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Abstract This paper proposes a method for estimat-
ing the direction of arrival (DOA) of multiple source
signals for an underdetermined situation, where the
number of sources N exceeds the number of sensors
M (M < N). Some DOA estimation methods have al-
ready been proposed for underdetermined cases. How-
ever, since most of them restrict their microphone array
arrangements, their DOA estimation ability is limited
to a 2-dimensional plane. To deal with an underde-
termined case where sources are distributed arbitrar-
ily, we propose a method that can employ a 2- or
3-dimensional sensor array. Our new method employs
the source sparseness assumption to handle an un-
derdetermined case. Our formulation with the sen-
sor coordinate vectors allows us to employ arbitrarily
arranged sensors easily. We obtained promising exper-
imental results for 2-dimensionally distributed sensors
and sources 3 × 4, 3 × 5 (#sensors × #speech sources),
and for 3-dimensional case with 4 × 5 in a room (rever-
beration time (RT) of 120 ms). We also investigate the
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1 Introduction

Direction of arrival (DOA) estimation is an important
fundamental technique in the array signal processing
field [1–3]. The DOA estimation of speech, which is
the focus of this paper, has many applications including
teleconference system and robotics applications. Such
applications usually have to deal with situations where
the active sources outnumber the sensors. In this paper,
we propose a new method for estimating the DOAs of
sources under such circumstances.

The most widely used DOA estimation methods are
subspace based methods, e.g., the MUSIC (MUltiple
SIgnal Classification) algorithm [4], and its variants.
Because these methods need a noise subspace, they
require more sensors than sources M ≥ N + 1, that is
they can be applied only when M > N. By contrast,
DOA estimation method has been proposed that is
based on independent component analysis (ICA) [5–
7]. This method estimates DOAs directly from the
separation matrix estimated with ICA by utilizing the
fact that the separation matrix is related to the source
mixing process. Because this method is based on ICA, it
can be employed when M ≥ N. However, it still cannot
be used for an underdetermined case where M < N.

In order to cope with underdetermined cases where
M < N, we propose a new DOA estimation method
that assumes source sparseness. A sparse source has a
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sharp probability density function: the signal is close
to zero at most of the time-frequency slots, and has
large values on rare occasions (see e.g., [8, 9]). If the
signals are assumed to be sufficiently sparse in the time-
frequency domain, we can suppose that only one source
is dominant in each time-frequency slot. Therefore, the
phase difference between sensor observations at each
time-frequency slot holds the geometric information
of the dominant source at each time-frequency slot.
Our method uses this geometric information at each
time-frequency slot and clusters the information. As
each cluster corresponds to an individual source, we
can estimate the DOAs by using the cluster centroids
and given sensor location information. We have already
proposed a sparseness based blind source separation
algorithm with observation vector clustering [10, 11].
In this paper, we show that we can also estimate the
DOAs of more sources than sensors by leveraging the
observation vector clustering results.

Some DOA estimation methods for underdeter-
mined cases have already been proposed for narrow-
band signals [12–14], and wideband signals especially
for speech signals [15–19]. The method described in
[15] is based on source sparseness. It clusters the phase
differences of only two sensor observations, and then
estimates the DOA. Shamsunder and Giannakis [16]
estimates the DOA from the cumulants of observations
by assuming the non-gaussianity of the sources, and
utilizing a linear sensor array. The authors of [17] also
proposed a sparseness method with Laplacian mixture
models for a two-sensor setup. These methods limit
the DOA estimation ability to a 2-dimensional half-
plane. The authors of [18] and [19] utilized a triangular
sensor array and clustered the phase differences of
each sensor pair by assuming source sparseness. Their
method expands the DOA estimation ability to an
entire 2-dimensional plane. However, their approach
still cannot handle 3-dimensionally distributed sources.
Moreover, their formulation assumed a regular-triangle
sensor array. They have to re-formulate their method to
use an array with another arrangement.

On the other hand, as our formulation utilized the
sensor coordinate vectors, our newly proposed method
is more general. That is, we do not need to re-
formulate our method when employing an arbitrary
sensor arrangement including a 3-dimensional arrange-
ment. Our method can easily employ a 3-dimensional
sensor array, and therefore, estimate the DOAs of 3-
dimensionally distributed sources.

