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Abstract

Drone-embedded sound source localization (SSL) has interesting application perspective in challenging search and

rescue scenarios due to bad lighting conditions or occlusions. However, the problem gets complicated by severe

drone ego-noise that may result in negative signal-to-noise ratios in the recorded microphone signals. In this paper,

we present our work on drone-embedded SSL using recordings from an 8-channel cube-shaped microphone array

embedded in an unmanned aerial vehicle (UAV). We use angular spectrum-based TDOA (time difference of arrival)

estimation methods such as generalized cross-correlation phase-transform (GCC-PHAT),

minimum-variance-distortion-less-response (MVDR) as baseline, which are state-of-the-art techniques for SSL. Though

we improve the baseline method by reducing ego-noise using speed correlated harmonics cancellation (SCHC)

technique, our main focus is to utilize deep learning techniques to solve this challenging problem. Here, we propose

an end-to-end deep learning model, called DOANet, for SSL. DOANet is based on a one-dimensional dilated

convolutional neural network that computes the azimuth and elevation angles of the target sound source from the

raw audio signal. The advantage of using DOANet is that it does not require any hand-crafted audio features or

ego-noise reduction for DOA estimation. We then evaluate the SSL performance using the proposed and baseline

methods and find that the DOANet shows promising results compared to both the angular spectrum methods with

and without SCHC. To evaluate the different methods, we also introduce a well-known parameter—area under the

curve (AUC) of cumulative histogram plots of angular deviations—as a performance indicator which, to our

knowledge, has not been used as a performance indicator for this sort of problem before.
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1 Introduction
Unmanned aerial vehicles (UAVs), ubiquitously known

as drones, have found great use in a wide range of

applications—from casual use in photography to search

and rescue operations where human lives are at stake.

Reports by the United Nations and other humanitarian
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organizations document the successful deployment of

UAVs in relief efforts after natural disasters such as the

major earthquakes in Haiti and Nepal in 2010 and 2015,

respectively [1, 2]. UAVs have been effective because of

their ability to reach areas not easily accessible by humans.

They can also cover a larger area than a group of human

rescuers could on foot. In search and rescue scenarios,

UAVs have typically been equipped with cameras that help

locate areas with rubble and debris where people might

be trapped. More recently, there has been research on
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using embedded microphone arrays in the UAVs to tri-

angulate the sound coming from emergency whistles or

humans trapped beneath debris [3–7]. It is evident that

a sound source localization (SSL)-based detection system

can compliment the visual detection in scenarios where

the field of view may be occluded due to obstacles or bad

lighting or even operations carried out at night. However,

SSL is made difficult by the presence of high ego-noise

generated by the rotors and propellers of the UAV. In this

article, we report on our efforts to improve upon existing

techniques employed in SSL systems for UAVs.

SSL algorithms generally utilize the time difference of

arrival (TDOA) feature from multiple microphone pairs

[7]. The TDOA can be estimated using various algorithms

such as multiple signal classification (MUSIC) and gen-

eralized cross-correlation (GCC). For noise-robust SSL,

a generalized eigenvalue decomposition-based multiple

signal classification (GEVD-MUSIC) algorithm combined

with an adaptive estimation method of the noise cor-

relation matrix was proposed by [8]. In the context of

UAVs, the drone contains multiple sensors that can pro-

vide additional real-time data about the UAV itself such

as its rotor speeds and trajectory. It is natural to con-

clude that incorporating the additional data about the

UAV dynamics can benefit SSL. As such, a method for

combining information from the GCC between multiple

microphone inputs, the dynamics of the UAV, and the

Doppler shift in sound frequency due to motion was pro-

posed by [3]. Since the UAV is a remote platform with

limited computational capability, SSL algorithms must be

computationally efficient so that sound sources can be tri-

angulated in real time. Such an algorithmwas proposed by

[4] which involved a modified version of the MUSIC algo-

rithm based on incremental generalized singular value

decomposition (iGSVD-MUSIC). Furthermore, in order

to locate and track a moving sound source, an approach

involving time-frequency spatial filtering combined with

a particle filter was described to perform well under noisy

conditions by [6].

One of the primary challenges involved with SSL using

UAVs is the low signal-to-noise ratio (SNR) due to the

presence of several noise sources including high “ego-

noise” which is the noise emanating from all the mov-

ing parts of the UAV such as the rotors and propellers.

For accurate SSL, the ego-noise must be compensated

for somehow, perhaps via signal enhancement or noise

reduction. Recent studies have approached this problem

in different ways. A method of noise estimation using

learned dictionaries of ego-noise was proposed by [9].

Another study reported on using time-frequency spatial

filtering combined with beamforming and blind source

separation techniques [10]. Other works have utilized

order analysis-based denoising algorithms [11], adaptive

signal processing, and pitch shifting [12] methods. These

proposed techniques all involve some form of hand-

crafted modeling and fine-tuning, whichmakes the task of

ensuring robustness under different practical noise condi-

tions difficult and laborious. There is also the possibility

that the noise spectrum might overlap with the target

sound source spectrum; attempts to filter the noise might

inadvertently distort the target source and hence ham-

per SSL. More recently, there has been promising work

in data-driven approaches using deep neural networks for

ego-noise reduction which provides a way to bypass these

problems [13, 14].

SSL using neural networks (NNs) directly is still a

nascent research area, especially in the context we are

considering. Generic localization methods using differ-

ent neural network architectures such as convolutional

neural networks (CNNs) [15] and residual neural net-

works (ResNets) [16] have been proposed. In other

domains, such as image classification and segmentation,

it is reported that CNNs with dilated kernels [17] per-

form better than “vanilla” CNNs [18, 19]. To the best of

our knowledge, dilated CNN-based SSL has not yet been

proposed.

In this article, we present our method for SSL,

which was developed for the IEEE Signal Processing

Cup (SP Cup) 2019 titled “Search and Rescue with

drone-embedded SSL” [20]. Our proposed system called

DOANet (Direction of Arrival Network) uses a one-

dimensional dilated CNN fed on raw audio signals from a

microphone array, to estimate the elevation and azimuth

angles of a sound source while the UAV is both static

and moving. We compare our system against the baseline

system provided by the SP Cup organizers. The baseline

method is described in greater detail in Section 3.

