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SUMMARY Much attention has recently been paid to direction of ar-

rival (DOA) estimation using compressed sensing (CS) techniques, which

are sparse signal reconstruction methods. In our previous study, we de-

veloped a method for estimating the DOAs of multi-band signals that uses

CS processing and that is based on the assumption that incident signals

have the same complex amplitudes in all the bands. That method has a

higher probability of correct estimation than a single-band DOA estimation

method using CS. In this paper, we propose novel DOA estimation methods

for multi-band signals with frequency characteristics using the Khatri-Rao

product. First, we formulate a method that can estimate DOAs of multi-

band signals whose phases alone have frequency dependence. Second, we

extend the scheme in such a way that we can estimate DOAs of multi-band

signals whose amplitudes and phases both depend on frequency. Finally,

we evaluate the performance of the proposed methods through computer

simulations and reveal the improvement in estimation performance.

key words: DOA estimation, multi-band signal, compressed sensing,

Khatri-Rao product, sparse signal reconstruction

1. Introduction

There have been various kinds of studies on direction of

arrival (DOA) estimation [2]. These techniques have been

applied to a wide range of fields, such as radar systems,

positioning systems, and communication quality improve-

ment. For these techniques to advance, the estimation ac-

curacy must be improved. The beamformer and the Capon

[3] algorithms are fundamental estimation techniques. The

MUSIC algorithm [4] and ESPRIT [5] have been proposed

as high resolution estimation techniques. The EM [6], [7]

and SAGE [8] algorithms based on a maximum likelihood

method also have been used for DOA estimation as a su-

per resolution technique, although the computational load

is larger than for MUSIC and ESPRIT. Recently, much at-

tention has been paid to DOA estimation using compressed

sensing (CS) techniques [9]–[11], which have been used

mainly in the areas of signal processing, image compres-

sion, and wireless communication networks. A technique

to estimate DOAs of ultrawideband (UWB) signals is also

effective at improving the estimation accuracy [12].
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CS is a signal processing technique that allows the

reconstruction of sparse signals from a few measurements

[13]. A general DOA estimation method using CS tech-

niques is described below. First, we divide the space sur-

rounding receiving antennas in the angle domain, and we

call the divided partitions ‘bins’. Second, we set an origi-

nal signal as a complex amplitude of an incident wave from

each bin. If a wave arrives from a bin, the complex am-

plitude corresponding to the bin has a non-zero value. In

contrast, complex amplitudes in the other bins that do not

have incident waves are zero. Finally, we reconstruct the

original signals by applying a CS technique to the data ob-

tained from the receiving antennas. Each original signal has

the complex amplitude in each bin, and we can obtain DOAs

from the reconstructed original signals.

We have proposed DOA estimation of multi-band sig-

nals using a CS technique [14]. In the system, each source

transmits signals over multiple frequency bands, and the re-

ceiver side estimates the directions of the sources. The re-

sults show an improvement in the probability of correct es-

timation. However, we assumed that incident waves have

multiple bands whose complex amplitudes are the same. In

this paper, using the Khatri-Rao matrix product [15], [16]

we propose methods that enable DOA estimation of multi-

band signals with different complex amplitudes in different

bands. Because the Khatri-Rao product does not consist of

complex amplitudes but of powers, the frequency character-

istics of phases do not affect the estimation accuracy. We

also propose power adjustment in such a way that we can

avoid the frequency characteristics of power and amplitude.

Thus, we can estimate DOAs of multi-band signals with fre-

quency dependent complex amplitudes.

In a UWB system, if we have narrow-band filters or

a filter bank as will be shown later in this paper, we can

regard the system as a multi-band transmission one, and the

proposed technique can be applied. In future, a multi-band

signal system might be introduced for precise positioning.

The scheme proposed in this paper may play an important

role in that case.

In this paper, we assume that direct waves alone

are dominant, and that we can neglect refracted waves,

diffracted ones, and reflected ones. Thus, all the multi-band

components emitted from a signal source arrive from the

same direction.