In this paper, we show successful results with our
new method in estimating the DOAs for M × N of
3 × 4, 3 × 5 (2-dimensional arrangement) and 4 × 5 (3-
dimensional). Neither the MUSIC algorithm nor the

ICA based method can be used in such situations.
Experimental results also show another advantage of
our method compared with the MUSIC algorithm even
when there are fewer sources than sensors. When
sources are positioned close together, the MUSIC al-
gorithm fails to estimate their DOAs, whereas the pro-
posed method still succeeds. In addition to the results
reported in [20], we also show the DOA estimation
result with our proposed method under several rever-
berant conditions [21].

The organization of this paper is as follows. Section 2
describes the problem of DOA estimation and defines
DOA. In Section 3, we explain our novel DOA esti-
mation method. Section 4 reports some experimental
results obtained with non-linearly arranged sensors in
underdetermined scenarios. Even when the sources and
sensors are distributed 2- or 3- dimensionally, we can
estimate DOAs precisely for each scenario under rever-
berant (RT = 120 ms) conditions. We also investigated
the performance under different reverberation condi-
tions. The final section concludes this paper.

2 Problem Description

2.1 Observation Model

Suppose that sources s1, . . . , sN are convolutively
mixed and observed at M sensors

x j(t) = ∑N
i=1

∑
l h ji(l) si(t − l), j=1, . . . , M, (1)

where h ji(l) represents the impulse response from
source i to sensor j. In this paper, we particularly
consider a situation where the number of sources N
can exceed the number of sensors M (M < N). Here
we assume that the number of sources N is given. Our
task is to estimate the DOAs of the N sources from
the sensor observations. We will formulate the DOA
estimation problem in Section 2.2.

As with most DOA estimation techniques, this paper
employs a time-frequency domain approach. Using a
short-time Fourier transform (STFT), the convolutive
mixtures (1) can be converted to instantaneous mix-
tures at each frequency f :

x j( f, τ ) = ∑N
i=1 h ji( f )si( f, τ ), (2)

or in vector notation,

x( f, τ ) = ∑N
i=1 hi( f )si( f, τ ), (3)

where h ji( f ) is the frequency response from source i
to sensor j, si( f, τ ) is the STFT of a source signal si,
and τ is a time index. We call x = [x1, . . . , xM]T an
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Figure 1 Example spectra of a speech sources and b observations
(N = 3, M = 2).

observation vector and hi = [h1i, . . . ,hMi]T is a vector
of the frequency responses from source si to all sensors.

In the time-frequency domain, the sparseness of a
source signal, which is widely used to solve the underde-
termined problem [8–11, 15, 18], becomes prominent, if
the source is colored and non-stationary such as speech.
When the signals are sufficiently sparse, we can assume
that the sources rarely overlap at each time-frequency
point, and Eq. 3 can be approximated as

x( f, τ ) ≈ hk( f )sk( f, τ ), ∃k ∈ {1, · · · , N}, (4)

where sk( f, τ ) is the dominant source at the time-
frequency point ( f, τ ). For instance this is true for
speech signals in the time-frequency domain [8, 9, 22].
Figure 1a and b show example spectra of three speech
sources and observations, respectively, in which we can
see their temporal/frequency sparseness.

2.2 DOAs of Source Signals

Let us define the DOAs of sources in detail. Let qi be
3-dimensional vectors of a unit-norm representing the
direction of source si (Fig. 2a). Here, the location of
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Figure 2 a Far-field model, b definition of DOA.

sensor j is given by a 3-dimensional vector d j. The task
in this paper is to estimate the DOA qi of sources from
sensor observations x( f, τ ) and given sensor locations
d j. Using the azimuth θi and elevation φi (Fig. 2b), the
DOA qi can be written as

qi = [cos θi cos φi, sin θi cos φi, sin φi]T . (5)

