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Abstract—A novel DOA finding method for conformal array
applications is proposed. By using sub-array divided and interpolation
technique, ESPRIT-based algorithms can be used on conformal arrays
for 1-D and 2-D DOA estimation. In this paper, the circular array
mounted on a metallic cylindrical platform is divided to several sub-
arrays, and each sub-array is transformed to virtual uniform linear
array or virtual uniform planar array through interpolation technique.
1-D and 2-D direction of arrivals can be estimated accurately and
quickly by using LS-ESPRIT and 2-D DFT-ESPRIT algorithms,
respectively. This method can be applied not only to cylindrical
conformal array but also to any other arbitrary curved conformal
arrays. Validity of this method is proved by simulation results.

1. INTRODUCTION

Conformal antenna array, i.e., array antennas with antenna elements
arranged conformal on a curved surface, is of interest for future
communication and defense applications [1, 2]. In contrast to ordinary
arrays, when cylindrical conformal array is used for wide range
(more than 90 degrees) DOA (direction of arrival) estimation, several
problems must be considered. Firstly, conformal array has the “shadow
effect” because of the metallic cylinder, which means for an incident
wave from a special angle, and not all of the antenna elements can
receive this signal. Secondly, the radiation pattern of antenna element
cannot be regarded as omni-directional since the platform behaves as
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a metallic ground. Therefore, for a conformal array, the elements’
radiation patterns are always directional. Thirdly, the mutual coupling
between elements becomes more complicated and cannot be ignored.
These characters make it difficult to use normal DOA estimation
algorithms on conformal arrays for DOA finding.

Most high resolution DOA estimation algorithms, such as MUSIC-
based and ESPRIT-based algorithms, when used on uniform liner
array with omni-directional antenna elements, they always have high
performance [3–5]. But usually, these algorithms cannot be used
for conformal array directly. For example, MUSIC algorithm can
estimate the signal’s DOA accurately for any array geometry, but if
the array’s steering vector is incomplete (e.g., when a circular array is
mounted on a metallic cylindrical surface, for a signal with special
DOA, some antenna elements cannot receive this signal. In this
situation, the steering vector of this circular array is incomplete),
the performance of MUSIC algorithm deteriorates quickly. Sub-
array divided MUSIC algorithm can solve this problem efficiently [6].
However, the complexity of the spectral searching in the conventional
MUSIC algorithm may still be too high. Therefore, it is not fit
for real-time applications. ESPRIT algorithm is a search-free DOA
estimation algorithm. It exhibits lower computation and storage
requirements than MUSIC algorithm by using a displacement invariant
array. Unfortunately, in most cases, ESPRIT algorithm can only be
applied to uniform linear array because it requires arrays that consist
of two identical and identically oriented sub-arrays. Phase mode based
ESPRIT algorithm can be applied to uniform circular array but not
to conformal array, because the periodic excitation condition will be
destroyed due to the incomplete steering vector [7]. To apply these
algorithms to arrays with arbitrary geometries, interpolation technique
is a good choice [8–11]. Recently, some interpolation based methods
have been proposed for DOA estimation [12, 13].

In this paper, sub-array divided and interpolated ESPRIT
methods are combined together for 1-D and 2-D DOA estimation on
conformal array. The DOAs can be estimated accurately in 360◦ range
by dividing a cylindrical conformal array into 8 sub-arrays. Simulation
results exhibit the efficiency and accuracy of this method. This paper
is organized as follows. In Section 2, interpolated ESPRIT algorithm
based on sub-array divided technique is proposed in detail, and both
1-D and 2-D problems are discussed. In Section 3, a few of numerical
simulation examples are given and compared with MUSIC algorithm.
Finally, the new method is concluded in Section 4.
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2. INTERPOLATED ESPRIT BASED ON SUB-ARRAY
DIVIDED TECHNIQUE