This paper is organized as follows. In Sect. 2, we show

common DOA estimation using a CS technique that recon-
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Fig. 1 DOA model.

structs complex amplitudes of signals. We propose meth-

ods that reconstruct the powers of the signals in Sect. 3. In

Sect. 4, computer simulation results are presented. We give

some concluding remarks in Sect. 5.

2. DOA Estimation Using Compressed Sensing Tech-

nique

2.1 DOA Model

A DOA model of a wave impinging upon a receiving an-

tenna array is shown in Fig. 1. For easy understanding, we

first consider narrowband source signals in the far field im-

pinging upon a linear array with M omnidirectional antenna

elements. Here, N denotes the number of space partitions

(bins) in the angle domain.

We express an N-dimensional signal vector as x(s),

whose elements indicate the complex amplitude of an in-

cident wave from each direction. The value of an element

is zero if there is no incident wave in the corresponding bin.

For example, x(s) = [0 0 c1 0 . . . 0 c2 0 0 . . . 0]T , where c1

and c2 are complex amplitudes at the corresponding bins,

and [ · ]T denotes the transpose. The M-dimensional re-

ceived signal vector y(s) can be expressed as

y(s) = Ax(s) + n(s), (1)

where n(s) denotes the M-dimensional measurement noise

vector whose elements are additive white Gaussian noise

having power of σ2 and s is sampling time. A is an M × N

mode matrix, and the mth row and nth column element of A

is given by

a fl ,m,θn = e
− j 2π
λl

dm sin θn , (2)

where λl is the wavelength for the frequency fl. We deal

with multiple frequencies ( f1, f2, . . . ) in this paper, and we

introduced the subscript l for the wavelength and frquency.

Also, dm is the distance between the mth antenna and the

reference point, and θn denotes the direction angle corre-

sponding to the nth partitioned bin.

2.2 Compressed Sensing Technique

CS techniques are a framework for reconstructing high-

dimensional signals from a few measurements. Suppose that

a vector y ∈ CM is a linear transformation of an unknown

vector x ∈ CN ; the vector y can be expressed as

y = Ax, (3)

where A ∈ CM×N . This equation corresponds to (1) neglect-

ing the noise vector n(s).

CS techniques deal with the reconstruction of the orig-

inal signal vector x using the known vector y and the matrix

A. The necessary and sufficient condition to reconstruct the

vector x is rank(A) = N. If M < N, we can attain a least-

norm (l2-norm) solution using the Moore-Penrose pseudo

inverse, but the original vector x may not be reconstructed.

When the vector x is sparse, we can reconstruct the

sparsest solution by using the optimization problem:

x̂ = arg
x

min ‖y − Ax‖22 + µ‖x‖
p
p, (4)

where x̂ is the estimated original signal vector, µ is a non-

negative parameter, and ‖ · ‖p denotes the lp-norm defined

as

||z||p �

⎛

⎜

⎜

⎜

⎜

⎜

⎝

K
∑

k=1

|zk |
p

⎞

⎟

⎟

⎟

⎟

⎟

⎠

1/p

. (5)

In spectrum analysis, it has been shown that the p < 2 case

results in higher resolution spectral estimates than the p = 2

case [17].

In DOA estimation cases, we can assume that x is

sparse. This is because the number of arriving waves is

clearly much smaller than the number of partitions N shown

in Fig. 1. In order to reconstruct the original signal x(s), we

formulate the optimization problem from (1) and (4):

arg
x̂

min

⎧

⎪

⎪

⎨
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1

S
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⎪

⎬

⎪

⎪

⎭

, (6)

where S is the number of snapshots.

2.3 Half-Quadratic Regularization Method

In this paper, we use the half-quadratic regularization

method [11] to solve (6):

H
(

x̂(i)
)

x̂(i+1) =
1

S

⎛

⎜

⎜

⎜

⎜

⎜

⎝

S
∑

s=1

AHy(s)

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, (7)

where i denotes the iteration number, x̂(i) denotes the esti-

mated original signal vector at the ith iteration, and (·)H de-

notes the Hermitian matrix transpose. Here, we define the

following matrix:

H(z) � AHA + µΛ(z), (8)

where Λ(z) is defined as

Λ(z) � diag

{

p/2

(|zk |
2 + ǫ)1−p/2

}

, (9)
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Fig. 2 MUSIC spectra at three different frequencies.

where diag{·} is a diagonal matrix, and ǫ is a parameter used

to avoid the problem of non-differentiability in the lp-norm.

