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Abstract

Traditional supervised learning makes the

closed-world assumption that the classes

appeared in the test data must have ap-

peared in training. This also applies to text

learning or text classification. As learning

is used increasingly in dynamic open envi-

ronments where some new/test documents

may not belong to any of the training

classes, identifying these novel documents

during classification presents an important

problem. This problem is called open-

world classification or open classification.

This paper proposes a novel deep learning

based approach. It outperforms existing

state-of-the-art techniques dramatically.

1 Introduction

A key assumption made by classic supervised text

classification (or learning) is that classes appeared

in the test data must have appeared in training,

called the closed-world assumption (Fei and Liu,

2016; Chen and Liu, 2016). Although this as-

sumption holds in many applications, it is violated

in many others, especially in dynamic or open en-

vironments. For example, in social media, a classi-

fier built with past topics or classes may not be ef-

fective in classifying future data because new top-

ics appear constantly in social media (Fei et al.,

2016). This is clearly true in other domains too,

e.g., self-driving cars, where new objects may ap-

pear in the scene all the time.

Ideally, in the text domain, the classifier should

classify incoming documents to the right existing

classes used in training and also detect those doc-

uments that don’t belong to any of the existing

classes. This problem is called open world classi-

fication or open classification (Fei and Liu, 2016).

Such a classifier is aware what it does and does

not know. This paper proposes a novel technique

to solve this problem.

Problem Definition: Given the training data

D = {(x1, y1), (x2, y2), . . . , (xn, yn)}, where xi

is the i-th document, and yi ∈ {l1, l2, . . . , lm} =
Y is xi’s class label, we want to build a model

f(x) that can classify each test instance x to one of

the m training or seen classes in Y or reject it to in-

dicate that it does not belong to any of the m train-

ing or seen classes, i.e., unseen. In other words,

we want to build a (m + 1)-class classifier f(x)
with the classes C = {l1, l2, . . . , lm, rejection}.

There are some prior approaches for open clas-

sification. One-class SVM (Schölkopf et al., 2001;

Tax and Duin, 2004) is the earliest approach.

However, as no negative training data is used, one-

class classifiers work poorly. Fei and Liu (2016)

proposed a Center-Based Similarity (CBS) space

learning method (Fei and Liu, 2015). This method

first computes a center for each class and trans-

forms each document to a vector of similarities

to the center. A binary classifier is then built us-

ing the transformed data for each class. The deci-

sion surface is like a “ball” encircling each class.

Everything outside the ball is considered not be-

longing to the class. Our proposed method outper-

forms this method greatly. Fei et al. (2016) further

added the capability of incrementally or cumula-

tively learning new classes, which connects this

work to lifelong learning (Chen and Liu, 2016) be-

cause without the ability to identify novel or new

things and learn them, a system will never be able

to learn by itself continually.

In computer vision, Scheirer et al. (2013) stud-

ied the problem of recognizing unseen images that

the system was not trained for by reducing open

space risk. The basic idea is that a classifier should

not cover too much open space where there are

few or no training data. They proposed to re-

duce the half-space of a binary SVM classifier
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Figure 1: Overall Network of DOC

with a positive region bounded by two parallel

hyperplanes. Similar works were also done in a

probability setting by Scheirer et al. (2014) and

Jain et al. (2014). Both approaches use probabil-

ity threshold, but choosing thresholds need prior

knowledge, which is a weakness of the methods.

Dalvi et al. (2013) proposed a multi-class semi-

supervised method based on the EM algorithm. It

has been shown that these methods are poorer than

the method in (Fei and Liu, 2016).

The work closest to ours is that in (Bendale and

Boult, 2016), which leverages an algorithm called

OpenMax to add the rejection capability by uti-

lizing the logits that are trained via closed-world

softmax function. One weak assumption of Open-

Max is that examples with equally likely logits

are more likely from the unseen or rejection class,

which can be examples that are hard to classify.

Another weakness is that it requires validation ex-

amples from the unseen/rejection class to tune the

hyperparameters. Our method doesn’t make these

weak assumptions and performs markedly better.

