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DoA Reliability for Distributed Acoustic Tracking
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Abstract—Distributed acoustic tracking estimates the trajecto-
ries of source positions using an acoustic sensor network. As it is
often difficult to estimate the source-sensor range from individual
nodes, the source positions have to be inferred from Direction
of Arrival (DoA) estimates. Due to reverberation and noise, the
sound field becomes increasingly diffuse with increasing source-
sensor distance, leading to decreased DoA estimation accuracy.
To distinguish between accurate and uncertain DoA estimates,
this paper proposes to incorporate the Coherent-to-Diffuse Ratio
as a measure of DoA reliability for single-source tracking. It is
shown that the source positions therefore can be probabilistically
triangulated by exploiting the spatial diversity of all nodes.

Index Terms—Acoustic sensors, Smart homes, Bayes methods.

I. INTRODUCTION

Autonomous systems and smart devices rely on accurate

knowledge of the positions of surrounding objects for human-

machine interaction [1]. Acoustic scene mapping [2], [3],

[4] provides 3D representations of the sound sources and

microphone arrays in the surrounding environment. However,

in realistic acoustic conditions, it is often difficult to ac-

curately infer the positions of sound sources distant to a

single microphone array [3]. In large enclosures, e.g., in smart

homes, networks of spatially distributed acoustic sensors can

be exploited constructively for robust scene mapping [5], [6],

[7]. Examples of network nodes include mobile phones [8],

digital personal assistants [9], or robots [10].

For each node in the network, sound source localization

algorithms [11] estimate the instantaneous positional infor-

mation of sources for a sequence of time frames. Devices

exploited for ad-hoc networks are typically equipped with

compact microphone arrays, such that the range between the

node’s sensors and sources in the acoustic far-field is difficult

to determine. Sound source localization therefore may only

resort to estimates of the source Direction of Arrivals (DoAs)

[12], [13], [14]. Furthermore, reverberation and noise often

lead to missing and false DoA estimates as well as estimation

errors [15], [16]. Distributed acoustic tracking [17], [18] can be

used to obtain smoothed source trajectories from the instanta-

neous DoA estimates by incorporating spatio-temporal models

of the source motion. Within the Bayesian framework [19], the

uncertainty in the source motion model is traded off against the
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DoA reliability. However, most DoA estimators only provide

point estimates of the source directions, but cannot quantify

the reliability of the estimates [16], [20]. Therefore, source

tracking algorithms typically express the DoA reliability as a

constant covariance matrix that is obtained by prior empirical

experimentation [21], [22], supervised learning [23], or using

the confidence intervals of DoA histograms [24], [25].

However, in practice, DoA estimation accuracy is closely

coupled to specific characteristics of each scenario, including

the time-varying speech activity and source-sensor geometry.

Reverberation [26] and ambient noise lead to diffuse noise

fields [27], i.e., the acoustic energy approaches equal proba-

bility in every direction [28]. Furthermore, the energy in the

direction of a source decreases with increasing source-sensor

range. Therefore, the acoustic sound field at a microphone is

decreasingly directional with increasing source-sensor range.

The coupling between the DoA reliability and the sound field

diffuseness is crucial for distributed sensor networks, where

knowledge inferred from reliable nodes nearby a source must

be distinguished from information at distant nodes.

The sound field diffuseness can be quantified by the

Coherent-to-Diffuse Ratio (CDR) [29], [30]. The CDR was

previously used to evaluate the speech presence probability

for blind speech separation in [31] and source extraction in

[32]. In [33], the DoA estimates from a single microphone

array were modelled by a von Mises (vM) distribution [34]

whose concentration parameter is a function of the CDR.

This paper proposes a novel approach to distributed acoustic

tracking that incorporates the CDR as a DoA reliability.

Building on the model in [33] and using directional statistics

[34], [35] we derive a Bayesian filter that distinguishes reliable

DoA estimates at nearby nodes from DoA estimates at distant

nodes. In contrast to [31], performing triangulation using

instantaneous DoA estimates, the proposed tracking algorithm

probabilistically triangulates the Cartesian source positions

using the DoA estimates from all nodes within a centralized

communication scheme. Node-specific information about the

source directions is inferred from each node’s DoA estimates.

Assuming a synchronized network, estimates of the source

position are obtained by fusing statistics of the node-specific

information from the spatially diverse nodes.

Section II formulates the problem, Section III derives the

proposed methodology, Section IV presents the experimental

evaluation using realistic room simulations of a human talker.

