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» Motivation
» DOA estimation algorithm
» Channel model
» Contribution:
- MSE characterization.

- Rate analysis.
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3D massive MIMO systems

» Spectral efficiency.

» Spatial diversity.
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DOA estimation algorithm
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DOA estimation algorithm

» Unitary Estimation of Signal Parameters via Rotational Invariance
Techniques (ESPRIT).
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» Unitary Estimation of Signal Parameters via Rotational Invariance
Techniques (ESPRIT).

» Why unitary ESPRIT?
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DOA estimation algorithm

» Unitary Estimation of Signal Parameters via Rotational Invariance
Techniques (ESPRIT).

» Why unitary ESPRIT?
- Other algorithms are either highly computationally intensive,
such as Multiple Signal Classification (MUSIC), or not accurate,

such as DFT-based approaches.
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DOA estimation algorithm

» Unitary Estimation of Signal Parameters via Rotational Invariance
Techniques (ESPRIT).

» Why unitary ESPRIT?

- Other algorithms are either highly computationally intensive,
such as Multiple Signal Classification (MUSIC), or not accurate,
such as DFT-based approaches.

- Compared to ESPRIT, unitary ESPRIT processes real-value

data from start to end.
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Unitary ESPRIT algorithm

» Array structure:
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Unitary ESPRIT algorithm

» Array structure:

T~ 4t subarray

3d subarray —»

A\ 4

1st subarray

¥~ 2nd subarray
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Unitary ESPRIT algorithm

» Array structure:

T~ 4t subarray

3d subarray —»

A\ 4

1st subarray

¥~ 2nd subarray

» This property leads to the rotational invariance of signal
subspaces spanned by the data vectors associated with the
spatially displaced subarrays [1].

[1] “Introduction to direction of arrival estimation” by Z.Chen , G.Gokeda, and Y.Yu o5
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Unitary ESPRIT algorithm steps

1. Received data: forward-backward averaging, then transform to

real-valued.
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Unitary ESPRIT algorithm steps

1. Received data: forward-backward averaging, then transform to

real-valued.
2. Estimate the signal subspace (SVD of the real-valued data

matrix or EVD of the covariance matrix).
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Unitary ESPRIT algorithm steps

1. Received data: forward-backward averaging, then transform to
real-valued.

2. Estimate the signal subspace (SVD of the real-valued data

matrix or EVD of the covariance matrix).

3. Using LS, solve the shift-invariance equations, which relate the

sub-space of the displaced sub-arrays.
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Unitary ESPRIT algorithm steps

1. Received data: forward-backward averaging, then transform to

real-valued.

2. Estimate the signal subspace (SVD of the real-valued data
matrix or EVD of the covariance matrix).

3. Using LS, solve the shift-invariance equations, which relate the
sub-space of the displaced sub-arrays.

4. From the eigenvalues of the real-valued matrix obtained in step

3, extract the DOA information.
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Channel model

AC
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Multipath channel
H

i (®) ap gt — 1))

—)

M x 1 ULA

—

GS
(RX)

THE UNIVERSITY OF

KANSAS




Channel model

M x 1 ULA
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Multipath channel n
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Channel model

AC
(TX)
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h(t) =

Multipath channel
H

M x N URA

GS
(RX)

f=1 a;(t) a(uy) a(v)" g,(t — 7))
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Channel model

M x N URA
| Multipath channel
j )
(/?)% e
(RX)
h(t) = f=1 a,(t) a(y) a(w)" g,(t — 7;)
a(‘ul) = [1’ ej.ul ej(M_l)l’ll]T a(vl) e [1, ejvl oo ej(N_l)vl]T
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Channel model

M x N URA

Multipath channel

—> e
w1 |

GS
(TX) (RX)
h(t) = Y o) a(u) a()" gt — 1))
a(u) = [1, el ... ej(M—l)m]T a(v) = [1, vt ... ej(N—l)vl]T
2T 21T
U = TCOS 0, v = TSIH 0, cos ¢;
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Channel model

AC
(TX)

j—b

Multipath channel
H

M x N URA

GS
(RX)

» By vector mapping: a;= vec ( a(y;) a(v)" ) = a(v)) ® a(y;)
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Channel model

AC
(TX)

j—b

Multipath channel
H

M x N URA

GS
(RX)

» By vector mapping: a;= vec ( a(y;) a(v)" ) = a(v)) ® a(y;)

A =laqa,,..,ap]

€ CMNXP
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Channel model

M x N URA

Multipath channel

—> "
w1 |

(TX)

GS
(RX)

» By vector mapping: a;= vec ( a(y;) a(v)" ) = a(v)) ® a(y;)

A - [al, az, ...,ap] € CMNXP

:> H=ADG
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Channel model

M x N URA

Multipath channel

—> "
w1 |

(TX)

GS
(RX)

» By vector mapping: a;= vec ( a(y;) a(v)" ) = a(v)) ® a(y;)

A - [al, az, ...,ap] € CMNXP

:> H=ADG

A is the array response matrix (MN X P).
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Channel model

AC
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Multipath channel
H

M x N URA

GS
(RX)

» By vector mapping: a;= vec ( a(y;) a(v)" ) = a(v)) ® a(y;)

:> H=ADG

A is the array response matrix (MN X P).

A=laqa,,..,ap]

€ CMNXP

D is the complex channel gain matrix (diagonal P x P).
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Channel model

AC
(TX)

j—b

Multipath channel
H

M x N URA

GS
(RX)

» By vector mapping: a;= vec ( a(y;) a(v)" ) = a(v)) ® a(y;)

:> H=ADG

A is the array response matrix (MN X P).

