receiver who is indifferent in this situation between accepting and rejecting the offer.
19Graphs 0.1 to 0.6 are associated with treatment 0. Graphs 1.1 to 1.6 (2.1 to 2.6) are associated

with treatment 1 (2).
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treatment generated a significant correlation between subjects’ actions; ii) the random

payment method, and/or the large initial endowments led some subjects to behave in a

random manner. To capture potential systemic effects across individuals, the regressions

conducted in this section will rely on a random-effect specification. This reduced-form

approach, enables to exploit the panel structure of the data to account for possible

correlations between the strategies selected by a subject across time.

The strategy sti selected by subject i in period t is modelled as a function of the

subject’s past plays, as well as the past plays of his previous opponents:

sti = δ1s
t−1
i + δ2s

t−2
i + δ3s

t−1
j + δ4s

t−2
j + δ5s

t−2
j + δ6s

t−2
i + νi + εit , (5.1)

where st−1i , st−2i are the strategies of subject i in the two previous periods; st−1j , st−2j

are the strategies in the two previous periods of subject j, where subject j was the

opponent of subject i in period t − 1; st−2j is the strategy in period t − 2 of subject j ,
where subject j was the opponent of subject i in period t − 2; st−2i is the strategy in

period t− 2 of subject i , where subject i was the opponent of subject j in period t− 2;
νi is the individual random-effect parameter; and finally, εit is an error term. In other

words, the econometric model accounts for all the strategies in the history tree of player

i, backing up two periods. Note in particular that subject i and i are of the same type

(i.e. both proposers, or both receivers). In other words, δ6 significantly different from

zero will indicate that a subject’s actions contaminate his entire population. Moreover,

{δk = 0, ∀k = 1, ..., 6} will indicate that subjects acted randomly, and did not adjust
their strategy over time.

To gain efficiency, the model is estimated with the general method of moment ap-

proach developed by Blundel and Bond (1998). Table 1 reports the regressions results

for the sample of proposers and receivers in each treatment.20 For both types of players

in each treatment, the parameters associated with the actions played beyond the previ-

20For the sake of brevity, the parameters associated with the random-effect are not reported as they
have no economic interpretation. Note, however, that the random-effect term is always significantly
different from zero at a 5% level, which provides support for the random effect-specification adopted.
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ous period, and in particular δ6, are not significantly different from zero. In other words,

it appears that a subject’s current choice depends only on the previous period actions,

and in particular, it is not directly affected by decisions taken by other subjects in his

own population. To confirm this result, the regression in (5.1) has been estimated after

excluding the previous period actions (i.e. imposing δ1 = δ3 = 0). The results in Table

1 indicate that in this case, a player’s strategy in period t can only be explained by his

own action in period t−2. In other words, we cannot detect any dependency within the
samples of proposers and receivers, and the correlation between proposers and receivers

actions does not appear to extend beyond the previous period.

Moreover, to test for random-like behavior (i.e. δk = 0, ∀k = 1, ..., 6) we apply the
extension to the general method of moment framework of the Wald test to each sample

of proposers and receivers in each treatment (see e.g. Newey and West 1987). The

Wald statistics vary between 45.694 and 59.464, which correspond to P-values ranging

from 3.406E-8 to 5.782E-11. In other words, there is no indication that subjects, and

in particular rich proposers in treatment 1 and rich receivers in treatment 2, acted

randomly during the experiment. To verify whether subjects became un-motivated by

the end of the experiment, we test the same hypothesis on the samples collected during

the last ten periods of each treatment. The Wald statistics now vary between 38.852

and 53.264, which correspond to P-values ranging from 6.751E-7 to 1.038E-9. In other

words, subjects did not exhibit any apparent random-like behavior, even by the end

of the experiment. To summarize, we find no evidence that the experimental design

created a significant dependency in the data, or generated random behavior on the part

of subjects.

5.1. Treatment 0

The sole objective when analyzing the experimental outcomes in treatment 0 is to verify

whether the introduction of the design modifications outlined in the previous section

created a significant treatment effect compared to traditional ultimatum games. Several

approaches may be considered to address this issue. The most thorough approach would
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consist in conducting a control treatment with the traditional ultimatum game design,

and to compare it with alternative treatments in which the design modifications would

be individually or jointly incorporated. The indispensability of a control treatment may

be questioned, since the main behavioral characteristics of the traditional ultimatum

game have been well established in the multiple experiments conducted over the years.

Moreover, we are in fact only interested in knowing whether the combination of all design

modifications produced a significant effect on behavior. Therefore, we adopted an alter-

native approach consisting in comparing the outcomes in a treatment including all the

design modifications, with those observed traditionally in ultimatum game experiments.

The experimental outcomes in treatment 0 are summarized in Table 2. Pooling data

over all periods, the average offer is 4.38 while the average MAO is slightly below with a

mean of 3.42 (see Table 2). These actions resulted in an overall rejection rate of 23%.21

There are few offers above 6 (3.94%) and below 2 (2.06%). Graph 0.4 shows that offers

and MAOs slightly decrease over time, but they mostly remain within a narrow interval

(see also the comparison of the first and last 10 periods in Table 2). To confirm this

observation, let us run the following random-effect regression separately for each sample

of proposers and responders:22

sti = δ1t+ δ2s
t−1
i + δ3s

t−1
j + νi + εit . (5.2)

The regressions results in Table 3 indicate that the time trend parameters in treatment

0 are small, but significantly smaller than 0 in both samples. This suggests that both

proposers and receivers slowly adjust their strategies over time by announcing smaller

offers and MAOs. As noted previously, the finding of adjustments on the part of re-

ceivers is remarkable since it has rarely been detected in ultimatum experiments, even

when subjects participated for a large number of rounds. This result should be essen-

21The overall rejection is rather high, but it is consistent with previous studies (see e.g. Roth et al.
1991, Abbink et al. 2001b, Slembeck 1999).
22This specification has been preferred over alternatives on the basis of a test of the over-identifying

restrictions.
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tially credited to the strategic implementation of the ultimatum game, as it allows the

experimenter to observe fully the strategy of receivers.

[Tables 2 and 3 Here]

Graph 0.1 indicates that the MAOs are symmetrically distributed around their mode

located in the range 3-4. The offers have a mode of comparable magnitude in the interval

4-5, but they are essentially concentrated between 2 and 6. The analysis of the first and

last 10 periods (Graphs 0.2 and 0.3) confirm the slight decrease of strategies over time.

However, the general shapes of the strategy distributions are essentially preserved.

The evolution of the rejection rate is volatile, and a series of regressions confirms that

it does not exhibit any obvious trend (see Graph 0.5). Graph 0.1 also indicates that the

rate of rejection decreases rapidly with the offer made.23 For instance, offers above 4 have

a 91.2% chance of being accepted, while offers below 2.5 are rejected 85.2% of the time.

Following Slembeck (1999), let us define a measure of the proposers’ bargaining power as

the income difference (in percentage of the pie) between proposers and receivers. Graph

0.5 indicates that this measure of the proposers bargaining power is slightly positive,

and remains roughly stable over time.

Finally, receivers revise their strategy in stage 2 of the game only 5.61% of the time.