2.1. Cylindrical Conformal Array

Figure 1 represents a cylindrical conformal array, and M microstrip
antennas are uniformly distributed over the circumference of a radius
r in the x-y plane. Fig. 2 shows the radiation pattern of Eθ of
single element. At time t, assuming that there are P (P < M)
narrowband signals come from far field of the array with azimuth
φi (i = 1, 2, . . . , p) and impinge on the antenna array, the M × 1
output vector of the array is given by

X(t) = F(φ) ·A(φ)S(t) + n(t) (1)

where S(t) is a P × 1 vector whose ith element corresponds to the ith
signal. A is a M × P steering matrix, whose columns are the steering
vectors of the P signals on the array. The M×1 vector n(t) represents
additive noise. F is a M × P radiation pattern matrix, which denotes
mth (m = 1, 2, . . . , M) antenna’s response to pth (p = 1, 2, . . . , P )
signal

F = [f(φ1), f(φ2), . . . , f(φp)] (2)

f(φp) = [f(φp − β1), f(φp − β2), . . . , f(φp − βM )]T (3)

where f(φp − βm) is mth element’s response at φp, and (·)T denotes
the transpose and βm = 2π(m− 1)/M .

Unlike ordinary circular array, conformal array has the “shadow
effect” due to the metallic cylinder, which means for a signal comes
from angle φ, and not all elements can receive this signal. For example,

Figure 1. 16-element conformal
array.

Figure 2. Radiation pattern of
Eθ for single element.
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if a signal with DOA of π/2 impinges on this array, from Fig. 3, it is
clear to see that only number 1–9 elements can receive this signal, and
the signal’s steering vector can be expressed as

a
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)
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[
1, ejkr cos(π

2
−π

8 ), ejkr cos(π
2
−π

4 ), . . . , ejkr cos(π
2
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(4)
where k = 2π/λ is the wave number, and λ is the wavelength of the
signal, j =

√−1. It can be seen that the steering vector is incomplete
for the conformal array because there are some zero elements in this
vector. This incomplete steering vector will cause many problems in
high performance DOA algorithms. For instance, it is well known in
MUSIC algorithm that the noise subspace UN is derived from the
decomposition of the covariance matrix Rxx. When MUSIC algorithm
is applied to such a conformal array, UN is incomplete because the
incomplete steering vector a will cause an incomplete covariance matrix
Rxx. If we use a complete steering vector ac to construct the MUSIC
spectrum

PMUSIC =
1

aH
c (φ)UNUH

Nac(φ)
(5)

where symbol ‘H’ means conjugate transpose. It is obvious that
aH

c UN 6= 0 even in the case of noise absence. So the performance
of MUSIC algorithm will be poor.

Another problem for conformal array is that each antenna element
has a different response to a certain signal. In Fig. 3, if the signal
comes from φ = π/2, antenna 5 has the strongest response while
antennas 1 and 9 can hardly receive this signal due to the directional
radiation patterns. Traditional DOA estimation algorithms always
assume that all elements can receive all signals, and each element has
an omni-directional radiation pattern. These algorithms cannot be
used on conformal array directly because these algorithms are sensitive
to the environment, and the different element response will lead a big
estimation error.

2.2. Sub-array Divided Technique

To eliminate the effects that result from incomplete steering vector,
we can divide the whole array into 8 sub-arrays, and each sub-array
spans a sector of π/2, i.e., in Fig. 3, element 1–5 compose sub-array
1, element 3–7 compose sub-array 2, etc. Through this way, for any
signal, we can always find a sub-array, all whose elements can receive
the signal, which means its steering vector is “complete”. It is worth
to note that each sector should be no larger than π/2, because for each
sub-array, if its span sector is over π/2, there would exist a “blind spot”
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that cannot receive the signal, which will lead to a incomplete steering
vector. The searching space is also divided into 8 sub-sectors. It is
well known that the antenna array has higher estimation performance
when the DOA of the signal close to the normal direction of the array,
that is to say, for sub-array 1 in Fig. 3, the corresponding searching
sector is chosen from π/16 to 3π/16. For sub-array 2, the searching
sector is from 3π/16 to 5π/16, etc. Using this technique, a sub-array
divided MUSIC algorithm can be derived and applied to any arbitrary
conformal arrays.