2 Problem setup
The problem scenario we considered for our work

involved locating the direction of a speech sound source

from a UAV which was either hovering (static condition)

or flying (in-flight condition). The data we used for our

work was shared with us by the SP Cup organizers, a novel

dataset called DREGON (DRone EGonoise and localiza-

tiON) containing recordings of a sound source made from

a quadcopter UAV in static and in-flight conditions in

a low-reverberant large room [7]. That is, all recordings

were made with the UAV flying in an indoor environ-

ment; as such, the scope of our experiments described

in this article was limited to indoor environments. The

recordings were made using a cube-shaped 8-microphone

array mounted below the UAV as illustrated in Fig. 1.

The constellation of 8 microphones formed two paral-

lel horizontal squares, and each of them was twisted in

opposite directions in the azimuth plane, as shown in

Fig. 2. The DREGON dataset is discussed in more detail

in Section 5.1.
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Fig. 1 Graphical representation of drone-embedded SSL. The UAV in this figure was taken from Freepik.com with permission

For 3D DOA estimation, we need to predict the azimuth

and elevation angle. A naive way to evaluate the pre-

dicted DOA is to calculate the deviation of the estimated

angles from the true values. A better evaluation metric is

obtained by calculating the great-circle angular distance

between predicted and true direction. It is a measure

of angular deviation between two points in a spherical

coordinate system which considers both the azimuth and

elevation angles of the predicted and true direction. A

visual representation of the azimuth angle, the elevation

angle, and the great-circle angular distance is illustrated in

Fig. 1.

As mentioned previously, the issue that makes SSL most

daunting is the presence of ego-noise originating from

Fig. 2 Positional plot of all microphones and rotors (in meters)
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the rotors and propellers of the UAV while flying or hov-

ering. These noise sources are usually very close to the

microphones resulting in negative SNRwhich pose quite a

challenge when trying to discern the target sound source.

The noisy signal received by ith microphone, yi(t), can be

modeled as:

yi(t) = si(t) +

N
∑

j

nij(t) (1)

where si(t) is the received signal originated from the target

sound source, nij(t) is the received signal originated from

jth noise source, i = 1, 2, ..., 8, and j = 1, ...,N . The most

significant sources of ego-noise for a quadcopter UAV are

its 4 rotors. So for simplicity, we can assume that N is

equal to 4. In this work, our objective is to estimate the

direction of sound source in terms of azimuth (θ ) and

elevation (ϕ) angles using the noisy audio signals, yi(t),

where yi(t) is recorded in either in-flight or static UAV

conditions.

For in-flight condition, the DREGON dataset contained

recordings of two kinds of sound sources—white noise

and human speech. We focused on the speech sound

source in our work since SSL is more challenging for

speech compared to white noise owing to the dynamic fre-

quency content in the former. Along with actual in-flight

UAV recordings, the DREGON dataset also contained

recordings where the UAV was stationary and individual

rotors were turned on one at a time and set to differ-

ent speeds. There was no target sound source when these

recordings were made. These recordings thus served as

direct recordings of the rotor noise at different speeds and

were utilized to analyze the characteristics of rotor noise

as well as generate synthetic noisy recordings for training.

For each recording in the DREGON dataset, we were also

given metadata which included the actual DOA label and

UAV rotor speeds at different timestamps.

3 Baseline
We compared our proposed system, DOANet, against

the baseline system provided by the organizers of the SP

Cup 2019. This baseline system utilized angular spectrum

techniques which are described in detail in the following

subsection. In our initial efforts, we found that we were

able to improve the baseline system by first applying an

algorithm utilizing the UAV rotor speeds to dynamically

denoise the recordings. This is discussed in Section 3.2.

We compared DOANet against this modified baseline

system as well.

3.1 Baseline: angular spectrummethod

The most common method of SSL using multiple micro-

phones is to use time difference of arrival (TDOA) calcu-

lated between microphone pairs [7]. Assuming the sound

source is far away, a one-to-one relation exists between

direction of arrival (DOA) and TDOA for each micro-

phone pair. Thus, the problem of SSL using multiple

microphones is essentially a problem of TDOA estimation

from microphone pairs. Generally, TDOA is addressed

using the short-time Fourier transform (STFT) of the

two signals. Compared to deterministic TDOA estima-

tion, probabilistic approaches called angular spectrum-

based methods perform better where a function of

TDOA is generated and calculated for every possible

TDOA [21].

Let us consider a microphone pair (i, j) from M micro-

phones. Let Yi(t, f ) and Yj(t, f ) represent the STFT of

noisy microphone signals yi(t) and yj(t), respectively, as

denoted in Eq. 1. For the microphone pair, a set of TDOA

values can be linked with all possible DOA (θ ,ϕ), where

θ and ϕ represent the azimuth and elevation angles. To

do so, a set of points S(x, y, z) is taken on the 3D plane

covering a uniform grid of (θ ,ϕ):

S(x, y, z) = S (cos(ϕ)cos(θ), cos(ϕ)sin(θ), sin(ϕ))

Denoting the displacement vector from jth to ith micro-

phone by dij and wave propagation speed by c, the TDOA

between the two microphone for each possible DOA,

τij(θ ,ϕ), can be computed as follows:

τij (θ ,ϕ) =
dij · S (x, y, z)

c
(2)

The next step is to construct a function of τij(θ ,ϕ)

utilizing Yi(t, f ) and Yj(t, f ) which will peak for true

τij. This function is called local angular spectrum func-

tion and is denoted by φij(t, f , τ). One way to do this is

a technique called generalized cross-correlation phase-

transform (GCC-PHAT) [21] which produces the follow-

ing function:

φGCC−PHAT
ij

(

t, f , τ
)

= ℜ

(

Yi(t, f )Yj(t, f )

| Yi(t, f )Yj(t, f ) |
e−2jπ f τij

)

(3)

For robust DOA estimation, φij(t, f , τ) is summed over

all frequencies, microphone pairs, and time frames. In

cases where the sound source may not be active through-

out all time frames, taking the maximum is preferred to

summing over time the total time span [21]. Thus, we

obtain a global angular spectrum φ(θ ,ϕ) for each possible

direction:

φ(θ ,ϕ) =
∑

ormax
t

M−1
∑

i=1

M
∑

j=i+1

∑

f

φij

(

t, f , τ
)

(4)

Finally, DOA is estimated by the local peak finding

method from φ(θ ,ϕ).



