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3D massive MIMO systems

 Spectral efficiency.

 Spatial diversity.
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DOA estimation algorithm

 Unitary Estimation of Signal Parameters via Rotational Invariance 

Techniques (ESPRIT).

 Why unitary ESPRIT?

- Other algorithms are either highly computationally intensive, 

such as Multiple Signal Classification  (MUSIC), or not accurate,

such as DFT-based approaches. 

- Compared to ESPRIT, unitary ESPRIT processes real-value 

data from start to end. 
21
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Unitary ESPRIT algorithm

 Array structure:

 This property leads to the rotational invariance of signal 

subspaces spanned by the data vectors associated with the 

spatially displaced subarrays [1].
[1] “Introduction to direction of arrival estimation” by Z.Chen ,  G.Gokeda, and Y.Yu

1st subarray

3rd subarray

2nd subarray

4th subarray
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Unitary ESPRIT algorithm steps

1. Received data: forward-backward averaging, then transform to

real-valued.

2. Estimate the signal subspace (SVD of the real-valued data 

matrix or EVD of the covariance matrix).

3. Using LS, solve the shift-invariance equations, which relate the

sub-space of the displaced sub-arrays. 

4. From the eigenvalues of the real-valued matrix obtained in step

3, extract  the DOA information. 
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No DOA estimation error: f𝑙= (𝑎 𝑣𝑙 ⊗ 𝑎 𝜇𝑙 )*

DOA estimation error: f𝑙= (𝑎 𝑣𝑙 + Δ𝑣𝑙 ⊗ 𝑎 𝜇𝑙 + Δ𝜇𝑙 )*
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 The optimal power allocation strategy the maximizes 𝑅 :max𝑅 subject to     𝑙=1𝑃 𝑝𝑙 ≤ 𝑝𝑡𝑜𝑡
 Thus, the expected TX power  for the 𝑙 𝑡ℎ path is

𝐸 𝑝𝑙 = 𝜂 − 1𝛾𝑙 1 + 𝑀2−112 𝐸 Δ𝜇𝑙 2 1 + 𝑁2−112 𝐸 Δ𝑣𝑙 2 +
𝑥 + = max (𝑥, 0) and 𝛾𝑙 = 𝑀𝑁 𝛼𝑙 2𝜎2

 If Δ𝑣𝑙 = 0 and Δ𝜇𝑙 = 0, the power allocation becomes the 

traditional water-filling  solution.
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