Our proposed method, called DOC (Deep Open

Classification), uses deep learning (Goodfellow

et al., 2016; Kim, 2014). Unlike traditional clas-

sifiers, DOC builds a multi-class classifier with a

1-vs-rest final layer of sigmoids rather than soft-

max to reduce the open space risk. It reduces the

open space risk further for rejection by tightening

the decision boundaries of sigmoid functions with

Gaussian fitting. Experimental results show that

DOC dramatically outperforms state-of-the-art ex-

isting approaches from both text classification and

image classification domains.

2 The Proposed DOC Architecture

DOC uses CNN (Collobert et al., 2011; Kim,

2014) as its base and augments it with a 1-vs-

rest final sigmoid layer and Gaussian fitting for

classification. Note: other existing deep mod-

els like RNN (Williams and Zipser, 1989; Schus-

ter and Paliwal, 1997) and LSTM (Hochreiter and

Schmidhuber, 1997; Gers et al., 2002) can also

be adopted as the base. Similar to RNN, CNN

also works on embedded sequential data (using 1D

convolution on text instead of 2D convolution on

images). We choose CNN because OpenMax uses

CNN and CNN performs well on text (Kim, 2014),

which enables a fairer comparison with OpenMax.

2.1 CNN and Feed Forward Layers of DOC

The proposed DOC system (given in Fig. 1) is a

variant of the CNN architecture (Collobert et al.,

2011) for text classification (Kim, 2014)1. The

first layer embeds words in document x into dense

vectors. The second layer performs convolution

over dense vectors using different filters of var-

ied sizes (see Sec. 3.4). Next, the max-over-time

pooling layer selects the maximum values from

the results of the convolution layer to form a k-

dimension feature vector h. Then we reduce h to

a m-dimension vector d = d1:m (m is the number

of training/seen classes) via 2 fully connected lay-

ers and one intermediate ReLU activation layer:

d = W
′(ReLU(Wh + b)) + b

′, (1)

where W ∈ R
r×k, b ∈ R

r, W
′ ∈ R

m×r, and

b
′ ∈ R

m are trainable weights; r is the output

dimension of the first fully connected layer. The

output layer of DOC is a 1-vs-rest layer applied to

d1:m, which allows rejection. We describe it next.

2.2 1-vs-Rest Layer of DOC

Traditional multi-class classifiers (Goodfellow

et al., 2016; Bendale and Boult, 2016) typically

use softmax as the final output layer, which does

not have the rejection capability since the prob-

ability of prediction for each class is normalized

across all training/seen classes. Instead, we build

a 1-vs-rest layer containing m sigmoid functions

for m seen classes. For the i-th sigmoid function

corresponding to class li, DOC takes all examples

with y = li as positive examples and all the rest

examples y 6= li as negative examples.

The model is trained with the objective of sum-

mation of all log loss of the m sigmoid functions

1https://github.com/alexander-rakhlin/

CNN-for-Sentence-Classification-in-Keras
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on the training data D.

Loss =
m

∑

i=1

n
∑

j=1

−I(yj = li) log p(yj = li)

−I(yj 6= li) log(1 − p(yj = li)),

(2)

where I is the indicator function and p(yj =
li) = Sigmoid(dj,i) is the probability output from

ith sigmoid function on the jth document’s ith-

dimension of d.

During testing, we reinterpret the prediction of

m sigmoid functions to allow rejection, as shown

in Eq. 3. For the i-th sigmoid function, we check if

the predicted probability Sigmoid(di) is less than

a threshold ti belonging to class li. If all pre-

dicted probabilities are less than their correspond-

ing thresholds for an example, the example is re-

jected; otherwise, its predicted class is the one

with the highest probability. Formally, we have

ŷ =

{

reject, if Sigmoid(di) < ti,∀li ∈ Y;
arg maxli∈Y

Sigmoid(di), otherwise.
(3)

Note that although multi-label classification

(Huang et al., 2013; Zhang and Zhou, 2006;

Tsoumakas and Katakis, 2006) may also leverage

multiple sigmoid functions, Eq. 3 forbids multi-

ple predicted labels for the same example, which

is allowed in multi-label classification. DOC is

also related to multi-task learning (Huang et al.,

2013; Caruana, 1998), where each label li is re-

lated to a 1-vs-rest binary classification task with

shared representations from CNN and fully con-

nected layers. However, Eq. 3 performs classifi-

cation and rejection based on the outputs of these

binary classification tasks.