Qayyum et al. EURASIP Journal on Audio, Speech, andMusic Processing         (2020) 2020:16 Page 5 of 18

There are several techniques for building φij(t, f , τ)

other than GCC-PHAT. The GCC-PHAT method is how-

ever the most popular choice [21]. The baseline system

provided by the SP Cup organizers also considered six

other techniques for building the local angular spectrum

function, φij(t, f , τ). Generalized cross-correlation with a

non-linear function (GCC-NONLIN) is a slightly modi-

fied version of GCC-PHAT where a non-linear function

is applied on GCC-PHAT to emphasize large values. The

other five methods are SNR based and have been pro-

posed in [21]. The general scheme involves calculating

the directional SNR by extracting target signal and noise

power for every possible direction and using the assump-

tion that SNR is likely to peak for the true direction. Such

methods have the advantage of ignoring erroneous contri-

bution from other directions. Among the five SNR-based

methods, two of them use beamformer-based methods to

separate the target signal and noise, one is a statistical

method, and the rest are hybrids of the beamformer and

statistical methods.

The two beamformer methods are the minimum-

variance-distortion-less-response (MVDR) and delay-

and-sum (DS) methods which work based on Capon

(or MVDR) and classical (or Bartlett) beamformers,

respectively [22, 23]. MVDR beamformer generally per-

forms better than classical beamformer as all degrees of

freedom are used to maximize energy on the specific

direction [24]. However, these beamformer-based meth-

ods tend to overestimate the SNR at low frequencies.

This problem is addressed by the diffuse noise model

(DNM) method where SNR is estimated a priori using

a statistical mixture model of one predominant source

and noise. Weighted minimum-variance-distortion-less-

response (MVDRW) and weighted delay-and-sum (DSW)

methods are formulated by combining DNM with MVDR

and DS, respectively.

3.2 Modified baseline: speed correlated harmonics

cancellation with angular spectrum

Acoustic noise in recorded audio during UAV flights con-

sists of three major components [7]. These components

are ego-noise, air flow noise from the propellers, and wind

noise; ego-noise is the most significant in terms of noise

power spectrum and is principally generated by the rotors

of the UAV. The DREGON dataset contained recordings

where the UAV was kept stationary, with individual rotors

turned on one at a time and ramped up to various speeds.

These recordings served as noise samples for each rotor.

The paper detailing the DREGON dataset [7] showed that

the peaks of power spectral density for these individ-

ual rotor recordings varied proportionally with the rotor

speed.

In our literature review, we came across works that

also noted this type of relationship and utilized it for

UAV noise harmonics cancellation [11, 12, 14]. The noise

power spectrum of one of the rotors at different speeds

is shown in Fig. 3. We analyzed all the available record-

ings of rotor noise in the DREGON dataset and used

simple linear regression between the first harmonic of

the rotor noise and rotor speed to obtain the following

relationship:

f
ego
0 (rs) = α · rs (5)

Fig. 3 Frequency bins of ego-noise for different rotor speeds
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where f
ego
0 (rs) is the first harmonic of ego-noise as a

function of the rotor speed, and rs and α are the pro-

portionality constant, computed from the gradient of

the plot of f
ego
0 (rs) vs. rs. The value of α thus obtained

was 0.98.

In the modified baseline method, we designed band-

pass filters and applied them on the target sound source

recordings to extract the harmonics given by Eq. 5 for

different rotor speeds the UAV happened to be fly-

ing or hovering at during the recording. The signals

obtained from the filters were subtracted from the orig-

inal audio. The resulting signal was likely to have a

better SNR. This denoised signal was then fed through

the original baseline system described in Section 3.1.

This process is illustrated in Fig. 4. Since this modifi-

cation to the baseline system involves suppressing the

noise that is correlated with rotor speed, we refer to

this method as speed correlated harmonics cancellation

(SCHC).

4 Proposed system
We propose an end-to-end one-dimensional dilated con-

volutional neural network, called DOANet. Our network

accepts multi-channel raw audio signals from the micro-

phone array and estimates the DOA of the sound source

by predicting the azimuth and elevation angles. The SSL

system using DOANet is illustrated in Fig. 5. Over the

course of our work, we found having two separate mod-

els for predicting azimuth and elevation angle separately

worked better than trying to do so using a single model. So

DOANet is composed of two networks which are almost

identical (discussed further in Section 4.2), each taking on

the task of predicting the azimuth and elevation angles

independently.

The raw 8 channel audio signals are first passed through

a channel selection block which can be configured to

select the appropriate channels. The selected channels

are then windowed and propagated through the DOANet

model.

Fig. 4 Block diagram of the modified baseline method
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4.1 Channel selection

We have two configurable modes for the channel selec-

tion block: CS (channel separation) and ACU (all channel

utilization). In the ACU mode, DOANet uses all 8 audio

channels. In the CS configuration, we create two different

sets of audio signals—the first set consists of microphones

0, 1, 4, and 5 and is referred to as CS0145 in the rest of this

article; the second set consists of the remaining micro-

phones 2, 3, 6, and 7 and is referred to as CS2367. The

spatial location and orientation of the microphones are

illustrated in Fig. 2. These two sets were chosen to ensure

maximum spatial diversity of selected microphones. We

trained separate networks for each of these sets.

4.2 Network architecture for DOANet

The networks within DOANet follow the typical architec-

ture used in CNN-based state-of-the-art systems. How-

ever, instead of applying the usual convolution operation,

we use dilated convolutions. The convolutional kernel

or filter is expanded over different sample ranges using

different dilation rates. As the dilation rate is increased,

the gap between original convolution filter elements gets

wider. This allows a kernel of the same size to incorpo-

rate information from a larger context [18, 19]. We were

motivated to use dilated convolution for audio signals

as it had been successfully applied in speech and music

synthesis [25], and speech recognition [26] from raw audio

signals.