2.3. Interpolated Array

The principle of interpolated array is dividing the field of view of the
array into L sectors. The size of the sectors depends on the array
geometry and on the desired interpolation accuracy. For example, if
there is a signal, whose DOA is in the sector Φ ∈ [φ1, φ2], where φ1

and φ2 are the left and right boundaries of this sector, let ∆φ as the
interpolation step, then Φ can be represented as

Φ = [φ1, φ1+∆φ, φ1+2∆φ, . . . , φ1+n∆φ, φ2] (6)
The interpolation number n is determined by the desired accuracy. In
this sector, the real array manifold is

F ·A = [f(φ1)a(φ1), f(φ1+∆φ)a(φ1+∆φ), . . . , f(φ2)a(φ2)] (7)
We can construct an interpolated virtual array steering matrix Ā in
the same sector with omni-directional radiation pattern

Ā = [ā(φ1), ā(φ1 + ∆φ), . . . , ā(φ2)] (8)

Figure 3. Signal impinges from
φ = π/2.

Figure 4. Real and virtual sub-
array 2.
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Then an interpolation matrix B is designed to satisfy in the least square
sense, that is

BH [F ·A(φ)] = Ā(φ), φ ∈ Φ (9)
The size of B is M ×M . Obviously, it is impossible to find an ideal B
to satisfy Equation (9). The accuracy of the interpolation is examined
by comparing the ratio of the Frobenius norms

τ =
|| (Ā−BH(F ·A) ||

||F ·A|| (10)

If τ is small enough, for example, 0.001, then accept B. If this ratio
is not sufficiently small, we can reduce ∆φ or change the form of
the interpolation array and recalculate it. It can be seen that the
interpolation procedure is time consuming if the sector size and the
number of interpolation angle n are very large. Fortunately, this
procedure can be done off-line. The matrix B just needs to compute
only once for any given array then stored in the system.

2.4. 1-D Interpolated ESPRIT

ESPRIT is an efficient algorithm for DOA estimation. It has lower
computation than MUSIC based algorithms due to its search-free
character. This advantage is achieved by using a displacement
invariant array. However, ESPRIT algorithm usually can only be
used on uniform linear array or uniform circular array. By using
sub-array divided and interpolated techniques, the conformal array
is transformed to 8 uniform linear arrays, and then ESPRIT algorithm
can be used on each sub-array to estimate the DOA coming from
corresponding observation sector. This method can be summarized
by the following steps:
1) Divide the whole array into 8 sub-arrays using the method denoted

in 2.2;
2) For each one-quarter circular sub-array, using the interpolated

technique to find a series of matrix Bi (i = 1, 2, . . . , 8) and
transform it to virtual uniform linear array. Fig. 4 shows the real
and virtual sub-array 2. Because the structure is symmetrical, for
different sub-arrays, the transform matrix Bi is identical. In the
procedure of finding B, there are two key parameters which need
to be optimized, the distance d between two elements of virtual
uniform linear array and distance h from the original point to the
virtual array.

3) Use formula (1) to get the receiving data vector X(t) =
[x1(t), . . . , xM (t)]T . Let Xi(t) = [xi1(t), . . . , xi5(t)]T denote the
data vector of ith sub-array which is obtained from step 1.
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4) Compute the interpolation receiving data for each virtual sub-
array by using the interpolation matrix B

Yi = BXi (11)

5) Estimate the DOA using LS-ESPRIT algorithm on each sub-array.

Step 1) and 2) above are a preprocess procedure. Once the virtual
array is selected, the matrix B can be calculated off-line and stored in
the system.