2.4 Application to Multi-Band Signals

Let us consider a difficult problem in a case of DOA esti-

mation of a single-band signal before dealing with a multi-

band signal. MUSIC spectra at three different frequencies

are shown in Fig. 2. The true angle of the incident sig-

nal is 0◦ and the frequencies are 300 MHz, 1300 MHz, and

4300 MHz. We assumed a uniform linear array (ULA) with

five antenna elements at the receiver. The antenna spac-

ing is 0.5 m, which corresponds to half the wavelength for

300 MHz. The SNR is fixed at 20 dB and the number of

snapshots for each estimation is 100. From the figure, we

can see that the higher the frequency is, the more peaks other

than the true DOA appear. It can be clearly seen that these

unnecessary peaks due to grating lobes negatively affect the

correct DOA estimation. The grating lobes are generated

when antenna spacing is larger than half the wavelength of

the frequency†. The positions of the grating lobes for the

true DOA θ are given by

θGL = sin−1
(

sin θ +
λl

d
q

)

(q = ±1,±2, · · · ). (10)

where d is the antenna spacing. This problem is solved by

the CS technique that will be stated later.

In this section, we assume that incident waves have

multiple bands and that the complex amplitudes of the bands

are the same for convenience.

Assuming that each incident wave has L bands, the re-

ceived signal vector in (1) can be expressed as

†Strictly speaking, when antenna spacing is half the wave-
length, we have a grating lobe. When DOA is 90◦, we have the
effect of a grating lobe at −90◦. They are the directions along the
array axis. This is, however, a rare case. In this paper, we consider
that a ULA with antenna spacing of half the wavelength does not
suffer from grating lobes.

Fig. 3 Concept of extracting narrow-band signal components from

multi-band signals.

Fig. 4 DOA estimation by using the CS technique for multi-band signals.
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, (11)

where y fl (s) is the received signal vector for the lth band.

Also, A fl and n fl (s) are the mode matrix and noise vector in

the lth frequency band, respectively. The concept of extract-

ing narrow band signal components from multi-band signals

is shown in Fig. 3. The received signals at each antenna pass

through narrow-band filters for each frequency and are di-

vided into L narrow-band signal components.

Here, we assume that the lowest band f1 meets the re-

quirement that grating lobes are not generated, i.e., d ≤ λ1/2

holds. In this case, DOA estimation of multi-band signals

using the CS technique on the basis of (11) is not suscepti-

ble to grating lobes.

The estimated relative power of multi-band signals as

a function of angle for the case of ten uncorrelated inci-

dent waves is shown in Fig. 4. We assumed that each in-

cident wave has five bands and that the center frequencies

are f1 = 300 MHz, f2 = 1300 MHz, f3 = 2300 MHz,

f4 = 3300 MHz, and f5 = 4300 MHz. The other simula-

tion parameters are the same as those in the case of Fig. 2.

We uniformly divided the space surrounding the receiving

antennas into 121 partitions in the angle domain in the posi-
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tive region of the z-axis in Fig. 1; that is, the angle step is 1◦.

The angle step can be smaller than 1◦, and we can acquire

better angle resolution. However, if the angle step is ex-

tremely small, a huge computational load is needed because

the dimension of the original signal vector x becomes very

large. In real propagation environments, we will encounter

the limit of the angle step because of the effect of noise and

angular spread of signal sources. Detailed consideration of

the angle step is one of our future works. The number of

snapshots in each frequency band is 20; therefore, the total

number is 100. The incident angles of the waves are −30◦,

−25◦, −20◦, −15◦, −10◦, −5◦, 0◦, 2◦, 4◦, and 6◦; the solid

black lines indicate the true incident angles as a reference

in Fig. 4. The SNR was fixed at 30 dB. It is seen that this

method can estimate DOAs correctly, even when the num-

ber of waves exceeds the number of array elements.