In order to estimate the DOAs of sources, we assume
an anechoic model, that is, the frequency response
h ji( f ) is expressed solely by the time-delay τ ji = dT

j qi/c
with respect to the origin (see Fig. 2a):

h ji( f ) ≈ exp [j2π f c−1dT
j qi], (6)

where c is the propagation velocity of the signals. That
is, we assume that the frequency response h ji( f ) de-
pends only on the path difference dT

j qi from a source
i to origin O and from a source i to a sensor j (Fig. 2a).
When we consider the two sensors j and J, we obtain
the following expressions:

h ji( f )
hJi( f )

≈ exp [j2π f c−1(d j − dJ)
Tqi] (7)

= exp [j2π f c−1||d j − dJ|| cos θ
jJ

i ]. (8)

These two equations show that we can express the
DOA in two ways: the DOA qi with respect to a
coordinate system, and the angle cos θ

jJ
i with respect to

a sensor pair j-J, (see Fig. 2a).

3 Proposed Method

This section describes our proposed DOA estimation
method, which is applicable to an underdetermined
case. Figure 3 shows the flow of our method, which uti-
lizes two assumptions, namely a sparseness assumption
(4) and an anechoic assumption (6).

When these two assumptions hold, the observation
vector x( f, τ ) is the product of an unknown scalar sk

and the frequency response hk( f ) (see Eq. 4), where
sk is the dominant source at ( f, τ ), and hk( f ) is the
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Figure 3 Flow of proposed method.

corresponding frequency response that includes the
DOA information qk (see Eq. 6). Based on this fact, our
method first normalizes the observation vectors x( f, τ )

so that they are not influenced by a source sk (Fig. 3a).
In addition, by eliminating the frequency dependence
in the frequency response hk( f ) Eq. 6, the geometric
information qk of the source k becomes more promi-
nent. For such normalizations, we employ the method
utilized in our previous blind sparse source separation
approach [10, 11].

After being normalized, the observation vectors of
all the time-frequency slots ( f, τ ) can be clustered
based on the source geometry qk. Thus, the second step
is the clustering of the normalized observation vectors
(Fig. 3b).

Each cluster corresponds to an individual source,
and each cluster centroid ck contains the DOA infor-
mation qk as shown in Section 3.2. Therefore, in the
final step (Fig. 3c), we estimate the DOAs by using the
cluster centroids ck and given sensor locations d j.

We explain each step in detail in the following
subsections.

3.1 Normalization

In this step, we normalize all observation vectors x( f, τ )

so that they depend only on the source geometry in-
formation. Here we utilize the same observation vector
normalization method as in [10, 11], and recall the
normalization equation:

x̄ j( f, τ ) ← |x j( f, τ )| exp

[

j
arg[x j( f, τ )/xJ( f, τ )]

α j f

]

(9)

where α j is a positive constant. We utilize α j = α =
4c−1dmax in this paper (where dmax is the maximum
distance between an arbitrary selected reference sen-
sor J and a sensor ∀ j ∈ {1, . . . , M}). The rationale for
the frequency normalization with α j = 4c−1dmax can be
found in the Appendix of [11].

With Eq. 9, the inconstancy of the scalar sk( f, τ )

found in Eq. 4 is normalized by taking the ra-
tio of two observation components x j( f, τ )/xJ( f, τ ) ≈
h jk( f, τ )/hJk( f, τ ). Note that h jk/hJk is modeled as

Eq. 7 and includes geometry information qk. The fre-
quency normalization is realized in Eq. 9 by dividing
the phase by α j f .

We also employ unit-norm normalization to handle
the vectors on a unit-hypersphere,

x̄( f, τ ) ← x̄( f, τ ) / ||x̄( f, τ )|| (10)

for x̄( f, τ ) = [x̄1( f, τ ), . . . , x̄M( f, τ )]T .

3.2 Clustering

If the sparseness Eq. 4 and anechoic Eq. 6 assumptions
hold, each component of the normalized observation
vector is expressed as

x̄ j( f, τ )= 1√
M

exp

[

j
2πc−1

α
(d j − dJ)

Tqk

]

(11)

= 1√
M

exp

[

j
2πc−1

α
||d j − dJ|| cos θ

jJ
k

]

, (12)

by using Eqs. 4, 6, 9, and 10. We can see that the
normalized components x̄ j( f, τ ) keep the geometric
information of a source qk, which is dominant at ( f, τ ).
As a result, the normalized vectors x̄( f, τ ) form clusters
based on the source geometry.