A=laqa,,..,ap]

€ CMNXP

D is the complex channel gain matrix (diagonal P x P).

G is the time-delay matrix (P x LV).
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Channel model

M x N URA

Multipath channel

—> "
w1 |

(TX)

» The RX signal in matrix form:
Y=HS+W
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Channel model

M x N URA

Multipath channel

—> "
w1 |

(TX) GS

» The RX signal in matrix form:
Y=HS+W

» By extending to Q symbol periods, re-arranging the dimensions of
the channel matrix H to be MN XVQ ,and taking the DFT, we
have the uplink channel matrix :
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Channel model

M x N URA

Multipath channel

—> "
w1 |

(TX) GS

» The RX signal in matrix form:
Y=HS+W

» By extending to Q symbol periods, re-arranging the dimensions of
the channel matrix H to be MN XVQ ,and taking the DFT, we
have the uplink channel matrix :

[ —
H" = ADF,
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Channel model

M x N URA

Multipath channel

—> "
w1 |

(TX) e

» The RX signal in matrix form:
Y=HS+W

» By extending to Q symbol periods, re-arranging the dimensions of
the channel matrix H to be MN XVQ ,and taking the DFT, we
have the uplink channel matrix :

H"' =ADF,
Fy, is the phase shift matrix (P X LB, B <V)
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MSE characterization

» For the case of 2D DoA estimation based on a uniform planar array of
M x N elements, the mean-squared errors (MSE) of the spatial

frequencies u; and v, are given by:

51




MSE characterization

» For the case of 2D DoA estimation based on a uniform planar array of

M x N elements, the mean-squared errors (MSE) of the spatial

frequencies u; and v, are given by:

LB N —
o2 TePL ) lar@®I7

. . 21 —
Elevation MSE:  E{ (A )"} = o (L2 M—1)2 N
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MSE characterization

» For the case of 2D DoA estimation based on a uniform planar array of

M x N elements, the mean-squared errors (MSE) of the spatial

frequencies u; and v, are given by:

LB N —
o2 TePL ) lar@®I7

. . 21 —
Elevation MSE:  E{ (A )"} = o (L2 M—1)2 N

LB
SERD > sy I 100

Azimuth MSE:  E{(Av)™} = oomamr — e
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MSE characterization

» For the case of 2D DoA estimation based on a uniform planar array of

M x N elements, the mean-squared errors (MSE) of the spatial

frequencies u; and v, are given by:
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MSE characterization

» For the case of 2D DoA estimation based on a uniform planar array of

M x N elements, the mean-squared errors (MSE) of the spatial

frequencies u; and v, are given by:

LB N —
o2 TePL ) lar@®I7

. . 21 —
Elevation MSE:  E{ (A )"} = o (L2 M—1)2 N

LB
SERD > sy I 100

Azimuth MSE:  E{(Av)™} = oomamr — e

b(D) =lay,.., ap]T € CP*1 gr = DFT (g) € CLVx1 .
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Simulation results:

56

THE UNIVERSITY OF

KANSAS




Simulation results:

Unitary ESPRIT Based Elevation Angle Estimation
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Simulation results:

Unitary ESPRIT Based Elevation Angle Estimation
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Achievable rate analysis

» The achievable rate can written as:

MN |a;|? |a;T fl|2 )

g2

R= Yi_,log,(1+ )
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Achievable rate analysis

» The achievable rate can written as:

MN |a;|? |a;T fl|2 )

g2

R =Y log,(1+

)

:> No DOA estimation error: f;= (a(v;) @ a(y;))
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Achievable rate analysis

» The achievable rate can written as:

MN |a;|? |a;T fl|2 )

g2

R =Y log,(1+

)
:> No DOA estimation error: f;= (a(v;) @ a(y;))
:> DOA estimation error:  f;= (a(v; + Avy) Q a(u; + Auy))
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Power allocation

» The optimal power allocation strategy the maximizes R :
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Power allocation

» The optimal power allocation strategy the maximizes R :
maxR subjectto Y 119 < Prot
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Power allocation

» The optimal power allocation strategy the maximizes R :
maxR subjectto Y 119 < Prot

» Thus, the expected TX power for the [t path is
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Power allocation

» The optimal power allocation strategy the maximizes R :
maxR subjectto Y 119 < Prot

» Thus, the expected TX power for the [t path is

+

M“-1

Elp) = [n—+(1+ 252 El@w)?]) (1+%3 Elavp?))]
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Power allocation

» The optimal power allocation strategy the maximizes R :
maxR subjectto Y 119 < Prot

» Thus, the expected TX power for the [t path is

Elp] = [’7 _yll(l + M;_l E[(Auz)z]) (1 + % E[(Avl)z])r
[x]* = max (x,0) and y;= MNJI;XLIZ
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Power allocation

» The optimal power allocation strategy the maximizes R :
maxR subjectto Y 119 < Prot

» Thus, the expected TX power for the [t path is

+

Elpd = [n _yll(l T M;_l E[(au)?]) (1+ % El(Av)?))]
[x]* = max (x,0) and ;= MNJI;XLIZ

» It Av; = 0 and Ay; = 0, the power allocation becomes the

traditional water-filling solution.
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Results

—8— Traditional water-filling power allocation

—&— Proposed power allocation
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Future work

» Extend the results to MU-MIMO systems.
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Future work

» Extend the results to MU-MIMO systems.

» Joint angle-delay estimation (JADE) using tensor algebra.
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Future work

» Extend the results to MU-MIMO systems.
» Joint angle-delay estimation (JADE) using tensor algebra.

» JADE for multi-cell MIMO systems.
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