The detailed network architecture of DOANet is illus-

trated in Fig. 6. Overall, there are 9 convolutional layers,

each one followed by a ReLU activation function and a

batch normalization layer [27, 28]. Each layer has a higher

dilation rate than the previous. Compared to the general

scheme of using powers of 2, dilation rates following a

Fibonacci sequence were shown to perform slightly bet-

ter [18]. We thus used the following sequence of dilation

rates: 1, 2, 3, 5, 8, 13, 21, 34, and 55. After two consecutive

convolutions, there is a max pooling layer with a filter size

of 2, except the first max pooling layer whose filter size is

3. After the final convolution, we have a global max pool-

ing layer. The pooled output is passed through a couple

of layers with fully connected neurons (dense layers) and

tanh activation function at the last layer which generate

the network’s output.

As mentioned earlier, we use two different networks

trained independently for predicting the azimuth and ele-

vation angles in the DOANet. These networks primarily

differ in their hyper-parameters which are shown in Fig. 6.

Another difference is that the network for estimating

azimuth angle has two output nodes which map to the

x-axis and y-axis projections of the azimuth angle. The

reasoning for this is discussed in Section 4.3. The total

Fig. 5 DOANet-based sound source localization
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Fig. 6 Network architecture of DOANet

number of parameters for each model is summarized in

Table 1.

4.3 DOA estimation from DOANet

The elevation angle prediction network of DOANet out-

puts a number between −1 and 1 which correspond to

the scaled elevation angle (actual elevation angle between

−90 and +90◦ divided by 90). However, the output of the

azimuth angle network is not the scaled azimuth angle;

instead, it is the x-axis and y-axis projection of a unit

length two-dimensional vector. For an azimuth angle, θ

projections on the x- and y-axes are x = cos θ and

y = sin θ . We observed that having the network predict

the projections worked better than making it predict the

angle. We hypothesize that this may offer the network

more flexibility in learning the DOA on the xy plane, since

the projections on the two axes are independent. We use

the trigonometric relation θ = tan−1(y/x) to calculate

the azimuth angle from the predicted projection values.

Thus, the predicted elevation angle and azimuth angle

together provide DOANet’s estimate of the DOA of the

sound source.

5 Experiments
In this section, we describe the dataset, experimental

setup, and evaluation metric used in our study.

Table 1 Total number of parameters for DOANet models

Model Trainable Non-trainable Total

Azimuth 67,938,850 16,320 67,955,170

Elevation 34,902,177 11,200 34,913,377

5.1 SP Cup 2019 data

For training and evaluating our system, we used a

subset of the DREGON dataset [7] compiled by the

organizers of the IEEE SP Cup 2019 [29]. The dataset con-

tained multi-channel audio files recorded in a large low-

reverberant room, using the microphone array embedded

on a quadcopter UAV. A speaker was placed at the cen-

ter of the room which played different audio clips taken

from the TIMIT dataset [30] containing human speech.

The dataset also contained recordings where the speaker

played white noise instead of human speech, but we did

not include them in this study since SSL is more chal-

lenging for speech compared to white noise owing to

the dynamic frequency content in speech. The recordings

were grouped into two categories: static task and in-flight

task. Files in the static task category were recorded with

the UAV hovering in a fixed position. Similarly, the in-

flight task category contained files recorded when the

UAV was flying around the room. The dataset also con-

tained metadata for each recording related to the position

of the UAV in the room tracked with 3D Motion Capture

Hardware and UAV rotor speeds at different timestamps

within the recordings. The dataset was shared with us by

the SP Cup organizers in two phases: primary round data

and final round data. The final round data was only used

for evaluation, while the primary round data was used

for training and validation. The summary of the audio

data split into train, validation, and test sets is shown in

Table 2, while the following sections detail how the data

was prepared.

5.1.1 Primary round data

The primary round data contained 300 static audio files

around 2 to 3 s long and 16 in-flight audio files which were
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Table 2 Audio data points created from SP Cup 2019 data

Task Train Validation Test

Static 1126 569 120

In-flight 180 60 80

4 s in duration. The static files were randomly divided

into training and validation sets with 200 files for train-

ing and 100 files for validation. The train and validation

data for in-flight files were divided in a 3:1 ratio. For train-

ing DOANet, we segmented all the static audio files into

0.5-s clips. The in-flight files were also segmented in the

same way with metadata (DOA labels, rotor speeds) at 15

timestamps as follows: 0.25 s, 0.5 s, 0.75 s, 1 s, 1.25 s, 1.5 s,

1.75 s, 2 s, 2.25 s, 2.5 s, 2.75 s, 3 s, 3.25 s, 3.5 s, and 3.75 s.

As a result, we obtained 1126 and 569 static train and val-

idation data points, respectively. For in-flight data, we had

180 and 60 train and validation data points, respectively.

5.1.2 Final round data

The final round data added a further 20 static audio files

with duration ranging from 2 to 4 s and 1 in-flight audio

file with a duration of 20 s. The static audio files were split

in the same way as the primary round data, resulting in a

total of 120 data points. The in-flight speech audio file had

a total of 80 timestamps for whichmetadata was provided.

The timestamps were at intervals of 0.25 s, each covering

0.5 s of the recording. The entirety of the final round data

was used only for evaluating the trained DOANet.

5.2 Synthetic data

The amount of audio data provided in the SP Cup 2019

was not sufficient for properly training a deep neural net-

work such as DOANet. Therefore, we created a synthetic

static audio dataset using the open-source pyroomacous-

tics package [31]. This package allowed us to simulate

indoor environments where we could place a sound

source, noise sources, and microphones at different posi-

tions in the virtual space.

We created a virtual 10 m × 10 m × 5 m room which

was comparable to the environment where the DREGON

recordings were made. We also constructed a virtual UAV

to mimic the one used in the DREGON dataset, with an 8-

microphone array and 4 noise sources located at the four

rotor positions in the relative positions as shown in Fig. 2

and described in [7]. We wanted our synthetic data to

match the DREGON dataset as much as possible. To that

end, we extracted the rotor ego-noise from static audio

files in the primary round data (Section 5.1.1) using a gen-

eralized sidelobe canceller (GSC) beamformer [32]. The

noise sources placed at the rotor locations were made to

emit these extracted noise signals.