3. Applications to Multi-Band Signals with Frequency

Characteristics

3.1 Case Where Phases Alone Depend on Frequency

In Sect. 2, we assumed that incident waves have multiple

bands whose complex amplitudes are the same. To deal

with frequency dependent multi-band signals, we introduce

Khatri-Rao processing. In this subsection, we propose a

DOA estimation method that can be used for the case where

phases alone depend on frequency. It should be noted that

amplitudes and powers are independent of frequency. We

assume that the incident signals are uncorrelated in any

bands. Then, the correlation matrix of the incident signals
(

y f1 (s)T , y f2 (s)T , · · · , y fL
(s)T
)T

is expressed as

R̄ =

⎛
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⎜

⎜
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, (12)

where R fl , fl is the correlation matrix in the frequency band

of fl and is defined as

R fl , fl = E[y fl (s)yH
fl

(s)]. (13)

As stated above, we assume that powers of the signals

in all the bands are the same; then the powers in the bands

for the signal impinging from θn can be expressed as

P f1 ,θn = P f2 ,θn = · · · = P fL ,θn � Pθn for any n, (14)

where P fl ,θn = E[x fl ,θn (s)x∗
fl ,θn

(s)] and (·)∗ denotes the com-

plex conjugate. Here, we execute vector conversion for (12)

and express it as:
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=
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,

(15)

where R
(m)

fl , fl
denotes the mth column of R fl , fl . Moreover, we

delete trivial zero elements corresponding to the non-block

diagonal matrix elements in (12), and we get

re =

(

R
(1)

f1, f1

T
, · · · ,R

(M)

f1, f1

T
,R

(1)

f2, f2

T
, · · · , · · · ,R

(M)

fL, fL

T
)T

. (16)

Note that re corresponds to the left-hand side of (1).

Now, we divide vec
(

R̄
)

into a signal part and a noise

part:

vec
(

R̄
)

= vec
(

BSBH
)

+ vec
(

R̄N

)

= (B∗ ⊙ B) pe + vec
(

R̄N

)

, (17)

where B is the ML×N mode matrix arranged vertically from

A f1 to A fL
, as given by

B =
(

A f1
T ,A f2

T , · · · ,A fL

T
)T
. (18)

In these expressions, S is the correlation matrix of x, R̄N

is the correlation matrix of the noise vector, and pe =

(Pθ1 , Pθ2 , · · · , PθN )T . Furthermore, ⊙ is the operator of the

Khatri-Rao product. Here, we delete trivial zero elements in

the right-hand side of (17); then re is given by

re =
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pe + ne

= Aepe + ne, (19)

where ne is the vector obtained by deleting the elements in

vec(Rn) that correspond to the trivial zero elements in (12).

Also, Ā
(m)

fl ,θn
is the mth column vector of the matrix Ā fl ,θn de-

fined as

Ā fl ,θn = a fl ,θn a fl ,θn
H . (20)

Here, a fl ,θn is the M-dimensional mode vector, and each ele-

ment is defined by (2). From the above, it is seen that we can

estimate the DOA of multi-band signals using the CS tech-

nique because re is the linear transform and pe is the sparse

vector representing the powers of impinging waves.

3.2 Generally Frequency Dependent Case

In real environments, received powers in the bands are dif-

ferent because transmitter outputs and/or propagation paths

in general have frequency characteristics. Since we assumed

that the powers of the signals in all the bands are the same,
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as given by (14), we cannot estimate DOAs correctly using

the scheme proposed in the previous subsection. In this sub-

section, we extend the technique in such a way that it can

estimate DOAs of signals having different complex ampli-

tudes in the bands. The received power at the mth antenna

in the fl band can be expressed as

Q fl ,m = E[|y fl ,m(s)|2]

= |x fl ,θ1 |
2 + · · · + |x fl ,θN |

2 + |n fl ,m|
2. (21)

We can observe the received signal y fl ,m(s) in each band

using a narrow band filter, as shown in Fig. 3. If incident

waves have frequency characteristics, the received powers

vary from band to band. We can adjust the received signals

in such a way that they have the same power in all the bands.