2.5. 2-D Interpolated ESPRIT

Figure 5 shows a 2-D cylindrical conformal array. For this 2-D array,
we can transform it to virtual uniform planar array by using the
interpolation method discussed above. This transformation is shown
in Fig. 6. Unlike 1-D case, the normal ESPRIT algorithm cannot be
used for a planar array directly, because the fundamental theorem of
algebra does not hold in two dimensions, which may preclude to get a
rooting type formulation. For uniform planar array, we can decompose
the 2-D problem into two 1-D problems by using the 2-D DFT beam
space ESPRIT algorithm [14]. Compare to 1-D ESPRIT, 2-D DFT
interpolated ESPRIT needs two steps. The first step is to find the
interpolation matrix B as 1-D case, and this matrix is used to transform
the 2-D cylindrical conformal array to virtual uniform planar array. To
find B, 2-D interpolation is needed, and Equation (6) can be replaced
by

[Φ, Θ] = [(φ, θ)1, (φ, θ)2, . . . , (φ, θ)K ] (12)

Figure 5. 5 by 5 cylindrical
conformal array.

Figure 6. Real conformal array
and virtual planar array.
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where, K = K1 × K2, K1 is the interpolation number in φ direction
and K2 in θ direction. It is clear to see that 2-D problem needs much
more interpolation points than 1-D problem.

The second step is to transform the receiving data from element
space to beam space

D = WHY (13)

where Y = BX is the interpolation receiving data, and D is the beam
space receiving data. W = [w0, w1, . . . , wM−1] and

wH
m = ej(M−1

2 )m 2π
M ·

[
1, e−jm 2π

M , e−j2m 2π
M , . . . , e−j(M−1) 2π

M

]
(14)

After this processing, we can use 2-D DFT ESPRIT algorithm
to estimate 2-D DOAs for this virtual uniform planar array. The
procedure for 2-D problem is similar to what has been discussed in
Section 2.4.

3. SIMULATION RESULTS

Simulations are conducted to evaluate the performance of the proposed
method. The first example presented in this section uses the model
shown in Fig. 1. 16 microstrip antennas are mounted on the surface
of the metallic cylinder. The antenna elements are square patches,
and the operating frequency is 3 GHz. There is a thin dielectric
with permittivity of 4.3 and thickness of 2 mm between the cylinder
and patch. The E-field of the antenna is along the z-axial. The
cylinder’s height is 3λ, and radius is 1.28λ. Here λ is the resonant
wavelength. The E-plane (x-z) pattern of element 1 (φ = 0) is
calculated by using the method of moment (MOM), shown in Fig. 2.
All the antenna elements have identical radiation pattern due to the
symmetrical structure.

In order to get an ideal transformation matrix B, three key points
need to be mentioned. Firstly, the virtual array steering vector must
be chosen properly. Here we choose the uniform linear array as the
virtual array, and the parameters d and h shown in Fig. 4 need to
be optimized. Fig. 7 shows the optimization result. It can be seen
that when d = 0.51λ and h = 0.83λ, the error is the smallest, about
8.2 × 10−4. Secondly, the interpolation sector cannot be selected too
large. As shown in Fig. 8, when the interpolation sector is over 60◦, the
error increases significantly. Thirdly, the interpolation step ∆φ cannot
be set too sparse, it should be no larger than 0.1◦.

Assume that there are two uncorrelated narrowband signals which
impinge on the array with the DOA of φ = 2π/9 and φ = π/2. The
polarization of the signal is the same as the antenna element, and the
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Figure 7. The relationship between error τ in Equation (10) and the
virtual array’s parameters d and h.

Figure 8. The relationship between error and the interpolation sector.

snapshots (sample points of the array) are 128. In this simulation,
directional antenna elements with radiation pattern shown in Fig. 2
are used. The interpolation sector for each sub-array is set to π/4,
and the interpolation step is 0.1◦. 100 independent measurements are
carried out. Sub-array divided MUSIC and 1-D Interpolated ESPRIT
algorithms’ performance are compared in Fig. 9(a) and Fig. 9(b).