The curve in Graph 0.6 indicates that most of these revisions (54%) occur within the first

10 periods of plays. The number of revisions as a function of the difference (in dollars)

between the offer and the MAO announced in stage 1 is also plotted in Graph 0.6.24

This bar graph is concentrated around zero, indicating that most receivers revise their

strategy when the proposer’s offer is close to the MAO originally announced. Notice,

23The rejection rate for low and high offers should be interpreted with caution through the paper
because they are often based on few observations.
24This graph should be read as follows: the highest bar indicates that 25 receivers decided to revise

their strategy in order to accept an offer to divide the $50 they initially declined, that was between $0
and $1 smaller than the MAO they originally announced. Note also that unlike the other graphs and
tables, Graphs 0.6, 1.6, and 2.6 have not been constructed with the offers and MAOs divided by 5, but
with the actual dollar values.
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however, that the revisions are not symmetrically distributed around zero. Indeed, the

five bars to the right, representing the rejections of offers originally accepted, account

only for 1/4 of the total number of revisions. In contrast, 58.4% of the revisions consist

of receivers deciding to accept an offer that was between $0 and $5 smaller than the

MAO announced in stage 1. In other words, after a few periods of practice receivers

learn to make few and only small mistakes in stage 1, and they appear to have very few

regrets in stage 2.25

To conclude, the outcomes appear to be consistent, both qualitatively and quanti-

tatively, with previous ultimatum game experiments. More specifically, the distribution

of offers, the probability of rejection, the distribution of payoffs, and the evolution of

behavior is analogous to what is typically observed in traditional ultimatum games.

In addition, the low rate and the distribution of strategy revisions suggest that, with

experience, the extensive and strategic implementations of the game generate similar

behavior from experimental subjects. In other words, not only the experimental design

modifications did not change the theoretic predictions, but they also did not appear

to create any significant treatment effect compared to the traditional ultimatum game

experiment. Nevertheless, it cannot be excluded that in a different context the two de-

signs may produce different behaviors. To test whether the modified design is in general

behaviorally equivalent to the traditional ultimatum game is beyond the scope of the

present paper. What is truly important for the purpose of our study is that we have

established that, like in an ultimatum game, subjects in treatment 0 appear to express

a concern for fairness that is sustained over time.

5.2. Treatment 1: Rich Proposer

The overall average offer (4.29) and MAO (3.11) are slightly smaller than in treatment

0. These figures, however, only tell part of the story. Indeed, Table 2 indicates that,

25The tables, graphs, and econometric estimations in this section are based on the MAO announced,
and they do not account for possible strategy revisions by receivers in stage 2. However, given the small
number and the distribution of the revisions, the tables, graphs and econometric estimations differ only
slightly, and the nature of the results presented is preserved when the revisions are taken into account.
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compared to treatment 0, both players strategies are higher (lower) in the first (last) 10

periods. As illustrated in Graph 1.4, and confirmed by regressions of the form (5.2) (see

Table 3), strategies now sharply decrease during the course of the experiment. MAOs still

have a mode in the usual range 3-4 but they are now much more uniformly distributed

(Graph 1.1). Note that a substantial number of receivers initially make large demands

(i.e. between 4 and 6 in Graph 1.2). By the end of the session however, most receivers

are willing to accept very small offers (i.e. lower than 2 in Graph 1.3). The mode of the

offers is still in the interval 4-5 but larger (smaller) offers are now much more frequent

in the early (late) periods of the game (see Graphs 1.1 to 1.3).

The rejection rate is slightly larger than in treatment 0, but it still does not reveal any

specific trend (Graph 1.5). Graph 1.1 indicates that small offers are much more likely to

be accepted than in treatment 0. For instance, offers below 2.5 are now accepted almost

one third of the time. Graph 1.5 also indicates that the bargaining power is initially on

the receiver’s side, but it is increasingly captured by proposers over time. Finally, the

number of revisions made by receivers increases slightly compared to treatment 0, but

its distribution over time and offers remains similar (Graph 1.6).

To confirm the presence of a treatment effect the following regression was conducted

after merging the two samples of proposers (respectively receivers) in treatments 0 and

1:

sti = δ1s
t−1
i + δ2s

t−1
j + δ3Early T0

t
i + δ4Late T0

t
i + νi + εit , (5.3)

where Early T0ti (respectively Late T0
t
i) is a dummy variable equal to 1 for data col-

lected in treatment 0 within the first (respectively last) 10 periods. The results pre-

sented in Table 4 indicate that the parameters associated with Early T0ti (respectively

Late T0ti) are significantly smaller (respectively larger) than zero for both proposers and

receivers. In other words, compared to treatment 0, rich proposers (poor receivers) are

initially asking less (more) for themselves, but with time, they end up making larger

(smaller) demands.
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5.3. Treatment 2: Rich Receiver

The results in treatment 2 are almost the opposite image of those in treatment 1. Com-

pared to treatment 0, offers and MAOs are initially smaller but they rapidly increase

over time (Table 3 and Graph 2.4). The distribution of offers is now bi-modal (Graph

2.1) with a first mode in the range of 3-4, and a second mode in the range of 6-7. The

first (second) mode is the result of low (high) offers in early (late) periods (see Graphs

2.2 and 2.3). Proposers are now willing to make offers above 6 more than one third

of the time overall, and a surprising 54% of the time during the last 10 periods (Table

2). This is a striking difference with treatment 0, and behavior observed in traditional

ultimatum game experiments. Note that the distribution of offers in the last 10 periods

is also bi-modal with a first mode in the interval 6-7, and a smaller mode in the range

3-4. An inspection of individual data reveals that subjects cannot be divided in two sub-

samples of “greedy” and “generous” proposers. Instead, it appears that the same players

alternate between small and larger offers with a clear predominance of large offers. The

distribution of MAOs still has its usual mode in the range 3-4, but receivers become

much more demanding with experience (see Graphs 2.1 to 2.3). As an illustration, the

MAOs of 6 and above increase to 26.1% in the last 10 periods.

The evolution of the rejection rate remains as volatile as in the previous two treat-

ments (Graph 2.5). Graph 2.1, however, indicates that small offers are rejected more

often, while large offers are not always accepted. For instance, offers above 4 are now

only rejected 15.1% of the time. The initial bargaining power of proposers shifts rapidly

in the receivers’ hands, in sharp contrast with traditional ultimatum games experiments

(Graph 2.5). Moreover, the number and the distribution of the revisions made by re-

ceivers are once again comparable to treatment 0. Finally, the results of the regression

(5.3) presented in Table 4 confirm the presence of a treatment effect. Indeed, compared

to treatment 0, the offers and MAOs are significantly smaller in the early periods, but

they become substantially larger by the end of the experiment.
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5.4. Interpretation of the results

It is usually accepted that subjects behavior when they begin an experiment is pre-

dominantly influenced with real life experiences with comparable games. In real life

bargaining situations, agents are typically not anonymous, the game is often repeated,

the outcomes are frequently observed by others, and traditional norms as well as con-

ventions apply. It has been demonstrated in several experiments that the combination

of these factors is likely to generate fair or egalitarian outcomes in ultimatum games.

This may therefore explain the wealth egalitarian selection of strategies observed in the

first periods of the different treatments.

On the other hand, the evolution of behavior is at odds with subgame perfection,

and existing fairness models. Indeed, according to subgame perfection, wealth differences

should not affect the players’ decision process. In other words, the behavior of partici-

pants should remain the same across the three treatments. This prediction is strongly

rejected by the data, since we have just established that the introduction of large and

unequal initial endowments creates a significant treatment effect on the dynamics of

plays. It has to be noted however, that behavior in treatment 1 is leaning toward the

game theoretic prediction. This result is remarkable, as it has been notoriously difficult

to induce subjects in ultimatum game experiments to conform to subgame perfection

(see e.g. Weg and Smith 1993).