The adjusted received signal vector in the fl band is given by

y′fl (s) =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1
√

Q fl ,1

y fl ,1(s), · · · ,
1

√
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⎞

⎟

⎟

⎟

⎟

⎟

⎠

T

. (22)

This has the same power in all the bands if we ignore

the noise power, and it is possible to use the technique pre-

sented in the previous subsection. It is seen that (19) can be

expressed as

r′e = Aep′e + n′e, (23)

where p′e is the vector of the adjusted incident powers, and

r′e and n′e correspond to re and ne, respectively. Then, we

can apply the CS technique to (23) in the same manner as to

(19).

4. Evaluation by Computer Simulation

4.1 Simulation Conditions

We carried out computer simulations to evaluate the perfor-

mance of the schemes proposed in the previous section. The

parameters of the simulations are listed in Table 1. The cen-

ter frequencies of the bands are f1 = 3.0 GHz, f2 = 4.5 GHz,

f3 = 6.0 GHz, f4 = 7.5 GHz, and f5 = 9.0 GHz, and the an-

tenna spacing is 0.05 m, half the wavelength for 3.0 GHz.

If the number of bands is increased, the performance can

be improved because of the dimension extension. How-

ever, when the frequency separation between bands is very

Table 1 Simulation parameters.

Basic parameters

Antenna array ULA

Number of antenna elements 5

Antenna separation [m] 0.05

DOA Uniform distribution from −90◦ to 90◦

Number of divisions of angle 181

Frequency bands [GHz] 3.0, 4.5, 6.0, 7.5, 9.0

Number of trials 1000

Parameters for compressed sensing

µ 10.0

ǫ, p 1.0 × 10−4

small, the performance improvement may be reduced be-

cause phase differences between antenna elements for sig-

nals in those bands are almost the same. Detailed analysis

about this is our future work.

We determined the transmit signals x(s) using M-

sequence random numbers. Different intervals in the M-

sequence random numbers were used for signals arriving

from different angles, and they were uncorrelated. The

number of divisions of the angle, that is, the number of

bins is 181. We compared the performance of the pro-

posed methods with that of the MUSIC algorithm and that

of the CS technique for single-band signals. The center fre-

quency for those methods was 3.0 GHz. Parameters µ, p,

and ǫ for the CS techniques were empirically determined as

µ = 10.0, p, ǫ = 1.0 × 10−4.

We calculated probabilities of correct estimation of

DOAs and root mean square errors (RMSEs). Correct es-

timation of DOA was defined as the case where the partition

bins of the true directions and the estimated directions are

completely the same. The RMSE in the simulations was de-

fined as

RMSE =
1

K

K
∑

k=1

√

√

√

1

T

T
∑

t=1

∣

∣

∣

∣
θ̂′

k,t
− θk

′
∣

∣

∣

∣
, (24)

where K is the number of arriving waves, T denotes the

number of trials, θ̂′
k,t

is the estimated DOA of the kth wave

in the tth trial, and θk
′ denotes the true DOA of the kth wave.

4.2 Results and Discussion

First, we consider the case where the incident signals have

the same power in all the bands. The phases alone are uni-

formly distributed.

DOA estimation results for the case of two incident

waves as a function of SNR are shown in Fig. 5. The an-

gles of incident waves are randomly distributed in the range

from −90◦ to 90◦. In the figure, the “Proposed CS” curve

indicates the results of the proposed method using the CS

technique with the Khatri-Rao operation applied to multi-

band signals. Since the two signals have the same power

in all the bands, we did not adjust the powers. We esti-

mated the DOAs using (19) in Sect. 3.1. “Multi-band CS”

and “Single-band CS” represent the results of the conven-

tional method for multi-band signals given by (11) and a

single-band signal given by (1) without the Khatri-Rao op-

eration, respectively. Also, “MUSIC” indicates the results

of the conventional MUSIC method for a single-band sig-

nal. As stated previously, the conventional multi-band CS

method cannot deal with signals whose phases are different

in the bands. As for the method, we evaluated the perfor-

mance under the condition that phases are the same in all

the bands. The number of snapshots in each frequency band

of “Proposed CS” and “Multi-band CS” is 20, and that of

“Single-band CS” and “MUSIC” is 100 to make the total

numbers of snapshots equal.