For signal 1, when the signal’s DOA = 2π/9, 8 elements can
receive this signal (i.e., elements 1–6 and 15–16). Here we just need to
compare the performance of sub-arrays 1–3. It is clear to see that the
interpolated ESPRIT algorithm’s performance in sub-array 1 is very
similar to sub-array divided MUSIC algorithm because the signal is
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close to its normal direction: φ = π/4. The performance in sub-array
2 is a little bit weak compared to sub-array 1 due to the oblique incident
angle. When SNR > 5, the RMS in these two sub-arrays are all within
1 degree. For sub-array 3, since elements 7–9 cannot receive the signal
with DOA = 2π/9, the steering vector is incomplete; the algorithm in
this sub-array is out of work, so the results are totally wrong. Because
signal 1 is in sub-array 1’s observation sector, we accept sub-array 1’s
estimation result and reject others.

(a)

(b)

Figure 9. (a) The estimation RMS error versus SNR for 1-D
case. DOA = 2π/9. The red solid line is sub-array divided MUSIC
algorithm; other three black lines are interpolated ESPRIT algorithm
of three sub-arrays. (color online). (b) The estimation RMS error
versus SNR for 1-D case. DOA = π/2. The red solid line is sub-array
divided MUSIC algorithm; other three black lines are interpolated
ESPRIT algorithm of three sub-arrays.
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Similarly, for signal 2 with DOA = π/2, 9 elements can receive
this signal (element 1–9), so for sub-array 1–3, the steering vectors are
all complete. Both sub-arrays 1 and 2 have the same performance as
MUSIC algorithm. When SNR > 0, their errors are all smaller than
1 degree. Sub-array 3 has a relative weak performance because the
radiation pattern is not totally symmetrical.

For 2-D case, in order to simplify the problem, we just use one
sub-array to do the test, and for more sub-arrays, the method is
similar for 1-D case. As shown in Fig. 5, 5 by 5 antenna elements
are mounted on a metallic cylinder surface. The parameters of these
antennas are the same as those in 1-D. The cylinder’s radius is 1.28λ,
and height is 4λ. Through interpolation technique, the conformal array

(a)

(b)

Figure 10. (a) The estimation RMS versus SNR for 2-D case,
DOA = (−5◦, 110◦). (b) The estimation RMS versus SNR for 2-D
case, DOA = (15◦, 75◦).
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is transformed to uniform planar array with element distance of 0.5λ
and omni-directional radiation pattern. The interpolation sector is
chosen as: φ ∈ [−20◦, 20◦], θ ∈ [70◦, 110◦], and the interpolation
step is 0.2◦. It is worth to note in the 2-D case, each antenna
element has a different radiation pattern due to different locations.
Assume two signals with DOA (φ, θ) = (−5◦, 110◦) and (15◦, 75◦)
incident on this array, other parameters are the same as 1-D example.
100 independent measurements are carried out. Figs. 10(a) and
10(b) show the interpolated 2-D DFT ESPRIT algorithm’s estimation
performance.

As shown in Figs. 10(a) and 10(b), two signals’ DOAs are
estimated accurately. When SNR > 0 dB, the RMS are almost less
than 0.5 degree. The difference of estimation performance for azimuth
angles and elevation angles may be because the radiation patterns are
not identical in these two directions. The large elevation incident angle
of signal 1 makes the estimation performance in Fig. 10(a) worse than
signal 2 in Fig. 10(b).

Table 1. Time consuming of two methods (100 simulations time).

Interpolation Estimation Total
MUSIC (1-D) — 4.5 s 4.5 s

Proposed method (1-D) 6.3 s 2.3 s 8.6 s
Proposed method (2-D) 334 s 5.2 s 339.2 s

The complexity of the spectral searching of the conventional
MUSIC-based algorithms are too high for real-time applications. Here
we compare the proposed method and the sub-array divided MUSIC
algorithm’s time consuming. The PC with Intel Xeon 2.66GHz and
12G ram are used for simulation. 100 experiments are carried out. In
these tests, three sub-arrays (1–3) are used. The interpolation step is
0.1◦ for 1-D estimation and 0.2◦ for 2-D estimation. The results are
shown in Table 1. From Table 1, we can see that for 1-D problem,
the proposed ESPRIT-based method takes 6.3 s for interpolation and
2.3 s for estimation. The estimation time is about half of MUSIC-based
method. For 2-D problem, it takes a long time for interpolation, about
334 s, but the estimation time is just 5.2 s, a little bit longer than 1-D
problem. Though the time for 2-D problem of MUSIC-based method
is not given here, we can imagine that 2-D space searching will take a
much longer time than 1-D searching.