The predictions of inequality aversion and altruistic models (see e.g. Fehr and

Schimdt 1999 and Bolton and Ockenfels 2000) depend on how wealth differences are

perceived by agents. If the arbitrary distribution of initial endowments is not seen as

unfair by subjects, then behavior should remain constant across treatments. Otherwise,

these models predict that the differences in initial endowments will result in more gen-

erous behaviors on the part of the rich players. More specifically, rich (poor) proposers

should make larger (smaller) offers, and rich (poor) receivers should (not) be willing

to accept small proposals. Such a wealth egalitarian approach appears to be a good

predictor of initial behavior. Indeed, proposers tend to offer some amounts that would
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equalize, or at least reduce the difference between both players total earnings. The

distribution of MAOs in the first periods of plays suggests that the wealth egalitarian

outcome is also initially expected by the receivers. With time however, the experimental

outcomes in treatments 1 and 2 become at odds with the fairness predictions. Indeed,

rich players ask more for themselves, while poor subjects are willing to accept widely

unequal divisions.

The reciprocity approach (see e.g. Rabin 1993) roughly assumes that agents are

willing to punish hostile behavior, but they are inclined to reward other agents who

intend to reward them. Such predictions are not consistent with the dynamics of behavior

observed in the present experiment. Indeed, poor receivers are unfairly treated after a

limited number of periods, but nevertheless, they accept to lower their demands over

time. In addition, reciprocity suggests that revisions to reject an offer in stage 2 should be

more frequent after the receiver observes an unequal proposal. Such behavior however,

is rarely observed since most revisions consist in accepting an offer initially declined.

In addition, revisions essentially occur at the beginning of the session, when offers are

arguably more equitable.

It has to be noted however that the inequality aversion, altruistic, and reciprocity

models have not been developed to predict how behavior may evolve, since they implicitly

assumed that fairness preferences are stable over time. Therefore, failure to explain the

dynamics of behavior in the experiment should not be seen as a definitive rejection of

fairness models. Indeed, fairness still appears to play a significant role, since offers and

MAOs remain non-negligible, even at the end of each treatment. The present experiment

may therefore only suggest that in certain environments, fairness preferences may be

quite unstable over time, and that existing fairness models may need to be generalized

to account for learning and/or other dynamic aspects. To do so however, one would first

need to identify the determinants affecting the stability of fairness considerations. In

the next section, we will estimate a learning model in an attempt to address this issue.

Before closing this section, let us mention a number elements revealed through post-

experiment interviews, that provide an insight into the subjects’ motivations when se-
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lecting their strategy. Several authors have suggested that the outcomes in ultimatum

experiments may be explained by the combination of three factors: a fear of disagreement

on the proposers’ side, an ability for receivers to punish greedy behavior, and a desire

for receivers to prove their “toughness” by rejecting free money. Interviews conducted

after the experiments suggest that these factors may have some explanatory power in

the present context. Indeed, the majority of poor receivers declared that they could not

punish proposers since rejections felt relatively more costly to themselves. Rich receivers,

on the other hand, said that their initial endowments led them to punish proposers by

rejecting free money if their initial demands were not met. Some even added that, al-

though they understood that the next subject they would be matched with would be

different, they rejected positive and sometime large amount of money to demonstrate

their determination to the proposer. A large number of rich proposers reported that

they did not fear rejection, since they felt satisfied with only the initial endowment even

when the ultimatum game resulted in a disagreement. As a consequence, they were

willing to take some risks by making small offers. On the other hand, poor proposers

felt like they lost their first mover advantage and that they could only acquiesce to the

receivers requests.

It is important to note that these interviews do not explain the evolution of strategies

in the experiment. For instance, were poor receivers willing to accept less money, and

proposers reacted accordingly? Or were rich proposers making smaller offers, which

constrained receivers to lower their demands? These questions are addressed in the next

section by estimating a structural learning model.

6. General Reinforcement Learning Model

6.1. Preliminaries

The object of this section is to develop a learning model to estimate how behavior

evolved in the experiment. A potential drawback of this structural approach however,

is that subjects are assumed to behave according to the learning model considered.
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As we shall see, several competing models of learning have been proposed in recent

years. The strategy adopted therefore consists in estimating a comprehensive structural

model, capturing most relevant features of these learning models, in order to identify

the determinants explaining the dynamic of plays in each treatment.

To analyze learning, we must also decide whether to use a model for continuous or

discrete strategies. In the experiment, players had access to 5,000 different strategies,

since they could make choices in cents between 0 and $50. Focal point strategies, such

as integers, half dollars and offers ending in $.99, were used more frequently but they

accounted only for 16.8% of subjects overall choices. Within the range of strategies se-

lected most often (roughly between $10 and $35 for proposers, and between $5 and $30

for receivers), proposers (receivers) used 1,456 (1,724) different strategies representing

approximately 58% (69%) of the strategies available to them. A discrete model would

require to regroup arbitrarily the 5,000 possible strategies into a limited number of clus-

ters. However, Monte Carlo simulations suggest that such arbitrary discretizations may

erase some of the subtle nuances associated with the smooth evolution of behavior ob-

served during the experiment.26 A continuous model therefore appears more appropriate

to analyze precisely the dynamic of plays.

We adopt the general reinforcement learning approach developed by Armantier (2003).

This model not only explicitly accounts for continuous strategies, but it has also been

shown to capture most relevant aspects of existing learning models. In addition, the

general reinforcement learning model is sufficiently flexible, yet parsimonious, to be con-

sidered for a structural estimation. We now summarize the main features of the model.

6.2. The model

The general reinforcement learning model combines L different observational and ex-

periential reinforcement rules, such as for instance choice reinforcement learning (Bush

26This result is consistent with simulations conducted for different games, in which continuous learn-
ing models were found to outperform discrete models to explain the evolution of strategies (see e.g.
Armantier 2003 for an auction example).
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and Mosteller 1955, Erev and Roth 1998), imitation (Vega-Redondo 1997, Schlag 1999),

learning direction theory (Selten and Buchta 1999), or reinforcement of unchosen strate-

gies (Camerer and Ho 1999). At round t, player i draws her strategy sti from a continuous

probability density function gti(.) defined over the interval [s, s] = [0, 50]. The strategy

distribution of player i evolves according to the following law of motion,

gt+1i (s) =

g1i (s) +
t

k=1

L

l=1

R(s | ml
i,k, r

l
i,k, t, β

l)

1 +
t

k=1

L

l=1

s

s

R(u | ml
i,k, r

l
i,k, t,β

l)du

. (6.1)

where t is the last period played; R(. | .) denotes the reinforcement rule; s ∈ [s, s];
ml
i,k is the strategy reinforced in rule l by player i at any period k ≤ t based on a

reinforcement factor rli,k; finally, β
l is the vector of parameters of the reinforcement

rule l (l = 1, ..., L). The function g1i (.), commonly known as the initial propensity, may

reflect players introspection or experience from previous games. How subjects select

their initial strategy distribution is a question that has been briefly discussed in section

5.4. In the remainder g1i (.) is a given distribution, possibly a function of parameters to

be estimated.