Conclusions are drawn in Section V.

II. PROBLEM FORMULATION

A. Likelihood of the DoA Estimates

Denote the 2D Cartesian position of a sound source relative

to node n = 1, . . . , N at position qn and time frame t as
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xt,n ,
[

xt,n, yt,n
]T

. The source position relative to node n
can be obtained from xt,ℓ relative to any node, ℓ 6= n, as

xt,n = fn(xt,ℓ) , Rn|ℓ xt,ℓ − qn + qℓ, (1)

where Rn|ℓ is the rotation matrix. In the following we assume,

without loss of generality, that the axes are orientated equally

for all nodes, such that Rn|ℓ is a 2× 2 identity matrix.

The direction and range between the source and node, n,

can be obtained from the source position using the Cartesian-

to-spherical transformation, such that st,n ,
[

φt,n, rt,n
]T

where φt,n = arctan yt,n/xt,n is the source azimuth and

rt,n =
√

x2
t,n + y2t,n is the source-to-node range.

For distant sound sources, estimation of the range is difficult

when using compact sensor arrays. Hence, at each array, esti-

mates, ωt,n ∈ [0, 2π), of the true source DoA, φt,n ∈ [0, 2π),
are available, whereas the range, rt,n, is unmeasured. The like-

lihood function of each DoA estimate, p
(

ωt,n | st,n, κ
(DoA)
t,n

)

,

can be modelled by a vM distribution [33], [34] with mean,

φt,n, and concentration parameter, κ
(DoA)
t,n > 0:

p
(

ωt,n | st,n, κ
(DoA)
t,n

)

= M
(

ωt,n |φt,n, κ
(DoA)
t,n

)

,
(2π)−1

I0(κ
(DoA)
t,n )

exp{κ
(DoA)
t,n cos (ωt,n − φt,n)},

(2)

where Ip(κ) is the modified Bessel function of the first kind

and order p.

B. Reliability Measure for DoA Estimates

Previous work showed that the accuracy of narrowband

DoA estimates is highly dependent on the CDR. The CDR

is also known to be related to the source-sensor range and the

reverberation time of the enclosure. In contrast to the range

and reverberation time, the CDR can be estimated efficiently

and accurately with a small microphone array using, e.g., [36].

In our model, the concentration of the vM distribution

can be used to indicate the reliability of the DoA estimates.

Therefore, as in [33], we use the CDR, Γt,n, to determine the

concentration parameter, κ
(DoA)
t,n , using

κ
(DoA)
t,n = ℓmin + (ℓmax + ℓmin)

10c̺/10

10c̺/10 + [Γt,n]̺
. (3)

The terms ℓmin, ℓmax, c, ̺ respectively are the minimum and

maximum concentration values, offset, and steepness of the

transition region of the mapping from Γt,n to κ
(DoA)
t,n .

The reliability of the DoA estimates, that is now reflected

by the concentration of the vM distribution, can be used to

distinguish between reliable DoA estimates from nearby nodes

and less reliable DoA estimates from distant nodes.

C. Early Fusion of ωt,n and κ
(DoA)
t,n across Frequencies

Performing estimation in the Short Time Fourier Transform

(STFT) domain results in one DoA and one CDR estimate

per frequency bin, k ∈ 1, . . . ,K, time frame, and node. We

assume that source tracking is provided with estimates per

time frame and per node. The frequency-dependent estimates

are therefore spectrally fused by evaluating their median values

across all frequency bins, resulting in ωt,n and κ
(DoA)
t,n .

D. Source Position Inference from DoA Estimates

Bayesian acoustic source tracking estimates the posterior

Probability Density Function (pdf), p (xt,n0
| Ω1:t), of the

current source position, xt,n0
, relative to a reference point,

qn0
, with index, n0, from Ω1:t , {ω1:t,κ

(DoA)
1:t }, where

ω1:t ,
[

ω1,1, . . . , ω1,N , . . . , ωt,N

]T
, and κ

(DoA)
1:t is structured

similar to ω1:t. A point estimate of the source position at t,
is given by the Maximum a posteriori (MAP) estimate:

x̂MAP
t,n0

= argmax
xt,n0

p (xt,n0 | Ω1:t) . (4)

However, i) κ
(DoA)
t,n is unknown in practice; ii) each node, n,

only has access to its own DoA estimates, ω1,n, . . . , ωt,n, such

that (4) cannot be evaluated directly; and iii) the 2D source

position, xt,n0 , must be inferred from the 1D DoA estimates.