We then added a sound source located at the floor

of the room and made it emit random clips of human

speech from the TIMIT dataset, to act as our target sound

source. The virtual UAV was then placed at random posi-

tions in the virtual room, and the simulated recordings

of the microphone array were generated. The positions of

the virtual sound source and UAV were used to calculate

the DOA labels for each recording. Using this simulation

technique, we were able to generate a large 8-channel syn-

thetic audio dataset containing 2980 recordings to train

DOANet.

5.3 DOANet model training

The DOANet model was built using the Keras [33] and

Tensorflow [34] frameworks and trained on Kaggle Note-

books’ GPU instances. The model was trained in three

stages. In the first stage, DOANet was trained from

scratch on the synthetic data described in Section 5.2 until

the model converged, i.e., until validation objective func-

tion plateaued. In the subsequent two stages, the model

was fine-tuned using the training and validation parti-

tions of the DREGON dataset described in Section 5.1.1;

first, the static data points were used and then the in-

flight data points. This training scheme was inspired by

the “curriculum learning” approach proposed in [35], and

we found that it helped the final model converge faster

and more accurately than when training with all the data

mixed together in a single stage.

The objective function for the training algorithm was

the mean squared error (MSE) between the predictions

and ground truth labels (i.e., scaled elevation angles, and

x-y projections of the azimuth angles). We used the popu-

lar “Adam” [36] optimizer algorithm with an initial learn-

ing rate of 0.01 when training from scratch. During the

fine-tuning stages, the initial learning rate was set at 0.001.

We decreased the learning rate by a factor of 10 every time

the objective function on the validation data stalled or

started getting worse for consecutive training iterations.

We did this up to three times before stopping the train-

ing run. On average, the first stage of training lasted for

50 epochs on synthetic data and fine-tuning stages for

35 epochs on the real data. The total training time was

about 6 h for each azimuth model and about 4 h for each

elevation model.

5.4 Performance evaluation

The proposed system, along with the baseline and mod-

ified baseline systems described in Section 3.1 and 3.2,

respectively, was evaluated on the final round data of the

DREGON dataset as described in Section 5.1.2. For the

modified baseline using SCHC, we computed the pro-

portionality constant in Eq. 5 from the training data and

obtained a value of α = 0.98. We limited the number

of bandpass filters used to extract the ego-noise harmon-

ics to 10 after determining that no gain in accuracy was

obtained beyond this number.
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Fig. 7 Typical cumulative histograms and the shaded area in each subplot is the AUC. The normalized AUC is obtained by dividing the shaded area

by the total area of the rectangular box. In these plots, the x-axis indicates the angular value and y-axis indicates the cumulative number of data

points. Fractional AUCs are calculated and referred to as AUC(< δ), indicating the area under the curve from angular deviation = 0 to angular

deviation = δ. For example, the AUC, AUC(< 10), and AUC(< 20) are shown in a, b, and c

For each system, we calculated the azimuth and ele-

vation angle deviation and great-circle angular distance

as described in Section 2. The possible range of val-

ues for these metrics (180◦) was divided into 36 equal

bins of 5◦. The values obtained were plotted in cumula-

tive histograms using these 36 bins. Finally, we calculated

the normalized area under the curve (AUC) for all three

systems and compared them.

Figure 7 shows typical cumulative histograms, and the

shaded area in each subplot is the AUC. The normalized

AUC is obtained by dividing the shaded area by the total

area of the rectangular box. In these plots, the x-axis indi-

cates the angular value and y-axis indicates the cumulative

number of data points. Using the normalized AUC val-

ues, we sorted out the best technique or scheme for the

baseline systems and our proposed system.

We chose AUC as our key performance indicator over

conventional accuracy (number of correct predictions

divided by total predictions) because of its inherent qual-

ity of measuring the system’s consistency in predicting the

Table 3 Nomenclature used in presenting results

Technique Nomenclature

DNM + SCHC DNM with SCHC

DS + SCHC DS with SCHC

DSW + SCHC DSW with SCHC

GCC-NONLIN + SCHC GCC-NONLIN with SCHC

GCC-PHAT + SCHC GCC-PHAT with SCHC

MVDR + SCHC MVDR with SCHC

MVDRW + SCHC MVDRW with SCHC

DOANet + CS0145 DOANet with channel separation (channels = 0, 1, 4, 5)

DOANet + CS2367 DOANet with channel separation (channels = 2, 3, 6, 7)

DOANet + ACU DOANet with all channel utilization

DOANet + CS0145(A) + CS0145(E) DOANet with channel separation (channels for azimuth = 0, 1, 4, 5 and for elevation = 0, 1, 4, 5)

DOANet + CS0145(A) + CS2367(E) DOANet with channel separation (channels for azimuth = 0, 1, 4, 5 and for elevation = 2, 3, 6, 7)

DOANet + CS0145(A) + ACU(E) DOANet with channel separation for azimuth (channels = 0, 1, 4, 5) and all channel utilization for elevation

DOANet + CS2367(A) + CS0145(E) DOANet with channel separation (channels for azimuth = 2, 3, 6, 7 and for elevation = 0, 1, 4, 5)

DOANet + CS2367(A) + CS2367(E) DOANet with channel separation (channels for azimuth = 2, 3, 6, 7 and for elevation = 2, 3, 6, 7)

DOANet + CS2367(A) + ACU(E) DOANet with channel separation for azimuth (channels = 0, 1, 4, 5) and all channel utilization for elevation

DOANet + ACU(A) + CS0145(E) DOANet with all channel utilization for azimuth and channel separation for elevation (channels = 0, 1, 4, 5)

DOANet + ACU(A) + CS2367(E) DOANet with all channel utilization for azimuth and channel separation for elevation (channels = 2, 3, 6, 7)

DOANet + ACU(A) + ACU(E) DOANet with all channel utilization for both azimuth and elevation
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accurate DOA. Generally, we consider a prediction accu-

rate if the angular deviation of the prediction is within

a predefined margin of error. But the problem with this

approach is that “slightly wrong” and “grossly wrong” are

treated the same. Likewise, the granularity, in how cor-

rect a prediction is, is not preserved either. To avoid this,

we opted to use AUC for comparing different systems and

analyzing the consistency in a system’s ability to correctly

estimate the DOA.