The reinforcement rule R(. | .) adopted here is based on a normal probability density
function f(. | µki ,σki (t)) with mean µki and variance σki (t),

R(s | ml
i,k, r

l
i,k, t, β

l) =


f(µki | µki ,σki (t))− f(s | µki ,σki (t)) when rli,k < 0

f(s | µki ,σki (t)) when rli,k > 0

1 when rli,k = 0


(6.2)

where µki = m
l
i,k and σki (t) = αl

(k−t−1)
rli,k

−2
. (6.3)

In this simple model βl = αl, where 0 < α ≤ αl ≤ α < 1. Note that the negative

reinforcement rule in expression (6.2) is always positive, which guarantees that gt+1i (.)

is a density function.
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Heuristically, the purpose of the reinforcement rule R(.) is to add some mass to the

strategy density gt+1i (.) around or away from the strategy reinforced, ml
i,k, depending on

the reinforcement factor rli,k.
27 For instance, if the reinforcement factor is positive (nega-

tive), then the reinforcement rule has the shape of a (an inverse) normal density function

centered onml
i,k; as a result, player i is more (less) likely to play strategies aroundm

l
i,k in

the future. As the reinforcement factor rli,k increases (decreases), the positive (negative)

reinforcement rule becomes more concentrated, and more mass is added (subtracted)

around ml
i,k. There is no experiential learning when the reinforcement factor is zero,

as the strategy distribution stays unchanged. Finally, σki (t) becomes larger as k moves

further away from the current period t, which implies that the reinforcement rule R(.)

becomes flatter and less influential with time. In other words, the exponent of αl acts

as a discount or forgetting parameter that reduces the influence of past reinforcements.

To illustrate how this general reinforcement learning model captures different forms

of learning, consider the traditional choice reinforcement learning model as presented by

Erev and Roth (1998). Players reinforce every strategy ski (∀k ≤ t) they played in the
past based on xki the payoff received. In other words, the choice reinforcement learning

rule reinforces at period t each strategy ml
i,k = m

CRL
i,k = ski based on the reinforcement

factors rli,k = rCRLi,k = xki for any k ≤ t. Similarly, the general reinforcement learning
model may also nest the reinforcement of foregone best responses. In this case, player i

partially reinforces the best response in period k to her opponents actual strategy profile

sk−i i.e. BR(sk−i) , based on the profit Π
k
BR this best response would have generated.

The parameters of the rule reinforcing the foregone best strategies from periods k ≤ t
are ml

i,k = mRBR
i,k = BR(sk−i) and r

l
i,k = rRBRi,k = θRBRΠkBR, where θRBR ≥ 0 repre-

sents the relative effect of foregone payoffs compared to actual payoffs. Other possible

reinforcement rules include (e.g.) imitation of popular or successful behavior, payoff de-

pendent imitation, direction learning, as well as other forms of exogenous adjustments

(see Armantier 2003).

27See Armantier (2003) for a more detailed explanation of the model’s properties.
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Erev and Roth (1998) introduced a benchmark, typically representing a “subjective

expected payoff”, to classify payoffs as positive or negative reinforcements. Following

this approach, let us respectively redefine the reinforcement factors in the previous two

examples as rCRLi,k = xki − ρti and r
RBR
i,k = θΠkBR − ρti, where ρ

t
i is the reference point in

period t. This internal reference point is assumed to follow a very general law of motion

of the form

ρt+1i = γ0 + γ1x
t
i + (1− γ2) ρ

t
i , (6.4)

where (ρ1i , γ0) ∈ R2, 0 ≤ γj ≤ 1 (∀j = 1, 2), and xti is the payoff of player i at period t.

7. Estimation of the General Reinforcement Learning Model

7.1. Estimation Procedure

From an econometric perspective learning models have two interesting features. First,

the actions observed during the experiment are neither identically nor independently

distributed, since the strategy distributions are updated individually based on previous

periods plays and outcomes. Second, learning models may converge toward a pure strat-

egy equilibrium, in which case the asymptotic strategy distribution g∞i (.) is degenerate.

These two characteristics are such that the analysis of learning model estimators is non-

trivial and rarely addressed in the literature, with the notable exception of Cabrales

and Garcia-Fontes (1999) and Armantier (2000). The Maximum Likelihood is a popular

method to estimate learning models with a finite number of strategies (e.g. Camerer and

Ho 1999, or McKelvey and Palfrey 1995). However, as noted by Stahl (1996) and Ar-

mantier (2000), the application of the Maximum Likelihood to continuous strategies may

be hazardous. Indeed, as behavior converges toward an equilibrium, the strategy distri-

bution becomes more concentrated, and later observations are much more influential on

the likelihood function. This imbalance may result in a disproportionate contribution of

later observations on the parameter estimate.

To circumvent this convergence problem Armantier (2000) proposes a moment esti-
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mator β corresponding to an objective function of the form:

SOM2(β) =
T

t=1

N

i=1

sti − η1i,t (β)
2
+ sti

2 − η2i,t (β)
2

, (7.1)

where β is the parameter vector to be estimated, and ηpi,t (β) is the theoretic moment

of order p = 1, 2 of player i’s strategy distribution at period t.28 Heuristically, the

objective is to reconcile observations with their theoretical moments conditionally on the

history of plays. Unlike the Maximum Likelihood, this method offers the key advantage

of allocating the same weight in the objective function to any observation even when

strategies converge.

The expression (7.1) requires the derivation of the theoretical moments at each period

and for all bidders. The strategy distributions do not have tractable analytical forms,

and the theoretical moments ηpi,t (β) are replaced with arbitrary precision by Monte Carlo

simulation estimates, ηpi,t (β). In other words, the estimation method may be interpreted

as a traditional method of simulated moments.

Nested learning models are typically compared on the basis of likelihood ratio tests

(e.g. Stahl 2000 or Camerer and Ho 1999). As previously mentioned however, this ap-

proach is not well suited here due to the inadequate properties of the likelihood function.

Instead, we will consider traditional Wald tests based on the unconstrained optimiza-

tion of the objective function (7.1). The Wald test possesses the appropriate asymptotic

properties, since the moment estimator is consistent and asymptotically normally dis-

tributed. The covariance matrix involved in the determination of the test statistic is

evaluated with a Bootstrap technique based on the estimated parameter β.29

To conclude, it is important to note that the structural estimation procedure i) relies

on individual observations, and ii) fully accounts for the interdependency in the data

28Higher moments may be included in the objective function. Monte Carlo simulations, however,
suggest that the first two moments are sufficient in general to obtain precise estimates.
29The Bootstrap is a statistical technique consisting in repeatedly resampling the original data from

the estimated distribution in order to make inferences from the resamples on parameters such as the
standard deviation of the estimated parameters. For details on the Bootstrap technique see Shao and
Tu (1995).
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under the learning models assumptions.

7.2. Estimation Results

We first estimate a benchmark model including the traditional choice reinforcement

learning, the reinforcement of foregone best responses, as well as a dynamic reference

point. Alternative learning and adjustment models will be compared and tested against

this benchmark in the next section.

Before we proceed, let us discuss how foregone best responses are approximated in the

ultimatum game. At the end of each period, the foregone best response of a proposer

consists in the MAO announced by the receiver with whom he was matched. In the

rare cases in which a receiver decides to revise his strategy, the proposer’s foregone

best response is approximated by his own offer. This approximation has no significant

consequence on the estimated parameters, since revisions are rare and typically occur

when offers and MAOs are close. If the responders only maximize their own profits,

then they always have a (weakly) dominant strategy consisting in announcing a MAO of

zero. As we shall see later on, the experimental data clearly reject any attraction toward

the subgame perfect equilibrium strategy. Instead, we assume that the foregone best

response of a receiver may be represented by the proposer’s offer, since it is the highest

MAO that would have resulted in an agreement. This assumption appears reasonable

for a group of boundedly rational subjects repeatedly playing the ultimatum game, since

it is the best compromise for receivers between reaching an agreement and showing their

determination.30

The positions of the proposers and receivers are not symmetric in the ultimatum

game, and their learning process may therefore differ. Likewise, it has been shown that

the environment in which a game is played may affect the way subjects learn. Conse-

quently, we first estimate a general learning model with a specific set of parameters for

proposers and receivers in each of the three treatments. The vector of parameters to

30Abbink et al. (2001a) show that receivers often reject positive offers in anonymous ultimatum
games in order to establish a group reputation for being “tough”.