Comparison with OpenMax: OpenMax builds

on the traditional closed-world multi-class classi-

fier (softmax layer). It reduces the open space for

each seen class, which is weak for rejecting unseen

classes. DOC’s 1-vs-rest sigmoid layer provides a

reasonable representation of all other classes (the

rest of seen classes and unseen classes), and en-

ables the 1 class forms a good boundary. Sec. 3.5

shows that this basic DOC is already much better

than OpenMax. Below, we improve DOC further

by tightening the decision boundaries more.

2.3 Reducing Open Space Risk Further

Sigmoid function usually uses the default prob-

ability threshold of ti = 0.5 for classification of

Figure 2: Open space risk of sigmoid function and

desired decision boundary di = T and probability

threshold ti.

each class i. But this threshold does not con-

sider potential open space risks from unseen (re-

jection) class data. We can improve the bound-

ary by increasing ti. We use Fig. 2 to illustrate.

The x-axis represents di and y-axis is the predicted

probability p(y = li|di). The sigmoid function

tries to push positive examples (belonging to the

i-th class) and negative examples (belonging to

the other seen classes) away from the y-axis via

a high gain around di = 0, which serves as the de-

fault decision boundary for di with ti = 0.5. As

demonstrated by those 3 circles on the right-hand

side of the y-axis, during testing, unseen class ex-

amples (circles) can easily fill in the gap between

the y-axis and those dense positive (+) examples,

which may reduce the recall of rejection and the

precision of the i-th seen class prediction. Obvi-

ously, a better decision boundary is at di = T ,

where the decision boundary more closely “wrap”

those dense positive examples with the probability

threshold ti ≫ 0.5 .

To obtain a better ti for each seen class i-th, we

use the idea of outlier detection in statistics:

1. Assume the predicted probabilities p(y =
li|xj , yj = li) of all training data of each

class i follow one half of the Gaussian dis-

tribution (with mean µi = 1), e.g., the three

positive points in Fig. 2 projected to the

y-axis (we don’t need di). We then artifi-

cially create the other half of the Gaussian

distributed points (≥ 1): for each existing

point p(y = li|xj , yj = li), we create a mir-

ror point 1 + (1 − p(y = li|xj , yj = li) (not

a probability) mirrored on the mean of 1.

2. Estimate the standard deviation σi using both

the existing points and the created points.
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3. In statistics, if a value/point is a certain num-

ber (α) of standard deviations away from the

mean, it is considered an outlier. We thus set

the probability threshold ti = max(0.5, 1 −
ασi). The commonly used number for α is 3,

which also works well in our experiments.

Note that due to Gaussian fitting, different class

li can have a different classification threshold ti.

3 Experimental Evaluation

3.1 Datasets

We perform evaluation using two publicly avail-

able datasets, which are exactly the same datasets

used in (Fei and Liu, 2016).

(1) 20 Newsgroups2 (Rennie, 2008): The 20

newsgroups data set contains 20 non-overlapping

classes. Each class has about 1000 documents.

(2) 50-class reviews (Chen and Liu, 2014): The

dataset has Amazon reviews of 50 classes of prod-

ucts. Each class has 1000 reviews. Although prod-

uct reviews are used, we do not do sentiment clas-

sification. We still perform topic-based classifica-

tion. That is, given a review, the system decides

what class of product the review is about.

For every dataset, we keep a 20000 frequent

word vocabulary. Each document is fixed to 2000-

word length (cutting or padding when necessary).

3.2 Test Settings and Evaluation Metrics

For a fair comparison, we use exactly the same set-

tings as in (Fei and Liu, 2016). For each class in

each dataset, we randomly sampled 60% of docu-

ments for training, 10% for validation and 30% for

testing. Fei and Liu (2016) did not use a valida-

tion set, but the test data is the same 30%. We use

the validation set to avoid overfitting. For open-

world evaluation, we hold out some classes (as un-

seen) in training and mix them back during testing.