III. PROPOSED METHODOLOGY

This section derives a novel approach for distributed source

tracking that exploits (3) to distinguish reliable DoA estimates

at nearby nodes from less reliable estimates at distant nodes.

A. Network Fusion for Distributed Acoustic Tracking

In practice, each node only has access to its own DoA

estimates. Hence, the source position is tracked by separately

propagating a node-specific pdf in time using that node’s DoA

estimates. The statistics of the node-specific pdfs are fused

within the network. For approaches that do not account for the

reliability of DoA estimates, network fusion can lead to track

divergence as knowledge inferred from nearby nodes cannot be

distinguished from uncertain information from distant nodes.

In contrast to approaches agnostic to DoA estimation reli-

ability, exploiting the CDR (3) ensures that the node-specific

pdfs of nearby nodes correspond to peaked distributions,

whereas the pdfs of distant nodes do not contain significant

modes. Therefore, the node-specific source pdfs are fused

within the network, relative to a reference point, xt,n0
, as:

p (xt,n0
| Ω1:t) ≈

N
∏

n=1

p
(

xt,n0
| ωt,n, κ

(DoA)
t,n ,Ω1:t−1

)

, (5)

where the nodes are assumed to be independent due to their

spatial diversity. By probability transformation of (1):

p
(

xt,n0 | ωt,n, κ
(DoA)
t,n ,Ω1:t−1

)

= p
(

fn0
(xt,n) | ωt,n, κ

(DoA)
t,n ,Ω1:t−1

)

.

B. Probabilistic Triangulation for Range Inference

In order to estimate the node-specific pdfs required in (5),

the density of the Cartesian source position must be updated

from new information inferred from the DoA estimates. Con-

trary to bearing-only tracking, e.g., [37], we propose to infer

the missing range estimates by exploiting the spatial diversity

of the network nodes. As information is inferred from the DoA

estimates, the node-specific pdfs must be propagated in polar

coordinates as p (st,n | Ω1:t). The posterior pdf of the polar

coordinates can be estimated by 1) predicting the pdf using a

model of the source dynamics and 2) updating the pdf with

information inferred from the DoA estimates.
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1) Prediction: The predicted pdf relative to node n is:

p (st,n | Ω1:t−1)

=

∫

R3

p (st−1,n | Ω1:t−1) p (st,n | st−1,n) dst−1,n,
(6)

where the prior pdf, p (st,n | st−1,n), models the source dy-

namics. Assuming the DoA and range are independent:

p (φt,n | φt−1,n) = M
(

φt,n |φt−1,n, κt|t−1

)

p (rt,n | rt−1,n) = U
(

rt−1,n − ρt|t−1, rt−1,n + ρt|t−1

) (7)

where U(·) denotes the uniform distribution, and the transition

concentration parameter and range, κt|t−1 and ρt|t−1 respec-

tively, capture the source dynamics between time frames.

The range pdf is approximated by importance sampling J

hypotheses, {ρ
(j)
t,n}

J
j=1, of rt,n from (7). Hence, the predicted

pdf is given by the Probability Mass Function (PMF):

p (st,n | Ω1:t−1) ≈

J
∑

j=1

δ
ρ
(j)
t,n

(rt,n) M
(

φt,n | µ̃
(j)
t,n, κ̃

(j)
t,n

)

,

(8)

where δa is the Dirac measure at a given state a, and the

predicted mean, µ̃
(j)
t,n, and covariance, κ̃t,n, are given by (see

Section I.A of the supplementary material to this paper):

µ̃
(j)
t,n = µ

(j)
t−1,n, κ̃t,n = A−1

(

A(κt−1,n)A(κt|t−1)
)

, (9)

with A(κ) , I1(κ)/I0(κ) [34], and where, for any r̄ [35]:

A−1(r̄) ≈
2r̄ − r̄3

1− r̄2
. (10)

2) Update: Using Bayes’s theorem:

p
(

st,n | ωt,n, κ
(DoA)
t,n ,Ω1:t−1

)

=
p
(

ωt,n | st,n, κ
(DoA)
t,n

)

p (st,n | Ω1:t−1)

∫

p
(

ωt,n | st,n, κ
(DoA)
t,n

)

p (st,n | Ω1:t−1) dst,n
.