29



estimate for each treatment is βj = βCRLj ,βRBRj ,βRPj , µj,σ
2
j where j ∈ {p, r} repre-

sents the player’s position as proposer or receiver; βCRLj = αCRLj is the parameter of the

choice reinforcement model; βRBRj = (αRBRj , θRBRj ) is the parameter associated with the

reinforcement of best responses; βRPj = (ρ1j , γ0,j, γ1,j, γ2,j) is the vector of coefficients of

the reference point law of motion; and µj,σ
2
j are the parameters of the initial strat-

egy distribution function. Proposers (receivers) are initially considered symmetric, and

strategies in period 1 are assumed to be generated from a normal distribution truncated

on [0, 50] with parameters µj,σ
2
j j ∈ {p, r}. The histograms of both proposers and

receivers strategies in the first period of play tend to support this assumption.

Results of the moment estimation method introduced in section 7.1 are presented in

Table 5. As expected, the first moment of the proposers and receivers initial propensity

distributions (which is slightly different from µj due to the truncation) are significantly

larger (smaller) in treatment 1 (2) than in treatment 0.31 This result confirms that

subjects initially attempt to reach an egalitarian agreement that equalizes final wealth.

[Table 5 Here]

Let us examine first the parameters associated with the choice reinforcement learning

model. The forgetting parameters αCRLj , j ∈ {p, r}, are close to, but significantly
smaller than one in all three treatments. This confirms that both types of players learn

to adjust their strategies in all three treatments as the result of their own past plays and

outcomes. The values of the forgetting parameters also imply that experiential learning

occurs at a slow pace, as past and recent experience have almost the same influence on

the current strategy selection. The forgetting parameter is, however, significantly larger

for receivers than for proposers, and it is also significantly larger when subjects are rich.

Therefore, the behavior of proposers and poor subjects can potentially change somewhat

more abruptly as the result of new experiences. The fact that proposers and receivers

31The statistical comparisons in this section are conducted with Wald tests at a 5% significance level.
Given the large numbers of comparisons, only the most relevant test statistics and p-values are reported.
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both appear to learn from their own past plays and outcomes is consistent with previous

studies (see e.g. Slonim and Roth 1998, as well as Cooper et al. 2003).

Let us now turn to the estimation of the parameters associated with the reinforcement

of best strategies. The pair αRBRj , θRBRj , j ∈ {p, r}, is only significantly different from
zero for rich subjects, and for proposers in treatment 0. In other words, the foregone

best responses act as an attractor when subjects possess some bargaining power provided

by their wealth status and/or their first mover advantage. In addition, foregone best

responses have a more immediate impact on the strategy selection of rich proposers, since

the forgetting parameter αRBRp is significantly smaller in treatment 1. This result may

be explained by the combination of wealth status and first mover advantage. Finally,

the parameter θRBRj is significantly larger than 1 for rich subjects. This indicates that

rich players reinforce their foregone best response strategy with even more intensity than

the strategy they actually played. Note that the magnitude of this effect is remarkably

larger than in previous studies such as Camerer and Ho (1999) or Armantier (2003).

This difference may be partially explained by the additional bargaining power provided

by large initial endowments.

Finally, let us examine the parameters governing the evolution of the reference point.

Except for the receivers in treatment 0, most parameters of the reference points laws

of motion are significantly different from zero. As suggested by (e.g.) Erev and Roth

(1998), this result reflects the key role played in the reinforcement learning mechanism

by a reference point, transforming payoffs into reinforcement factors. Note that the sums

of the proposers and receivers initial reference points ρ1p + ρ1r in all three treatments

are roughly equal to the size of the pie to be divided (i.e. $50). In other words, both

types of players have realistic and matching initial expectations. This indicates also that

rich players do not immediately feel that they deserve most of the pie. As expected,

poor (rich) subjects have significantly higher (smaller) initial expectation in treatment

1 (2) than in treatment 0. The parameters γ1,j and γ2,j, j ∈ {p, r}, in treatment 0
are small, and only significantly different from zero for the proposers. Therefore, the

reference points, and the players expectations, barely evolve over time in treatment 0.
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In the other two treatments, however, both γ1,j and γ2,j, j ∈ {p, r}, are positive and
highly significant. Given the profile of payoffs observed in these treatments, this implies

that the reference point of a rich (poor) subject rises (declines) rapidly over time, as she

sees her payoffs in the successive ultimatum games increase (decrease). In other words,

a feeling of entitlement grows over time within rich subjects, while poor participants

come to the realization that they should expect less.

These estimates provide an insight into the way known wealth differences affected

the dynamics of behavior in treatments 1 and 2. Indeed, the estimated parameters

suggest that guided by foregone best responses, and an acquired sense of deservingness,

rich subjects increased their demands. In contrast, poor players only appear to react to

their opponents increasingly aggressive behavior by scaling down their demands, since

the strategy selection of poor players was essentially influenced by their own past plays

and outcomes.

7.3. Alternative Specifications

The object of this section is to test whether alternative models may better explain

the dynamics of behavior. The different hypotheses can be nested within the general

reinforcement model, and comparisons will be conducted on the basis of Wald tests.

Results are presented in Table 6.

We first verify whether subjects learn to behave homogeneously from their own ex-

perience and observation. To test for the presence of heterogeneity across proposers

(receivers) within the same treatment we estimate the benchmark model with a different

parameter βi,j, j ∈ {p, r} , i = 1, ..., N , for each player. Then, we can test the restric-
tion H0 : βCRLi,j ,βRBRi,j = βCRL1,j , β

RBR
1,j , ∀i = 2, ..., N for j ∈ {p, r}. The p-values

in Table 6 indicate that one cannot reject the null hypothesis at the usual significance

levels. Therefore, we do not find conclusive evidence of heterogeneity across players. In

other words, as mentioned in section 5, it is not obvious that we can differentiate sub-

jects into two sub-samples of “fair” and “greedy” players. Rich players may alternate

between generous and greedy offers, but they all appear to learn to behave in a more
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selfish manner. This test also illustrates the ability of the general reinforcement learning

model to describe the behavior of each proposer (receiver) in a treatment equally well.

We now test whether proposers (receivers) adjust their strategies according to the

same learning model in all three treatments. Under this hypothesis, the difference in

the dynamics of plays, would be essentially explained by the specific events experi-

enced and observed by subjects in each treatment. The benchmark model is estimated

jointly with the data observed in the three treatments, and we test the restriction

H0 : βCRLj ,βRBRj T0
= βCRLj , βRBRj T1

, βCRLj ,βRBRj T0
= βCRLj , βRBRj T2

, where

βCRLj ,βRBRj Tt
is the vector of all parameters common to subjects of type j ∈ {p, r} in

treatment t ∈ {0, 1, 2}.32 The p-values in Table 6 indicate that one can reject the null
hypothesis at the usual significance levels. Therefore, it appears that subjects in each

treatment do not learn according to the same model. In other words, the environment in

which the game was played seem to have shaped the way subjects learned. This result

is consistent with previous studies analyzing the influence of environmental factors on

learning (see e.g. Slembeck 1998 or Armantier 2003).

Next, we verify whether behavior in each treatment may be explained by a sim-

pler learning model than the combination of learning rules estimated in the benchmark

model. We successively test the following hypotheses for the proposers and receivers

in each treatment: first, the data may be explained only by a simple choice reinforce-

ment learning model (i.e. H0 : θRBRj = 0,βRPj = 0 ); second, the data may be ex-

plained by a learning model reinforcing only the foregone best response strategies (i.e.