We vary the number of training classes and use

25%, 50%, 75%, or 100% classes for training and

all classes for testing. Here using 100% classes

for training is the same as the traditional closed-

world classification. Taking 20 newsgroups as an

example, for 25% classes, we use 5 classes (we

randomly choose 5 classes from 20 classes for 10

times and average the results, as in (Fei and Liu,

2016)) for training and all 20 classes for testing

(15 classes are unseen in training). We use macro

F1-score over 5 + 1 classes (1 for rejection) for

2http://qwone.com/˜jason/20Newsgroups/

Table 1: Macro-F1 scores for 20 newsgroups

% of seen classes 25% 50% 75% 100%

cbsSVM 59.3 70.1 72.0 85.2

OpenMax 35.7 59.9 76.2 91.9

DOC (t = 0.5) 75.9 84.0 87.4 92.6

DOC 82.3 85.2 86.2 92.6

Table 2: Macro-F1 scores for 50-class reviews

% of seen classes 25% 50% 75% 100%

cbsSVM 55.7 61.5 58.6 63.4

OpenMax 41.6 57.0 64.2 69.2

DOC (t = 0.5) 51.1 63.6 66.2 69.8

DOC 61.2 64.8 66.6 69.8

evaluation. Please note that examples from unseen

classes are dropped in the validation set.

3.3 Baselines

We compare DOC with two state-of-the-art meth-

ods published in 2016 and one DOC variant.

cbsSVM: This is the latest method published in

NLP (Fei and Liu, 2016). It uses SVM to build

1-vs-rest CBS classifiers for multiclass text classi-

fication with rejection option. The results of this

system are taken from (Fei and Liu, 2016).

OpenMax: This is the latest method from com-

puter vision (Bendale and Boult, 2016). Since it

is a CNN-based method for image classification,

we adapt it for text classification by using CNN

with a softmax output layer, and adopt the Open-

Max layer3 for open text classification. When all

classes are seen (100%), the result from softmax

is reported since OpenMax layer always performs

rejection. We use default hyperparameter values

of OpenMax (Weibull tail size is set to 20).

DOC(t = 0.5): This is the basic DOC (t =
0.5). Gaussian fitting isn’t used to choose each ti.

Note that (Fei and Liu, 2016) compared with

several other baselines. We don’t compare with

them as it was shown that cbsSVM was superior.

3.4 Hyperparameter Setting

We use word vectors pre-trained from Google

News4 (3 million words and 300 dimensions). For

the CNN layers, 3 filter sizes are used [3, 4, 5]. For

each filter size, 150 filters are applied. The dimen-

sion r of the first fully connected layer is 250.

3https://github.com/abhijitbendale/

OSDN
4https://code.google.com/archive/p/

word2vec/
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3.5 Result Analysis

The results of 20 newsgroups and 50-class reviews

are given in Tables 1 and 2, respectively. From the

tables, we can make the following observations:

1. DOC is markedly better than OpenMax and

cbsSVM in macro-F1 scores for both datasets

in the 25%, 50%, and 75% settings. For the

25% and 50% settings (most test examples

are from unseen classes), DOC is dramati-

cally better. Even for 100% of traditional

closed-world classification, it is consistently

better too. DOC(t = 0.5) is better too.

2. For the 25% and 50% settings, DOC is also

markedly better than DOC(t = 0.5), which

shows that Gaussian fitting finds a better

probability threshold than t = 0.5 when

many unseen classes are present. In the 75%

setting (most test examples are from seen

classes), DOC(t = 0.5) is slightly better

for 20 newsgroups but worse for 50-class re-

views. DOC sacrifices some recall of seen

class examples for better precision, while t =
0.5 sacrifices the precision of seen classes for

better recall. DOC(t = 0.5) is also worse

than cbsSVM for 25% setting for 50-class re-

views. It is thus not as robust as DOC.

3. For the 25% and 50% settings, cbsSVM is

also markedly better than OpenMax.

4 Conclusion

This paper proposed a novel deep learning based

method, called DOC, for open text classification.

Using the same text datasets and experiment set-

tings, we showed that DOC performs dramatically

better than the state-of-the-art methods from both

the text and image classification domains. We also

believe that DOC is applicable to images.

In our future work, we plan to improve the cu-

mulative or incremental learning method in (Fei

et al., 2016) to learn new classes without training

on all past and new classes of data from scratch.

This will enable the system to learn by self to

achieve continual or lifelong learning (Chen and

Liu, 2016). We also plan to improve model per-

formance during testing (Shu et al., 2017).
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