Therefore, in the clustering step, normalized vectors
x̄( f, τ ) are clustered into N clusters C1, . . . , CN . Note
that the normalized vectors x̄( f, τ ) are M-dimensional
complex vectors, and therefore the clustering is carried
out in an M-dimensional space. The clustering criterion
is to minimize the total sum J of the squared distances
between cluster members and their centroid:

J =
M∑

k=1

Jk, Jk =
∑

x̄( f,τ )∈Ck

||x̄( f, τ ) − ck||2. (13)

After setting appropriate initial centroids ck (k = 1,

· · · , N) (see Appendix), this J can be minimized by
the following iterative updates:

Ck = {
x̄( f, τ ) | k= argmink′ ||x̄( f, τ ) − ck′ ||2} (14)

ck←E[x̄( f, τ )]x̄∈Ck, ck ← ck/||ck||, (15)

where E[·]x̄∈Ck is a mean operator for the members of a
cluster Ck. That is the cluster members are determined
by Eq. 14 and their centroid is calculated by Eq. 15.
This minimization can be performed efficiently with the
k-means clustering algorithm [23] with a given source
number N.

3.3 DOA Estimation

Because each cluster corresponds to an individual
source, the centroid ck represents the geometry of the
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source sk. From Eqs. 11, 12 and 15, the j-th component
of ck is expressed as

{ck} j ∝ E[x̄ j( f, τ )]x̄∈Ck

= 1√
M

exp

[

j
2πc−1

α
(d j − dJ)

T q̃k

]

(16)

= 1√
M

exp

[

j
2πc−1

α
||d j − dJ|| cos θ̃

jJ
k

]

(17)

where q̃k and θ̃
jJ

k are the estimated DOAs. We can see
that the argument of the centroid ck includes the DOA
information qk and θ

jJ
k of a source sk, e.g.,:

arg
[{ck} j

] = 2πc−1

α
(d j − dJ)

Tqk. (18)

To estimate the 3-dimensional DOAs of sources
qk, which is our goal, our proposed DOA estima-
tion method combines information from several sensor
pairs. Because our observation vector normalization is
based on sensor J, we can obtain information from
M − 1 sensor pairs including sensor J. By using all the
components of a centroid ck and the relationship (18),
such M − 1 sensor pair information is combined as

rk = 2πc−1

α
Dqk (19)

where

rk = [arg[{ck}1], · · · , arg[{ck}M]]T ,

D = [d1 − dJ, · · · , dM − dJ]T .

As there is no exact solution for Eq. 19, in practice we
obtain the 3-dimensional DOA qk in the least-square
sense [24],

qk = α

2πc−1
D+rk. (20)

where .+ denotes the Moore-Penrose pseudo-inverse.
As the calculation of Eq. 20 tends to include some
errors, we normalize the norm of qk

qk ← qk

||qk|| (21)

so that its norm is unity. If rank(D) ≥ 3, we can esti-
mate the 3-dimensional DOA.

Using the j-th component of the centroid ck, we can
also estimate the DOA θ

jJ
k from Eq. 17 if needed:

cos θ̃
jJ

k = α

2πc−1

arg
[{ck} j

]

||d j − dJ|| . (22)

The previous methods with two sensors (e.g., [15])
can estimate only such a 1-dimensional DOA θ

jJ
k with

regard to a sensor pair.

Note that if we use a cubic sensor array sys-
tem [d1, d2, d3, d4] = γ [(0, 0, 0)T , (1, 0, 0)T , (0, 1, 0)T ,

(0, 0, 1)T ] (γ : a constant) and J = 1, then arg[{ck}1] ≈
0 and qk = α

2πc−1 r′
k, where r′

k= [arg[{ck}2], arg[{ck}3],
arg[{ck}4]]T . That is, we do not need D+, and DOA qk

can be obtained simply from r′
k. This should be useful

as regards a practical implementation.
In this paper, we adopt normalization by Eqs. 9 and

10. This is because we wish to utilize the same approach
to normalization as in our previous separation method
[10, 11]. That is, in Eq. 9, we maintain the amplitudes
at all sensors, although this is not needed for DOA
estimation. This information may be useful when we
perform source localization, i.e., estimate the positions
of sources, using a near-field model. However, for the
DOA estimation, we may neglect the amplitude infor-
mation of the observation vectors and employ another
normalization technique, e.g.,

x̄ j( f, τ ) ← arg[x j( f, τ )/xJ( f, τ )]
α j f

. (23)

The DOA can be estimated by Eqs. 20 and 21, where
rk = [{ck}1, · · · , {ck}M]T . In this case, the clustering is
slightly simplified: Eq. 10 is an M-dimensional complex
vector, on the other hand, Eq. 23 is an M-dimensional
real vector.