The method proposed above is a universal method and can be
used not only for circular or cylindrical array but also for other array
shapes. To verify its universal character, a parabola array shown in
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Figure 11. Parabola array for DOA estimation. 9 elements are
divided into 3 sub-arrays.

Fig. 11 is used for testing. This parabola array has a mathematical
expression of y = −0.5x2. There are 9 elements distribute with equal
x interval. Next, we divide the array into 3 sub-arrays, elements 1–
5 as sub-array 1, elements 3–7 as sub-array 2, and elements 5–9 as
sub-array 3. Then, by using interpolated technique, three sub-arrays
are transformed to three uniform linear arrays (shown in Fig. 11). The
searching region of the parabola array is also divided into three sectors:
The searching sector of sub-array 1 is from φ = −π/3 to φ = −π/9,
φ = −π/9 to φ = π/9 for sub-array2 and φ = π/9 to φ = π/3 for
sub-array 3. The sub-arrays and sectors need not be identical. How to
divide them is determined by how to get the smallest transform error
in Equation (10).

Suppose there are two signals incident on the array with φ1 =
−π/4 and φ2 = π/12, where φ is the angle with y-axis. To simplify the
problem, suppose each element has an omni-directional pattern. The
estimation results are shown in Fig. 12(a) and Fig. 12(b). It can be seen
that two signals are estimated accurately. For signal 1 (φ1 = −π/4),
sub-array 1 has a higher performance than sub-array 2 because the
direction of signal 1 is at the normal direction of sub-array 1. The
same result happens to signal 2 (φ2 = π/12), which direction is closer
to the normal direction of sub-array 2, so sub-array 2 has a higher
performance in this case.

Generally speaking, for a certain array, we can always divide it into
several sub-arrays, and these sub-arrays need not be identical. They
can be composed of different numbers of elements, different element
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intervals, or different interpolations and searching sectors. The only
limit is that each sub-array must have a “complete” steering vector
(i.e., all elements of the sub-array can receive the signal that comes
from corresponding sector). However, the estimation performance
of each sub-array may be different, because when we do the virtual
transform, the transform error (τ in Equation (10) may be different.
Sometimes, for example, if the array with a small curvature radius,
it may be difficult to find a virtual array to make the error in
Equation (10) small enough. How to find the best virtual array is
an optimization problem and will be studied in our future work.

(a)

(b)

Figure 12. (a) The estimation RMS error versus SNR for parabola
array. The incident DOA is φ1 = −π/4, sub-array 1 has a higher
performance. (b) The estimation RMS error versus SNR for parabola
array. The incident DOA is φ2 = π/12, sub-array 2 has a higher
performance.
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4. CONCLUSION

A new search-free DOA estimation method based on conformal array
is proposed. In this method, there are three key techniques: Firstly,
to avoid the “shadow effect” coming from the platform, the array is
divided into several identical sub-arrays. Secondly, because ESPRIT-
based algorithm cannot be used directly in these curved sub-arrays
with directional antenna elements, an interpolation technique is used
to transform these curved arrays to uniform linear array or uniform
planar array with omni-directional elements. Thirdly, using 1-D LS-
ESPRIT or 2-D DFT ESPRIT algorithm in these virtual arrays,
signal’s DOA can be found quickly and accurately. This method has
a universal character and can be applied to any arbitrary conformal
arrays. Numerical simulations confirm that this method has much
faster speed with the same accuracy compared to other space searching
based methods, such as MUSIC algorithm.
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