(11)

Substituting (8) and (2) into (11):

p
(

st,n | ωt,n, κ
(DoA)
t,n ,Ω1:t

)

=

J
∑

j=1

w
(j)
t,n δρ(j)

t,n

(rt,n)M
(

φt,n |µ
(j)
t,n, κ

(j)
t,n

)

, (12)

where the updated mean, µ
(j)
t,n, concentration, κ

(j)
t,n, and

weights, w
(j)
t,n, are (see supplementary material, Section I.B)1

µ
(j)
t,n = − tan−1

(

−
κ̃
(j)
t,n cos µ̃

(j)
t,n + κDoA

t,n cosωt,n

κ̃
(j)
t,n sin µ̃

(j)
t,n + κDoA

t,n sinωt,n

)

, (13a)

κ
(j)
t,n =

√

[κ̃
(j)
t,n]

2 + [κDoA
t,n ]2 + 2κ̃

(j)
t,n κ

DoA
t,n (cos (µ̃

(j)
t,n − ωt,n)),

(13b)

w
(j)
t,n =

w̃
(j)
t,n

∑J
ℓ=1 w̃

(ℓ)
t,n

and w̃
(j)
t,n =

I0(κ
(j)
t,n)

I0(κ̃
(j)
t,n)

. (13c)

1A von Mises filter for bearing-only tracking was previously proposed in
[37]. It is important to note that the additive term in [37, Eq. (8)] may result
in |µt,n|> π. In contrast, by definition of the inverse tangent, (13a) ensures
valid directions within the region of support, µt,n ∈ [−π, π].

Algorithm 1 PROST incorporating DoA reliability

1: for t = 1, . . . ,∞ do

2: for n = 1, . . . , N do

3: for k = 1, . . . ,K do

4: Estimate DoA, ωt,n,k [38];

5: Estimate CDR, Γt,n,k, [36] and κ
(DoA)
t,n,k , (3);

6: end for

7: Spectral fusion of ωt,n and κ
(DoA)
t,n , Section II-B;

8: for j = 1, . . . , J do

9: Transform x
(j)
t−1,n0

to s
(j)
t−1,n, (1);

10: Predict µ̃
(j)
t,n, κ̃

(j)
t,n, (9);

11: Update w
(j)
t,n, µ

(j)
t,n, κ

(j)
t,n, (13);

12: Transform s
(j)
t,n to x

(j)
t,n0

, (1);

13: end for

14: end for

15: Network fusion, (5);

16: Resample node-specific pdfs, Section III-B3;

17: end for

3) Network Fusion: Due to the product in (5), network

fusion requires a continuous representation of the discrete

PMF in (12). A continuous approximation, p̂ (xt,n0
| Ω1:t), of

each node-specific pdf is obtained from the weighted Kernel

Density Estimate (KDE) [39]. The resulting KDEs are used to

evaluate (5). For propagation to t+1, the node-specific PMFs

resulting from the network fusion are extracted by randomly

selecting, with equal probability, J components of the non-

fused PMFs in (12) from within the intersection region in (5).

Although the unmeasured range is only predicted in (11), re-

sampling from the network posterior ensures that only stochas-

tically relevant range hypotheses are propagated. Hence, the

source positions are probabilistically triangulated by exploit-

ing the spatial diversity of the nodes. PRObabilistic Source

Triangulation (PROST) is summarized in Algorithm 1.

IV. PERFORMANCE EVALUATION

A. Experimental Setup

Simulations of a 10× 7× 2.5 m3 room at 16 kHz sampling

frequency are used for evaluation. The positions of a source

moving at 0.5 m/s are generated at 32 sample intervals along a

straight line trajectory. The distributed sensor network contains

four circular microphone arrays, each with 3 microphones

spaced by 0.025 m. The array positions are simulated for

a mid-range scenario (S1) and a far-range scenario (S2) as

detailed in Table I. The Room Impulse Responses (RIRs)

for each source-sensor configuration are simulated using the

image-source method [40] for a reverberation time [26] of

0.5 s. The RIRs are convolved with anechoic speech of 8 s

duration, consisting of two utterances by a female talker.