4 Experiments

4.1 Experimental Conditions

We performed experiments in a reverberant condition.
Observations were made by following Eq. 1 with the
impulse responses h ji(l) measured in a room (Fig. 4)
and 5-s English speech sources si(t) sampled at 8 kHz.
The sensor setups are shown in Fig. 4. In order to avoid
the spatial aliasing problem, we utilized a sufficiently
small sensor spacing (4 cm). The reverberation time of
the room was RT = 120 ms. The frame size L for STFT
was 512, and the frame shift was 256 (= L/2).

We utilized the k-means algorithm for the clustering.
The number of sources N was given in this paper. The
k-means algorithm is sensitive to the initial values of the
centroids especially when N and M become large. How
to design the initial values is discussed in the Appendix.

We estimated the DOA qk with Eq. 20, and evalu-
ated them with the azimuth θk and the elevation φk (see
Eq. 5). The true DOA labels are shown in the tables
with the label “true”. We investigated eight speaker
combinations and averaged the results.
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Figure 4 Experimental setups with non-linear sensor arrays. a
Room setup, b Sensor coordinates used in Eq. 19 and initial
centroid calculations (see Appendix).

4.2 Experimental Results

Table 1 shows the results for four sources with
three sensors (M = 3, N = 4), that were arranged non-
linearly (Fig. 4 [Setup 1]). Here, all source heights were
the same as the height of the sensor array. Because
all elevations φk are zero, only the results of azimuth
θk are shown in Table 1. We can see that the DOAs
estimated with our proposed method were very close
to the true values. Even when we used only 1-s data
for the DOA estimation, we still obtained reasonable
results as shown in Table 1. Thanks to the frequency
normalization, we can handle the all the frequency
components together. This allows us to utilize enough
data samples and obtain good performance even if we

Table 1 Experimental results for M = 3, N = 4 (Setup 1).

Source s1 s2 s3 s4

True 24◦ 117◦ 217◦ 311◦
Proposed (5 sec.) 25◦ 114◦ 214◦ 313◦
Proposed (1 sec.) 23◦ 112◦ 212◦ 318◦

Table 2 Experimental results for M = 3, N = 5 (Setup 1).

Source s1 s2 s3 s4 s5

True 24◦ 117◦ 176◦ 217◦ 311◦
Proposed (5 sec.) 23◦ 112◦ 175◦ 218◦ 314◦

use short observations. This applicability to short data
is important e.g., for on-line implementations.

In a more complicated situation where M = 3 and
N = 5, the proposed method estimated the DOAs very
accurately as shown in Table 2.

We also applied our method to a 3-dimensional
sensor arrangement (Fig. 4 [Setup 2]). To avoid the
spatial aliasing problem, we utilized frequency bins
up to 3100 Hz in this setup. In this case, the sources
had different heights, and therefore, we estimated both
azimuths θk and elevations φk. Table 3 shows results
for five sources with four sensors (M = 4, N = 5). As
regards azimuths θk, although the estimation error was
sometimes greater than the result for M = 3, N = 4
(Table 1), we still obtained reasonable results for such
a complicated case. The elevation values φk were also
very close to the true values. We can say that our pro-
posed method can be applied to such a 3-dimensional
DOA estimation and that it gives us fairly precise
DOAs with a reverberation time RT of 120 ms.