H0 : θCRLj = 0, βRPj = 0 in the modified benchmark model in which the reinforcement

factor of the choice reinforcement learning rule is now written rCRLi,k = θCRLj xki ); third,

the learning model does not include a reference point (i.e. H0 : βRPj = 0 ). The p-

values in Table 6 indicate that these three hypotheses are always rejected, except for the

receivers in treatment 0 for which the choice reinforcement learning model cannot be

rejected at a 5% significance level. In other words, the behavior of receivers in treatment

32To get the best chance to accept the test, we exclude from the null hypothesis the parameters
associated with the initial propensity and reference point, as they differ significantly in each treatment.
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0 may be explained solely by a simple choice reinforcement learning model. However, a

proper modelization of the dynamics of plays in all other cases requires the combination

of learning rules included in the benchmark model.

We now verify whether the experimental outcomes may be equally explained by an

exogenous adjustment mechanism. Learning is typically assumed to occur when the

strategy selection of a player at a given period is influenced by his own or any other

players past actions and/or outcomes. In contrast, the general reinforcement rule can

be modified to represent a completely exogenous adjustment of strategies. Indeed, if

we impose ml
i,k = λ1m

l
i,k−1 + s∞(1− λ1) and rli,k = λ2r

l
i,k−1 (where λ1 ∈ [0, 1[ , λ2 > 1,

s∞ ∈ [s, s], αl = rli,0 = 1), then the strategy reinforced and the reinforcement factor

evolve exogenously, and behavior systematically converges toward a pure strategy equi-

librium s∞. The equilibrium model with errors is a special case of exogenous adjustment

in which s∞ is equal in the present context to the subgame perfect equilibrium strat-

egy s∞ = 0. The model is tested twice under each of the following null hypotheses

H0 : θCRLj = 0, θRBRj = 0, βRPj = 0 and H0 : θCRLj = 0, θRBRj = 0,βRPj = 0, s∞ = 0 .

Table 6 indicates that both hypotheses are strongly rejected by the data. In other words,

it appears that i) the adjustment process observed in each treatment is not exogenous;

ii) the subgame perfect equilibrium does not act as an attractor; and iii) the evolution

of strategies may be attributed to learning.

Learning direction theory (Selten and Buchta 1999) offers a potential alternative to

explain the dynamics of behavior observed in each treatment. Indeed, according to this

model, subjects may have simply adjusted their behavior in the direction of strategies

that were, or would have been successful. To illustrate the concept of direction learn-

ing consider a proposer in the ultimatum game and the choice reinforcement learning

model. When an agreement is not reached, the proposer should realize that his offer

was too low; he should also understand that a smaller offer would not have improved his

situation, while larger offer could have generated a better payoff. As a result, instead of

symmetrically reinforcing strategies around the strategy played sti, the proposer should

reinforce negatively strategies below sti, and reinforce positively strategies above s
t
i. By
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doing so, the proposer is more likely to generate a strategy larger than sti, and get a

better payoff in the future. The notion of direction learning may also be applied to

foregone best responses, in which case sti is replaced by the best response BR(s
t
−i) in

the previous example.

Following Armantier (2003), we can test these hypotheses after incorporating direc-

tion learning within the foregone best response or choice reinforcement rule, by replacing

µki in equation (6.3) by

µki = m
l
i,k + ωlv

2
s.Iαlν<0 + s.Iαlν>0 −ml

i,k e
−(rli,k)

2

, (7.2)

where l ∈ {CRL,RBR}, −1 ≤ ωlν ≤ 1, [s, s] = [0, 50], ν = 1 (ν = 2) when the rein-

forcement factor rli,k is positive (negative), and Iωlv<0 is the indicator function satisfying

Iωlν<0 = 1 when ωlν < 0 (otherwise Iωlν<0 = 0). The parameter ωl1 ωl2 accounts for

any potential direction learning associated with a positive (negative) reinforcement fac-

tor. Indeed, when ωlν is positive (respectively negative), µ
k
i lays in the interval m

l
i,k, s

respectively s,ml
i,k and strategies slightly greater (respectively smaller) than ml

i,k

are primarily reinforced. Note that µki gets closer to m
l
i,k when rli,k

2
increases. This

implies that when the payoff (or the potential payoff) is large and positive (respectively

negative), the center of the reinforcement rule gets closer to the strategy reinforced, so

that the player is more (respectively less) likely to play again the same strategy in the

future. Finally, ωlν = 0 corresponds to no direction learning, while ωlν = ±1 can be
considered full direction learning, since players essentially reinforce either s or s for a

reinforcement factor rli,k close to zero. Using this model, we can then test successively

the null hypotheses H0 : ωCRL1 = 0,ωCRL2 = 0 and H0 : ωRBR1 = 0,ωRBR2 = 0 . The

p-values in Table 6 indicate that learning direction does not appear to play a significant

role to explain the dynamics of plays observed in each treatment.

The benchmark learning model adopted therefore appears to outperform several al-

ternative candidates. To evaluate further the empirical relevance of the estimates, and

the fit of the model, the following regressions have been conducted for each type of
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subjects in each treatment:

stj = δ0 + δ1η
1
t βj + εit , (7.3)

where stj is the average strategy played during a given treatment by subjects in group

j ∈ {p, r} at period t, and η1t βj is the average strategy in group j ∈ {p, r} at period t
simulated with the general reinforcement model, and the estimated parameter βj.

33 The

F tests in Table 7 indicates that one cannot reject at a 5% significance level the null

hypotheses H0 : {δ0 = 0, δ1 = 1}. In addition, the R2’s reported in Table 7 illustrate
that the learning model explains almost entirely the variation in the aggregated experi-

mental data. In other words, the average path of strategies simulated with the general

reinforcement learning model fits well the average behavior observed in the experiment.

Moreover, to evaluate individual fit, the following regressions have been estimated

for each player in each treatment:

sti = δ0 + δ1η
1
i,t βj + εit , (7.4)

where sti is the strategy of player i in period t, and η1i,t βj is the simulated expected

strategy in period t, conditional on the history of plays observed for player i up to

period t. Table 8 indicates that the F tests for the null hypothesis H0 : {δ0 = 0, δ1 = 1}
could not be rejected for the wide majority of subjects in each of the three different

treatments. In addition, the average R2’s in Table 8 suggest that the benchmark model

explains between 76% and 89% of the variance in the individual subjects decisions during

the experiment. In other words, the general reinforcement learning model, along with the

estimated parameters, replicate fairly well the individual behavior of the wide majority

of subjects.

33In fact, the benchmark model is re-estimated for each type of subjects in each treatment, accounting
only for the components of βj significantly different from zero in Table 5. The Monte Carlo simula-

tions η1t βj in equation 7.3, and η1i,t βj in equation 7.4, are based on these new sets of estimated

parameters.
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8. Discussion

The present paper was an attempt to analyze the important but challenging issue of

the effect of known wealth differences on fairness considerations, and in particular on

the stability of fairness preferences over time. To address this issue, an ultimatum game

experiment was conducted by providing proposers and receivers with large and widely

unequal initial endowments. The experimental outcomes indicate that subjects initially

attempt to reach an egalitarian agreement that would equalize final wealth. With time,

however, rich (poor) proposers make smaller (larger) offers, while rich (poor) receivers

are willing to reject (accept) larger (smaller) offers. In other words, rich players become

more greedy, and this behavior is tolerated by poor subjects.