We also calculate fractional AUCs referred to as AUC(<

δ), indicating the area under the curve from angular devi-

ation = 0 to angular deviation = δ. For example, the AUC,

AUC(< 10), and AUC(< 20) are shown in Fig. 7a–c. From

these figures, we can infer that higher AUC value results in

lower standard deviation for angular error of azimuth and

elevation and great-circle angular distance.

6 Results
This section presents and compares the results for the

baseline, modified baseline, and proposed systems con-

figured in different schemes. The nomenclature used for

specifying different configurations and techniques for

which results are presented is shown in Table 3. The best

performing techniques for the baseline system (angular

spectrum methods), modified baseline system (angular

spectrum methods with SCHC), and DOANet are shown

with blue, green, and red colors, respectively, in all the

tables in the subsequent sections.

Table 4 AUC of static azimuth angle deviation

Technique AUC AUC(<10) AUC(<20)

DNM 0.6917 0.0183 0.0417

DS 0.7706 0.0213 0.0509

DSW 0.6977 0.0208 0.0461

GCC-NONLIN 0.7465 0.0238 0.0521

GCC-PHAT 0.7569 0.0231 0.0516

MVDR 0.7500 0.0218 0.0498

MVDRW 0.6931 0.0194 0.0428

DNM + SCHC 0.6734 0.0183 0.0417

DS + SCHC 0.7789 0.0213 0.0509

DSW + SCHC 0.7000 0.0208 0.0461

GCC-NONLIN + SCHC 0.7498 0.0248 0.0530

GCC-PHAT + SCHC 0.7625 0.0236 0.0525

MVDR + SCHC 0.7356 0.0206 0.0479

MVDRW + SCHC 0.6931 0.0190 0.0424

DOANet + CS0145 0.6875 0.0150 0.0509

DOANet + CS2367 0.7941 0.0225 0.0653

DOANet + ACU 0.7806 0.0178 0.0549

Table 5 AUC of static elevation angle deviation

Technique AUC AUC(<10) AUC(<20)

DNM 0.8845 0.0206 0.0537

DS 0.8662 0.0208 0.0535

DSW 0.8731 0.0206 0.0507

GCC-NONLIN 0.8931 0.0225 0.0588

GCC-PHAT 0.8970 0.0227 0.0600

MVDR 0.8593 0.0185 0.0507

MVDRW 0.8782 0.0189 0.0528

DNM + SCHC 0.8780 0.0199 0.0507

DS + SCHC 0.8630 0.0201 0.0514

DSW + SCHC 0.8755 0.0208 0.0521

GCC-NONLIN + SCHC 0.8914 0.0222 0.0579

GCC-PHAT + SCHC 0.8988 0.0227 0.0611

MVDR + SCHC 0.8657 0.0178 0.0500

MVDRW + SCHC 0.8792 0.0197 0.0542

DOANet + CS0145 0.9162 0.0116 0.0551

DOANet + CS2367 0.9192 0.0116 0.0581

DOANet + ACU 0.9169 0.0123 0.0558

Table 6 AUC of static great-circle angular distance

Technique AUC AUC(<10) AUC(<20)

DNM 0.7102 0.0157 0.0389

DS 0.7877 0.0169 0.0426

DSW 0.7428 0.0171 0.0407

GCC-NONLIN 0.7785 0.0190 0.0456

GCC-PHAT 0.7845 0.0181 0.0447

MVDR 0.7819 0.0155 0.0405

MVDRW 0.7435 0.0146 0.0368

DNM + SCHC 0.6935 0.0146 0.0359

DS + SCHC 0.7819 0.0150 0.0394

DSW + SCHC 0.7470 0.0171 0.0412

GCC-NONLIN + SCHC 0.7803 0.0190 0.0456

GCC-PHAT + SCHC 0.7910 0.0181 0.0449

MVDR + SCHC 0.7731 0.0139 0.0389

MVDRW + SCHC 0.7440 0.0148 0.0375

DOANet + CS0145(A) + CS0145(E) 0.9014 0.0032 0.0269

DOANet + CS0145(A) + CS2367(E) 0.9028 0.0035 0.0278

DOANet + CS0145(A) + ACU(E) 0.9028 0.0037 0.0285

DOANet + CS2367(A) + CS0145(E) 0.9169 0.0063 0.0352

DOANet + CS2367(A) + CS2367(E) 0.9194 0.0067 0.0368

DOANet + CS2367(A) + ACU(E) 0.9181 0.0065 0.0361

DOANet + ACU(A) + CS0145(E) 0.9113 0.0051 0.0292

DOANet + ACU(A) + CS2367(E) 0.9150 0.0049 0.0313

DOANet + ACU(A) + ACU(E) 0.9127 0.0053 0.0303
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Fig. 8 AUCs for cumulative static azimuth angle deviation

6.1 Static task performance analysis

The AUC for azimuth angle deviation, elevation angle

deviation, and great-circle angular distance deviation

for the different systems are presented in Tables 4,

5, and 6, respectively. The AUCs for the best scheme

from each system are also provided in Figs. 8, 9,

and 10.

6.1.1 Azimuth angle deviation

Table 4 shows that for the baseline system, using the delay-

and-sum (DS) technique gave the best results. Overall, the

best performing system was DOANet using microphone

channels 2, 3, 6, and 7. From Fig. 8, it is clear that the

range of angular deviations for DOANet is much lower

than for the baseline systems. This indicates DOANet

is more consistent with its predictions than the other

systems.

6.1.2 Elevation angle deviation

Table 5 shows that for the baseline system, using the gen-

eralized cross-correlation phase-transform (GCC-PHAT)

technique gave the best results. Overall, the best perform-

ing system was still DOANet using microphone chan-

nels 2, 3, 6, and 7. From Fig. 9, we again see that the

range of angular deviation for DOANet is more restricted

compared to the baseline systems.