4.3 Comparison with MUSIC Method
in Overdetermined Scenario

To show the effectiveness of our proposed method even
for a situation where the MUSIC algorithm can be ap-
plied, we performed experiments for two-source three-
sensor (Fig. 4 Setup 1, M = 3, N = 2) cases with both
methods. In this paper, the MUSIC method was ap-
plied to each frequency bin, where a spatial correlation
matrix E[x( f, τ )xH( f, τ )] for the MUSIC was calcu-
lated using all the five-second data E[x( f, τ )xH( f, τ )] =
1
T

∑T
τ=1 x( f, τ )xH( f, τ ), where T is the number of

frames, and the estimated DOAs at all frequency bins
were clustered and averaged. Figure 5 shows the resolu-
tion of both methods, and Table 4 shows the estimated
DOA θk. Figure 5a and c are example MUSIC spectra
at a frequency f of 1844 Hz, and (b) and (d) are DOA
histograms for members of each cluster (the DOA of

Table 3 Experimental results for M = 4, N = 5 (Setup 2).

Source s1 s2 s3 s4 s5

True θ 31◦ 85◦ 133◦ 222◦ 302◦
φ −26◦ 6◦ 30◦ 39◦ −8◦

Proposed (5 sec.) θ 30◦ 79◦ 132◦ 221◦ 298◦
φ −22◦ 7◦ 28◦ 35◦ −9◦
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Figure 5 Resolution of MUSIC (a),(c) at f = 1844 Hz and the
proposed method (b),(d). (a)(b): when sources are far apart (θ1 =
117◦, θ2 = 217◦), (c)(d): when sources are close together (θ1 =
132◦, θ2 = 154◦).

each member can be calculated with Eq. 20 using x̄( f, τ )

instead of the centroid ck). It should be noted that
the MUSIC spectra at f = 1844 Hz in Fig. 5 are just
examples. If we plot the averaged MUSIC spectra over
all frequencies, the spectra become duller than that in
Fig. 5a and c.

When two sources were placed with a wide spacing
(Fig. 5a and b, and Table 4 “far apart”), both MUSIC
and the proposed method estimated the directions well
enough. In contrast, when the two sources were close to
each other (Fig. 5c and d, and Table 4 “close together”),
MUSIC failed to estimate the two directions, whereas
the proposed method was still successful. We consider
that our proposed method with the sparseness assump-
tion has a high resolution, although this resolution
depends on the sparseness of the source signals and is
affected by the room reverberation condition.

Note that we may be able to use the sparseness for
the MUSIC method by using spatial correlation ma-
trix E[x( f, τ )xH( f, τ )] = x( f, τ )xH( f, τ ) at each time-
frequency point. However, in the scenario of Fig. 5c and
d where two speakers were speaking simultaneously,
we could not obtain sufficient resolution due to a large
variance of DOA estimate values. This large variance
come from the singular value decomposition (SVD)
for the instantaneous value of the spatial correlation

Table 4 Experimental results for M = 3, N = 2 (Setup 1).

Far apart Close together

Source s1 s2 s1 s2

True 117◦ 217◦ 132◦ 154◦
Proposed (5 sec.) 114◦ 217◦ 128◦ 156◦
MUSIC 125◦ 217◦ 126◦ 345◦

matrix. Moreover, such a time-frequency MUSIC ap-
proach is time-consuming because it requires the SVD
for each time-frequency point. When we applied our
proposed method, MUSIC in this section, and the time-
frequency MUSIC to the same data as Fig. 5, the calcu-
lation times were 3.4, 0.42 and 245 (sec.), respectively
(Calculation was done by MATLAB7.1 Service Pack 3
with a PC, Intel Xeon 2.66GHz (Quad core) × 2 with a
Linux OS).

4.4 Performance Under Different Reverberant
Conditions

We have shown that our proposed method worked
well in weak reverberant conditions of RT = 120 ms.
Now we should remember that our proposed method
employs the source sparseness Eq. 4 and anechoic Eq. 6
assumptions. In practice, however, these assumptions
hardly hold due to reverberation. To study the effects of
reverberation, this section investigates the performance
of our approach in different reverberant conditions.

We performed experiments under an anechoic con-
dition and some reverberant conditions. For the rever-
berant tests, observations were simulated by following
Eq. 1 with impulse responses h jk measured in a room
(Fig. 6). The room reverberation times RTs were 128
and 300 ms. For both RTs, we utilized the same room
but changed the wall condition. We also changed the
distance R between the sensors and sources. The dis-
tances were R = 50, 110, and 170 cm (see Fig. 6). Here,
we only tested the 3-microphone and 4-source case. We
investigated eight speaker combinations and averaged
the results.