The proposed method had superior results to the con-
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Fig. 5 DOA estimation results for two incident waves with equal power.

SNR is the same in all the bands.

ventional methods. In particular, it achieved the lowest

RMSE in the range from 6 dB to 30 dB. The reason for its

better performance than “Multi-band CS” is that the dimen-

sion of re for the proposed method using the Khatri-Rao op-

eration (M2L) is greater than that of the received signal vec-

tor for “Multi-band CS” (ML). The RMSE performance of

the proposed method is, however, worse than “Single-band

CS” and “MUSIC” in the lower SNR region. “Single-band

CS” and “MUSIC” used 100 snapshots. On the other hand,

the proposed method used 20 snapshots at each band. It is

considered that the average of (13) using only 20 snapshots

was not precise in the lower SNR region, and that the RMSE

performance was worse in this region.

The probabilities of correct estimation as a function of

the number of arriving waves with equal power are shown in

Fig. 6. The number of waves ranged from one to ten, and the

incident angles are randomly distributed from −90◦ to 90◦.

This is the same as in Fig. 5. The SNR is fixed at 20 dB.

In this case, the signals also have the same power in all the

Fig. 6 Probabilities of correct estimation vs. number of arriving waves

with equal powers. SNR is 20 dB in all the bands.

Fig. 7 Spectra obtained using the proposed methods for two incident sig-

nals with the same frequency characteristics (θ1
′ = 0◦, θ2

′ = 30◦).

bands. The results for the proposed method and “Multi-band

CS” are shown for cases where the numbers of snapshots S

in each band are 20, 100, and 200. The results for “Multi-

band CS (S = 100) and “Multi-band CS (S = 200) are al-

most the same. It is seen that these methods can deal with

cases where the number of waves exceeds the number of ar-

ray elements. On the other hand, the probability of correct

estimation by the proposed method is clearly smaller than

that of “Multi-band CS” only when S = 20.

The estimated relative power when two incident waves

have frequency characteristics is shown in Fig. 7. The an-

gles of the incident waves are 0◦ and 30◦, and we as-

sumed that the frequency characteristics of both waves

are the same. The SNRs in the bands 3.0 GHz, 4.5 GHz,

6.0 GHz, 7.5 GHz, and 9.0 GHz are 35.4 dB, 31.9 dB,

29.4 dB, 27.4 dB, and 25.9 dB, respectively. These fre-

quency characteristics are determined by the rule of dis-

tance attenuation. We set the number of snapshots in each

frequency band to 100. In this figure, “Proposed CS (ad-

justed)” and “Proposed CS (unadjusted)” indicate methods

using (23) and (19), respectively. We can see that the re-
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Fig. 8 Probabilities of correct estimation of DOAs for two signals with

frequency characteristics.

sults of “Proposed CS (adjusted)” are perfectly correct. By

contrast, “Proposed CS (unadjusted)” results have many in-

correct peaks.

The probabilities of correct estimation of DOAs when

two incident waves have the same power and same fre-

quency characteristics are shown in Fig. 8. The abscissa

indicates the average SNR over all the bands. The SNRs

for the bands 3.0 GHz, 4.5 GHz, 6.0 GHz, 7.5 GHz, and

9.0 GHz are 5.4 dB, 1.9 dB, −0.6 dB, −2.6 dB, and −4.1 dB

around the average SNR, respectively. The angles of the

incident waves are uniformly distributed in the range from

−90◦ to 90◦. We can see that the adjusted proposed method

shows significant superiority over the unadjusted one.

5. Conclusion

In this paper, we proposed methods of DOA estimation

of frequency dependent multi-band signals using CS tech-

niques. Evaluation by computer simulation showed that, al-

though the proposed methods require more snapshots than

conventional DOA estimation methods without the Khatri-

Rao operation, the probability of correct estimation is much

higher because of the extension of the dimension. In addi-

tion, the proposed method with power adjustment is not sus-

ceptible to frequency characteristics and it achieves higher

estimation accuracy.

The relation between the performance of the proposed

methods and the number of snapshots has not been fully

clarified yet. This consideration is future work.
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