Fig. 9 AUCs for cumulative static elevation angle deviation
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Fig. 10 AUCs for cumulative static great-circle angular distance

6.1.3 Great-circle angular distance

Table 6 shows that when comparing the great-circle angu-

lar distance, which is a measure that combines both

the azimuth and elevation angles, all configurations of

DOANet are better than the two baseline systems by a

significant margin. This is also evident in Fig. 10, where

we can see that the angular deviations for the baseline

systems cover a wider range and therefore are less con-

sistent. We also see that using microphone channels 2,

3, 6, and 7 gave the best results for DOANet. If we con-

sider AUC(<10) and AUC(<20), however, we do see that

DOANet falls a little short. This indicates that the baseline

systems have a better angular resolution for these samples

with low angular deviation.

6.2 In-flight task performance analysis

The AUC for azimuth angle deviation, elevation angle

deviation, and great-circle angular distance deviation for

the different systems are presented in Tables 7, 8, and 9,

respectively. The AUCs for the best scheme from each sys-

tem are also provided in Figs. 11, 12, and 13. It is worth

noting that for all the metrics considered, both DOANet

and modified baseline system outperformed the baseline

system by a significant margin.

6.2.1 Azimuth angle deviation

Table 7 shows that for the baseline system, using the

weighted delay-and-sum (DSW) technique gave the best

results. Overall, the best performing system was DOANet

using microphone channels 2, 3, 6, and 7. From Fig. 11,

we can see that compared to the baseline system, both

the modified baseline system and DOANet perform

significantly better. For smaller angle deviations, the

modified baseline system has a slight edge over DOANet.

6.2.2 Elevation angle deviation

Table 8 shows that for the baseline and modified base-

line systems, using the delay-and-sum (DS) and weighted

delay-and-sum (DSW) techniques gave the best results,

respectively. Overall, the best performing system was

DOANet using microphone channels 0, 1, 4, and 5. From

Fig. 12, we can see that the performance of both the

modified baseline system and DOANet is better than the

Table 7 AUC of in-flight azimuth angle deviation

Technique AUC AUC(<10) AUC(<20)

DNM 0.3378 0.0045 0.0101

DS 0.3392 0.0031 0.0073

DSW 0.3587 0.0045 0.0101

GCC-NONLIN 0.3462 0.0042 0.0090

GCC-PHAT 0.3285 0.0031 0.0066

MVDR 0.3382 0.0042 0.0083

MVDRW 0.3583 0.0049 0.0097

DNM + SCHC 0.6785 0.0089 0.0253

DS + SCHC 0.6965 0.0097 0.0306

DSW + SCHC 0.6281 0.0066 0.0191

GCC-NONLIN + SCHC 0.6576 0.0063 0.0198

GCC-PHAT + SCHC 0.6313 0.0063 0.0170

MVDR + SCHC 0.6788 0.0089 0.0250

MVDRW + SCHC 0.6073 0.0028 0.0101

DOANet + CS0145 0.6875 0.0045 0.0153

DOANet + CS2367 0.7941 00.0035 0.0146

DOANet + ACU 0.7806 0.0049 0.0139
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Table 8 AUC of in-flight elevation angle deviation

Technique AUC AUC(<10) AUC(<20)

DNM 0.5566 0 0

DS 0.5691 0.0014 0.0035

DSW 0.5642 0 0

GCC-NONLIN 0.5545 0 0

GCC-PHAT 0.5559 0 0

MVDR 0.5552 0 0

MVDRW 0.5618 0 0

DNM + SCHC 0.9156 0.0163 0.0510

DS + SCHC 0.8837 0.0128 0.0392

DSW + SCHC 0.9233 0.0139 0.0493

GCC-NONLIN + SCHC 0.8958 0.0087 0.0337

GCC-PHAT + SCHC 0.8917 0.0097 0.0337

MVDR + SCHC 0.9097 0.0153 0.0451

MVDRW + SCHC 0.9153 0.0146 0.0431

DOANet + CS0145 0.9740 0.0330 0.0858

DOANet + CS2367 0.9726 0.0326 0.0847

DOANet + ACU 0.9653 0.0250 0.0771

Table 9 AUC of in-flight great-circle angular distance

Technique AUC AUC(<10) AUC(<20)

DNM 0.3091 0 0

DS 0.3066 0 0

DSW 0.3108 0 0

GCC-NONLIN 0.3281 0 0

GCC-PHAT 0.3302 0 0

MVDR 0.3076 0 0

MVDRW 0.3229 0 0

DNM + SCHC 0.7128 0.0045 0.0188

DS + SCHC 0.7079 0.0052 0.0191

DSW + SCHC 0.7020 0.0028 0.0115

GCC-NONLIN + SCHC 0.6975 0.0024 0.0115

GCC-PHAT + SCHC 0.6715 0.0017 0.0083

MVDR + SCHC 0.7256 0.0038 0.0156

MVDRW + SCHC 0.6857 0.0024 0.0073

DOANet + CS0145(A) + CS0145(E) 0.7344 0.0031 0.0125

DOANet + CS0145(A) + CS2367(E) 0.7382 0.0038 0.0135

DOANet + CS0145(A) + ACU(E) 0.7285 0.0035 0.0132

DOANet + CS2367(A) + CS0145(E) 0.8139 0.0031 0.0135

DOANet + CS2367(A) + CS2367(E) 0.8160 0.0028 0.0139

DOANet + CS2367(A) + ACU(E) 0.8101 0.0031 0.0132

DOANet + ACU(A) + CS0145(E) 0.7976 0.0014 0.0083

DOANet + ACU(A) + CS2367(E) 0.8000 0.0017 0.0087

DOANet + ACU(A) + ACU(E) 0.7944 0.0014 0.0076

baseline. Unlike previous scenarios, DOANet obtained a

better AUC(<10) score than the other systems.

6.2.3 Great-circle angular distance

Table 9 shows that in terms of the great-circle angular dis-

tance, DOANet using microphone channels 2, 3, 6, and 7

performed better than both baseline and modified base-

line systems. From Fig. 13, we can see that for angular

deviations less than 20, the performance of DOANet is

very similar to the modified baseline system. It should

be mentioned that for all angular spectrum techniques

available in the baseline system, all angular distances were

greater than 40◦.