445 cm

• Reverberation time (RT) : 128 ms or 300ms
• Room height: 250cm
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Figure 6 Experimental setup for different reverberations.
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First, we investigated how the sparseness Eq. 4 and
anechoic Eq. 6 assumptions hold under each condition.
To check the sparseness, we evaluated the approxi-
mate W-disjoint orthogonality [8, 25] of the reverberant
speech signals:

rk(z) =
∑

( f,τ ) |	(k,z)( f, τ )x1k( f, τ )|2
∑

( f,τ ) |x1k( f, τ )|2 × 100[%]. (24)

In Eq. 24, x1k( f, τ ) means the short-time Fourier
transformed observed signal k at sensor 1: x1k( f, τ ) =
STFT

[∑
l h1k(l)sk(t − l)

]
. Moreover, in Eq. 24, 	(k,z) is

a time-frequency binary mask that has a parameter z

	(k,z)( f, τ )=
{
1 20 log10 (|x1k( f, τ )|/|x̂1k( f, τ )|)>z
0 otherwise

(25)

where x̂1k( f, τ ) is the sum of the interference com-

ponents at sensor 1: x̂1k( f, τ ) = STFT
[∑N

i=1,i �=k x1i(t)
]
.

The approximate WDO rk(z) indicates the percentage
of the energy of source k for time-frequency points
where it dominates the other sources by z dB. A larger
(smaller) approximate WDO rk(z) means more (less)
sparseness.

For the anechoic measure, we adopted the clarity
index [26]:

C = 10 log10

∫ 80ms
0 h2(t)dt

∫ ∞
80ms h2(t)dt

[dB].

The clarity index describes the ratio between direct
sound and reverberant sound. A small (large) C means
the reverberant sound (direct sound) is large. In gen-
eral, DOA estimation is difficult when the direct sound
component is small.

Figure 7 shows the average approximate W-disjoint
orthogonality for z = 10 [dB] and the average clarity
index under each condition. From Fig. 7, we can see
that the sparseness decreases when the contribution of
the direct sound is small. We can also see that the clarity
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C becomes small as the reverberation and distance R
increase. That is, when the reverberation is long and R
is large, the sparseness and anechoic assumptions seem
to become corrupted.

Next, we checked the DOA estimation performance
in different reverberation conditions. The DOA esti-
mation results for each condition are shown in Fig. 8.
The figure plots the estimation error

Errork = |θk − θ̂k|
where θ̂k represents the true directions (azimuths). The
average and maximum errors are shown in Fig. 8. We
can see that the DOA estimation error increases when
the reverberation and distance R are large. However,
the maximum error is still less than 10 degrees.

5 Conclusion

We proposed a new DOA estimation method for un-
derdetermined cases by assuming source sparseness.
The method is based on the normalization and clus-
tering of the observation vectors. We obtained promis-
ing experimental results for underdetermined cases in
a reverberant condition. We also confirmed that our
proposed method provides higher resolution when es-
timating the directions of sources than the MUSIC
algorithm.

We also reported the performance under some re-
verberant conditions, where the sparseness and ane-
choic assumptions were deteriorating. From the results,
we saw that the DOA estimation error is still not very
large even under difficult reverberant conditions.

Appendix

This appendix explains how to design the initial values
for the k-means algorithm used in the clustering stage.
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Because the k-means algorithm is sensitive to the initial
values of its centroids, it is preferable to set appropriate
initial centroids. In the paper, we designed the initial
centroids as follows:

– Set microphone locations d j for each setup (see
Fig. 4b)

– Calculate the initial directions qi so that they were
as scattered as possible. Concretely, we utilized
Eq. 5 where θi= 2π

N × i (i = 1, · · · , N) for M ≥ 3 and
π
N × i (i = 1, · · · , N) for M = 2. φi = 0 for all i.

– With above d j and qi, we calculated the initial
centroid by using Eq. 16.

Note that these initial values of d j and qi do not have to
be exactly the same as the sensor and source setups.
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