The estimation of a general reinforcement learning model accounting for experience

and foregone best responses indicates that i) independently of wealth differences, there

is a clear evidence of learning by proposers and, which is even more remarkable, by

receivers; ii) the monetary expectations of rich (poor) subjects increase (decrease) with

time; iii) the strategy choices of rich players are mainly influenced by foregone best

responses; and, iv) poor players essentially learn from their own past plays and outcomes.

In other words, it appears that, guided by foregone best responses and an acquired sense

of deservingness, rich subjects became more selfish, while poor subjects learned from

their personal experience to accept this increasingly aggressive behavior.

We are now in a position to propose an answer to the question raised in the title

of the paper. Indeed, the present study suggests that subjects start by adjusting their

strategies in presence of known wealth inequalities, in a way that initially appears to

leave fairness considerations unaffected. With time, however, relative wealth seems to

modify the dynamics of behavior in a direction opposite to the fairness prediction.

These conclusions, however, should be interpreted with caution, and, as is often the

case in experimental economics, the generality of the experimental results presented

would need to be confirmed. Indeed, one cannot exclude that the experimental design

adopted in order to enable the joint analysis of relative wealth and learning, partially
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drove behavior. If it is premature to claim that our conclusions extend to other games,

and in particular to the traditional ultimatum game, we have nevertheless constructed

an experiment in which wealth differences had a significant impact on the stability of

fairness preferences. Additional experiments may need to be conducted within the same,

and/or slightly different environments, in order to verify whether our findings are robust,

or to identify the factor(s) that drove behavior away from the fairness prediction in the

present experiment.

If confirmed, the conclusions reached may be significant from a practical perspective.

Indeed, there typically exist known wealth differences between the negotiating parties

in real life bargaining such as wage negotiations or pre-trial settlements. The present

paper suggests that a proper analysis of these situations may require one to take into

consideration the bargaining power provided by wealth. The outcomes of the experiment

may also partially explain and/or justify the success of class action lawsuits, as well as

the intervention of a third party negotiator such as a mediator or a union representative.

Indeed, this may, among other things, level the differences in bargaining power between

the negotiating parties.

Finally, the present paper provides an insight into the notion of bargaining power.

Economists typically define bargaining power by its effect (it allows agents to extract

more favorable outcomes for themselves), and by the psychological or environmental fac-

tors from which it is derived (e.g. gender, entitlement, social status or wealth). However,

the following questions have essentially been left unanswered: why do certain factors cre-

ate bargaining power? How does bargaining power change a player’s perspective of the

game so that she modifies her behavior? The present paper sheds some light on the

second question. Indeed, we have shown that the bargaining power provided by known

wealth differences results in larger monetary expectations, and that the learning process

of players with bargaining power is essentially driven by foregone best responses rather

than personal experience.

Dept of Economics, S621 SBS Building, SUNY Stony Brook, Stony Brook NY,

11794-4384. E-mail: olivier.armantier@sunysb.edu.
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TABLE 1  

RANDOM-EFFECT REGRESSION 
ANALYSIS OF POSSIBLE CORRELATIONS BETWEEN SUBJECTS’ ACTIONS 

TREATMENT 0 TREATMENT 1 TREATMENT 2  
Proposers Receivers Proposers Receivers Proposers Receivers 

1δ  0.461* 
(0.142) . 

0.450* 
(0.117) . 

0.447* 
(0.100) . 

0.428* 
(0.143) . 

0.482* 
(0.169) . 

0.479* 
(0.126) . 

2δ  0.064 
(0.174) 

0.482 
(0.310) 

0.123 
(0.256) 

0.603* 
(0.229) 

0.012 
(0.111) 

0.538* 
(0.219) 

0.062 
(0.182) 

0.490 
(0.262)

-0.026 
(0.130) 

0.571 
(0.297) 

0.017 
(0.155) 

0.589* 
(0.203)

3δ  0.322 
(0.188) . 

0.348* 
(0.113) . 

0.309* 
(0.112) . 

0.362 
(0.196) . 

0.347* 
(0.121) . 

0.372* 
(0.130) . 

4δ  -0.102 
(0.355) 

-0.062 
(0.413) 

0.055 
(0.123) 

-0.020 
(0.219) 

0.025 
(0.228) 

-0.089 
(0.278) 

0.082 
(0.202) 

-0.043 
(0.231)

-0.080 
(0.316) 

0.087 
(0.260) 

0.021 
(0.128) 

-0.017 
(0.202)

5δ  -0.023 
(0.482) 

-0.051 
(0.376) 

-0.017 
(0.502) 

-0.013 
(0.534) 

-0.012 
(0.422) 

0.066 
(0.475) 

0.010 
(0.379) 

-0.008 
(0.544)

0.008 
(0.366) 

-0.121 
(0.627) 

-0.013 
(0.396) 

0.034 
(0.555)

6δ  0.022 
(0.266) 

-0.063 
(0.408) 

-0.041 
(0.533) 

0.121 
(0.318) 

0.009 
(0.469) 

0.027 
(0.243) 

-0.089 
(0.551) 

-0.062 
(0.251)

-0.056 
(0.620) 

-0.010 
(0.393) 

-0.119 
(0.562) 

0.077 
(0.416)

Numbers in parenthesis refer to asymptotic standard deviations, asymptotically robust to heteroskedasticity. 
 * Indicates parameters significant at a 5% level. 

 
 

TABLE 2 
EXPERIMENTAL OUTCOMES 

TREATMENT 0 TREATMENT 1 TREATMENT 2  
Offers MAO Rejection Offers MAO Rejection Offers MAO Rejection 

Mean 4.38 3.42 0.23 4.29 3.11 0.28 5.11 3.69 0.72 
Std 1.22 1.14 0.42 1.57 1.78 0.45 1.92 2.09 0.45 

Median 4.40  3.50 0.00 4.40 3.30 0.00 4.60 3.20 1.00 
Above 6 3.94% 1.44% . 9.17% 4.67% . 36.00% 17.78% . 

 
 

Overall 

Below 2 2.06% 7.06% . 7.39% 32.06% . 2.72% 12.83% . 
Mean 4.56 3.64 0.28 4.87 3.97 0.30 4.29 3.28 0.76 
Std 1.17 1.31 0.45 1.40 1.56 0.46 1.42 1.60 0.43 

Median 4.60 3.70 0.00 4.80 3.90 0.00 4.10 3.10 1.00 
Above 6 3.87% 3.23% . 14.84% 7.10% . 9.68% 6.45% . 

 
First 
10 

Periods 
Below 2 0.97% 6.77% . 2.26% 10.32% . 2.90% 11.61% . 

Mean 4.12 3.20 0.24 3.63 2.64 0.29 5.85 4.25 0.67 
Std 1.18 1.10 0.43 1.76 1.64 0.46 1.87 2.40 0.47 

Median 4.10 3.30 0.00 3.80 2.20 0.00 6.30 3.60 1.00 
Above 6 2.90% 0.32% . 5.48% 2.90% . 54.19% 26.13% . 

 
Last 
10 

Periods 
Below 2 4.19% 8.39% . 17.10% 40.00% . 1.94% 10.97% . 

 
 

TABLE 3  
RANDOM-EFFECT REGRESSION  

INCLUDING A TIME TREND 
TREATMENT 0 TREATMENT 1 TREATMENT 2  

Proposers Receivers Proposers Receivers Proposers Receivers 

1δ  -0.013* (0.001) -0.011* (0.002) -0.025* (0.004) -0.031* (0.005) 0.033* (0.006) 0.024* (0.004) 

2δ  0.054* (0.024) 0.032 (0.029) 0.093* (0.034) 0.023 (0.027) 0.095* (0.036) 0.066* (0.021) 

3δ  0.026 (0.014) 0.008 (0.020) 0.039* (0.018) 0.027 (0.022) 0.032 (0.018) 0.017 (0.031) 
Numbers in parenthesis refer to asymptotic standard deviations, asymptotically robust to heteroskedasticity. 