6.3 Summary

DOANet is seen to outperform both the baseline and

modified baseline techniques while comparing the AUC

values. However, for the fractional AUC values, AUC(<

10) and AUC(< 20), DOANet falls behind the modified

baseline techniques in most cases. To explore the results

further, we performed statistical significance tests (p value

of two-sample t test at 0.05 significance level) using the

deviation of predicted azimuth, elevation, and the great-

circle angular distance values from ground truth. The p

values obtained when comparing the technique with the

highest AUC (DOANet or modified baseline) with the

best baseline method are summarized in Table 10. A p

value less than 0.05 indicates that the technique with

higher AUC value is indeed better, whereas a p value

greater than or equal to 0.05 indicates the higher AUC

value has no statistical significance.

To illustrate how the p values were calculated in

Table 10, let us consider the task of static azimuth

angle deviation (first row). Comparing AUC, DOANet +

CS2367 had the overall highest AUC value and DS had the

highest AUC among baseline techniques (see Table 4). So

we conducted statistical tests between DOANet + CS2367

and DS. Similarly, the pairs compared for AUC(< 10)

and AUC(< 20) were GCC-NONLIN + SCHC vs. GCC-

NONLIN and DOANet + CS2367 vs. GCC-NONLIN,

respectively. When comparing results for AUC(< 10) and

AUC(< 20), we did not consider all the data points; out of

the total 120 static test data points, we included only those

data points where the angular deviation was less than 10

and 20◦ for AUC(< 10) and AUC(< 20), respectively.

Observing Table 10, for static tasks, DOANet was

always statistically better compared to its best baseline

counterpart wherever it had the highest AUC and frac-

tional AUC values. However, techniques involving SCHC

were not always statistically better despite having higher

AUC values (p value was greater than 0.05). From this,

we can conclude that DOANet provides a statistically sig-

nificant improvement over baseline methods for static

tasks.
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Fig. 11 AUCs for cumulative in-flight azimuth angle deviation

In in-flight tasks, both DOANet and techniques with

SCHC were statistically better than the best baseline

methods. To analyze the results further, we performed

statistical tests between the best DOANet schemes and

SCHC techniques for the in-flight cases. The p values

obtained are provided in Table 11.

By looking at Tables 10 and 11 together, we can see that

whenever DOANet had the higher AUC values, the differ-

ence was always statistically significant (p value less than

0.05). Conversely, when SCHC techniques had higher

AUC values than DOANet, the difference was never

statistically significant, with the p values being much

larger than 0.05. From this, we conclude that, in most of

the cases, our proposed model does indeed provide an

improvement over baseline methods; at worst, it is never

statistically worse than modified baseline methods, and

always better than the original baseline methods.

7 Conclusion
In this article, we explored the challenge of sound source

localization (SSL) from UAVs in the context of detecting

human speech sounds for search and rescue operations.

We proposed an end-to-end one-dimensional dilated con-

volutional neural network called DOANet for tackling this

Fig. 12 AUCs for cumulative in-flight elevation angle deviation
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Fig. 13 AUCs for cumulative in-flight great-circle angular distance

challenge. To train our network, we used the DREGON

dataset along with a synthetic dataset that we gener-

ated using computer simulation.We compared our system

with a baseline that utilized traditional angular spec-

trum methods for SSL. We also augmented the baseline

system with an algorithm for reducing the ego-noise of

the UAV which utilized the UAV’s rotor speed informa-

tion and compared the modified system with our pro-

posed DOANet. The results we obtained demonstrated

that DOANet was able to achieve a statistically signifi-

cant improvement over the baseline methods in most of

the metrics considered and at worst was still statistically

comparable to the modified baseline methods. Our pro-

posed model was able to achieve this result directly from

raw audio input without needing any prior filtering of

ego-noise or hand-crafted techniques. We believe this

makes our method more flexible—in that it can be

improved simply by training it with more real data col-

lected from practical outdoor scenarios. We also observed

that while our model was more accurate overall, it scored

lower in terms of fractional AUC values—AUC(< 10) and

AUC(< 20)—compared to the modified baseline meth-

ods. This indicates our model is less accurate at fine grain

resolution of the elevation and azimuthal angles. In prac-

tical search and rescue scenarios, the UAV would need

to “home in” on the target sound source. A combina-

tion of DOANet and the modified baseline methods may

be used for better performance in such a case; DOANet

would provide the initial rough direction of the sound, and

the modified baseline methods would be used for finer

Table 10 Summary of the best techniques for different tasks along with p values of two-sample t test at 0.05 significance level when
comparing against best baseline method. AD azimuthal angle deviation, ED elevation angle deviation, GCAD great-circle angular
distance

Task Metric AUC AUC(<10) AUC(<20)

Static AD DOANet + CS2367 GCC-NONLIN + SCHC DOANet + CS2367

0.00 0.63 0.00

ED DOANet + CS2367 GCC-PHAT + SCHC GCC-PHAT + SCHC

0.01 0.87 0.01

GCAD DOANet +CS2367(A) + CS2367(E) GCC-NONLIN + SCHC GCC-NONLIN + SCHC

0.00 0.26 0.00

In-flight AD DOANet + CS2367 DS + SCHC DS + SCHC

0.00 0.01 0.00

ED DOANet + CS0145 DOANet + CS0145 DOANet + CS0145

0.00 0.00 0.00

GCAD DOANet + CS2367(A) + CS2367(E) DS + SCHC DS + SCHC

0.00 0.00 0.00
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Table 11 Computed p values of two-sample t test at 0.05
significance level when comparing the best DOANet scheme
against the best SCHC technique for in-flight tasks. GC great circle

Metric
p values of two-sample t test (α = 0.05)

AUC AUC(<10) AUC(<20)

Azimuthal deviation 0.01 0.78 0.80

Elevation deviation 0.00 0.00 0.00

GC angular distance 0.00 0.47 0.80

estimation once the UAV is closer to the target. We hope

to expand the scope of our work to include tracking the

dynamic performance of DOANet in real time to see if

it is able to gradually lead the UAV to the actual source

of the sound as well as collect more data from outdoor

environments to improve DOANet further.
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