The convolved signals are distorted by sensor and isotropic

noise [41] with signal-to-noise ratios of 20 dB and 40 dB

respectively. The STFT is evaluated for 64 ms frame lengths,

1024 discrete Fourier transform points, and using a Hamming

window with 25% overlap. The Voice Activity Detector (VAD)

in [42] is evaluated for a window length of 10 ms. Due to

the compact array aperture, the propagation delay between
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TABLE I
AVERAGE TRACKING ACCURACY FOR BOTH SCENARIOS, S1 AND S2, AND VOICE ACTIVITY PERIODS, P1 AND P2.

q1 [m] q2 [m] q3 [m] q4 [m]
LS PROST-const PROST

Mean [m] Std [m] Mean [m] Std [m] Mean [m] Std [m]

P1 P2 P1 P2 P1 P2 P1 P2 P1 P2 P1 P2

S1 6, 5.5, 1.8 8, 3, 1.8 4, 2, 1.8 2, 2.5, 1.8 0.63 0.68 0.44 0.5 0.48 0.26 0.1 0.13 0.38 0.18 0.12 0.06

S2 6, 5.5, 1.8 8, 2, 1.8 4, 1, 1.8 2, 2.5, 1.8 0.97 1.12 0.66 0.65 0.46 0.52 0.17 0.18 0.5 0.32 0.1 0.12

(a) Mid-range scenario (S1)

(b) Far-range scenario (S2)

Fig. 1. Birsdeye view of the acoustic scene map for the (a) mid-range and
(b) far-range scenarios.

microphones for each array is negligible in the context of

VAD. The VAD is hence evaluated only for channel 3 at each

node. The VAD results are combined within the network by

evaluating the maximum start time and minimum duration of

each Voice Activity Period (VAP) across all nodes. During

voice active periods, one CDR and one DoA per time frame

and frequency bin are estimated. The DoAs are estimated

by minimizing the discrepancy between the observed and

expected inter-microphone phase differences as proposed in

[38]. The CDR is estimated as a function of the spatial

coherence between microphone 1 and 2 for each node using

the approach in [36]. The corresponding estimates per frame

are evaluated by the median across all frequency bins. κ
(DoA)
t,n

is obtained using (3) with lmin = 0, lmax = 25, c = 6, and

ρ = −2. Algorithm 1 is initialized for each voice active period

by drawing J = 350 source position hypotheses for each node.

The initial hypotheses are sampled along each ωt,n between qn

and the intersection of the DoA vector with the room boundary.

For all subsequent frames, Algorithm 1 is evaluated using the

transition parameters ρt|t−1 = 1.5 m and κt|t−1 = 500, chosen

to enforce confidence in the dynamical model for robustness

against false DoA estimates.

The performance of PROST is compared against 1) PROST-

const, which uses a constant κt,n = 5 corresponding to the

mean of κt,n estimates during the first utterance; and 2) Least

Squares Triangulation (LST) from the DoA estimates.

B. Results

1) Mid-range Scenario: The VAD detects two VAPs, P1

and P2. The DoA estimates correspond to average errors of

10◦ for P1 and 14◦ for P2. Fig. 1a compares the ground truth

source positions against the estimates of PROST and the two

benchmarks. LST produces a large-volume cloud of points. By

tracking the source position across time, PROST-const results

in tracks with large variation between positions. PROST results

in smooth tracks near the source by incorporating the DoA

reliability, achieving improvements in position accuracy of up

to 0.5 m over LST and 0.1 m over PROST-const (see Table I).

2) Far-Range Scenario: Fig. 1b shows the estimated scene

map for the far-range scenario. For the first VAP, all four

arrays initially correspond to large source-sensor distances

of over 4.5 m, such that PROST-const and PROST lead to

comparable performance results. In the second VAP, Array

1 is within 1.04 m, leading to reliable DoA estimates and

hence increased concentration parameters compared to the first

VAP. PROST leads to an improvement of 0.2 m and 0.8 m

compared to PROST-const and LST respectively. Hence, the

benefits of incorporating the DoA reliability increase for far-

range scenarios where at least one node is nearby the source.

V. CONCLUSIONS

We proposed to exploit the CDR as the DoA reliability for

distributed acoustic tracking. The CDR is incorporated as the

concentration parameter of the DoA likelihood function, mod-

elled by a vM distribution. The source DoAs are then tracked

in time at each individual node using a vM filter. To infer the

unmeasured source-sensor range, the vM filter is evaluated

for a cloud of uninformative range hypotheses. By network

fusion, spatial diversity of the nodes is exploited in order

to probabilistically triangulate stochastically relevant source

positions, and hence range hypotheses. Realistic simulation

results demonstrate improvements of up to 39% compared to

the classical approach of a constant concentration parameter,

and up to 74% compared to least-squares source triangulation.
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