 * Indicates parameters significant at a 5% level. 
 



 
 
 
 
 
 

TABLE 4  
RANDOM-EFFECT REGRESSION  

TREATMENT EFFECT 
TREATMENTS 0 AND 1 TREATMENTS 0 AND 2  

Proposers Receivers Proposers Receivers 

1δ  0.452* (0.190) 0.409* (0.152) 0.476* (0.182) 0.462 (0.253) 

2δ  0.307 (0.271) 0.263 (0.187) 0.371* (0.171) 0.310 (0.228) 

3δ  -0.392* (0.045) -0.264* (0.068) 0.414* (0.054) 0.389* (0.077) 

4δ  0.530* (0.022) 0.332* (0.031) -1.316* (0.082) -0.893* (0.065) 
Numbers in parenthesis refer to asymptotic standard deviations, asymptotically robust to heteroskedasticity. 

 * Indicates parameters significant at a 5% level. 
 
 
 
 
 
 
 

TABLE 5  
ESTIMATION OF THE GENERAL REINFORCEMENT LEARNING MODEL 

TREATMENT 0 TREATMENT 1 TREATMENT 2  
Proposers Receivers Proposers Receivers Proposers Receivers 

CRL
jα  0.806* (0.033) 0.943* (0.008) 0.845* (0.022) 0.911* (0.013) 0.759* (0.027) 0.981* (0.013) 
RBR
jα  0.578* (0.091) 0.344 (0.212) 0.410* (0.126) 0.426 (0.333) 0.527 (0.314) 0.630* (0.151) 
RBR
jθ  0.943* (0.090) 0.387 (0.226) 1.478* (0.037) 0.634 (0.340) 0.531 (0.375) 1.135* (0.058) 

1
jρ  29.104* (0.778) 25.831 (1.055) 21.287* (0.651) 28.920* (0.704) 35.234* (1.038) 20.34* (0.991) 

j,0γ  0.154 (0.098) 0.455 (0.298) 0.106* (0.043) 0.253* (0.112) 0.167 (0.105) 0.212 (0.148) 

j,1γ  0.187* (0.073) 0.201 (0.176) 0.254* (0.066) 0.196* (0.060) 0.207* (0.082) 0.314* (0.070) 

j,2γ  0.078* (0.030) 0.098 (0.067) 0.162* (0.040) 0.150* (0.059) 0.126* (0.029) 0.183* (0.047) 

jµ  23.732* (1.341) 20.012* (1.776) 28.711* (0.605) 24.394* (1.261) 19.490* (0.743) 15.366* (1.323) 

jσ  9.862* (2.034) 11.308* (1.729) 7.229* (2.404) 9.497* (2.007) 8.554* (1.550) 10.989* (1.908) 
Numbers in parenthesis refer to standard deviations. * Indicates parameters significant at a 5% level. 

 
 
 
 
 
 
 
 
 
 
 



TABLE 6  
P-VALUES FOR NESTED MODEL COMPARISON 

TREATMENT 0 TREATMENT 1 TREATMENT 2  
0H  

 
Degrees of 
Freedom 

2χ Statistics 
for 05.0=α  Proposers Receivers Proposers Receivers Proposers Receivers 

 
No Heterogeneity 

 
87 

 
109.770 

0.287 
(93.925) 

0.336 
(92.012) 

0.142 
(101.172) 

0.246 
(95.670) 

0.210 
(97.356) 

0.228 
(96.492) 

Same Learning 
Parameters Across 

Treatments 

 
6 

 
12.592 1.234E-16 

(87.720) 
4.675E-13 
(69.716) . . . . 

Choice 
Reinforcement 

Learning 

 
5 

 
11.070 2.462E-3 

(18.422) 
0.102 

(9.183) 
6.378E-5 
(26.751) 

1.400E-2 
(14.267) 

8.502E-6 
(31.213) 

2.489E-3 
(18.396) 

Reinforcement of 
Best Strategies 

 
5 

 
11.070 

5.738E-7 
(37.093) 

6.039E-10 
(51.761) 

9.023E-5 
(25.975) 

2.812E-12 
(63.072) 

8.661E-8 
(41.172) 

4.284E-6 
(37.717) 

No Reference 
Point 

 
4 

 
9.488 

2.741E-3 
(16.217) 

0.032 
(10.558) 

4.888E-5 
(25.062) 

5.642E-3 
(14.586) 

6.932E-5 
(24.307) 

1.273E-2 
(12.720) 

Exogenous 
Adjustments 

 
6 

 
12.592 

3.803E-10 
(55.426) 

8.020E-08 
(43.821) 

2.565E-13 
(70.987) 

3.462E-10 
(56.360) 

9.470E-12 
(63.326) 

7.352E-11 
(58.950) 

Nash Equilibrium 
with Errors  

 
7 

 
14.067 

8.372E-11 
(61.281) 

5.502E-12 
(67.170) 

7.275E-09 
(51.515) 

9.231E-10 
(56.050) 

8.371E-12 
(66.265) 

7.909E-12 
(66.387) 

CRL Direction 
Learning 

 
2 

 
5.991 

0.474 
(1.493) 

0.267 
(2.641) 

0.408 
(1.793) 

0.180 
(3.430) 

0.245 
(2.813) 

0.386 
(1.904) 

RBR Direction 
Learning 

 
2 

 
5.991 

0.551 
(1.192) 

0.293 
(2.455) 

0.519 
(1.312) 

0.276 
(2.575) 

0.342 
(2.146) 

0.405 
(1.807) 

Numbers in parenthesis refer to the Wald statistics. 
 

 
TABLE 7 

REGRESSIONS TO EVALUATE THE AVERAGE FIT OF THE MODEL 
TREATMENT 0 TREATMENT 1 TREATMENT 2  

Proposers Receivers Proposers Receivers Proposers Receivers 

0δ  0.034 (0.027) 0.012 (0.019) -0.007 (0.022) -0.011 (0.014) 0.016 (0.018) -0.010 (0.020) 

1δ  0.987* (0.045) 1.014* (0.032) 0.973* (0.032) 0.995* (0.037) 1.021* (0.041) 0.982* (0.030) 
2ℜ  0.973 0.986 0.966 0.994 0.981 0.976 

F Statistic for 
{ }11,00:0 == δδH  2.924 1.917 3.506 1.305 2.417 2.670 

P-Value for  
F Test 0.093 0.171 0.066 0.258 0.125 0.108 

Numbers in parenthesis refer to standard deviations. * Indicates parameters significant at a 5% level. 
 

 
TABLE 8  

REGRESSIONS TO EVALUATE THE INDIVIDUAL FIT OF THE MODEL  
TREATMENT 0 TREATMENT 1 TREATMENT 2  

Proposers Receivers Proposers Receivers Proposers Receivers
 

5% 70.00% 86.67% 63.33% 90.00% 76.67% 80.00% 
 

% of Subjects for Whom { }11,00:0 == δδH  
is not Rejected at a Significance Level  

1% 86.67% 93.33% 83.33% 96.67% 90.00% 90.00% 
Average 0.766 0.837 0.753 0.879 0.815 0.822 

Min 0.448 0.613 0.410 0.642 0.545 0.577 
2ℜ  

in Individual Regressions 
Max 0.926 0.938 0.893 0.924 0.907 0.913 
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