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Abstract

Flexible docking and scoring using the Internal Coordinate Mechanics software (ICM) was
benchmarked for ligand binding mode prediction against the 85 co-crystal structures in the
modified Astex data set. The ICM virtual ligand screening was tested against the 40 DUD target
benchmarks and 11-target WOMBAT sets. The self-docking accuracy was evaluated for the top 1
and top 3 scoring poses at each ligand binding site with near native conformations below 2 Å
RMSD found in 91% and 95% of the predictions, respectively. The virtual ligand screening using
single rigid pocket conformations provided the median area under the ROC curves equal to 69.4
with 22.0% true positives recovered at 2% false positive rate. Significant improvements up to
ROC AUC= 82.2 and ROC(2%)= 45.2 were achieved following our best practices for flexible
pocket refinement and out-of-pocket binding rescore. The virtual screening can be further
improved by considering multiple conformations of the target.
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Introduction

Over the past decade the number of protein structures solved by X-ray crystallography
increased by more than four times allowing the use of atomic details derived from high
resolution target structures as a standard procedure in many drug discovery projects.
Structure-based drug design is typically used at several stages of the drug discovery and
development pipeline, such as for the virtual ligand screening (VLS) of large electronic
compound databases and initial hit identification, and for the lead optimization of the most
promising drug candidates into new potent, selective and drug-like chemical entities [1].
Docking-based methods rely on computer algorithms to generate possible small molecule
binding modes within a protein pocket and appropriate scoring functions to estimate the
strength of the protein-ligand interaction. Binding poses generated at each docking run
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sample translational, rotational and conformational degrees of freedom of the ligand (semi-
flexible docking), and in some cases, additional conformational degrees of freedom of
protein residues within the ligand binding site (fully-flexible docking). The multiple ligand
poses are then ranked by a scoring function in an attempt to identify the most energetically
favorable protein-bound conformation. Virtual screening of multiple ligands to the same
protein site uses docking and scoring to generate a ranked list of compounds. While most
software packages are able to predict experimental poses with reasonable accuracy, binding
affinity predictions for a diverse set of molecules followed by ranking their predicted
potencies is a much more challenging endeavor. The reasons behind this scoring problem
have been well described in recent reviews [2, 3], and typically pointed out to protein
flexibility and induced-fit upon ligand binding [4], oversimplification of energy terms
commonly used in the scoring functions such as solvation [5] and entropy contributions [6],
and specific non-covalent interactions not commonly present in scoring functions such as
cation-π [7], n→π* [8] and weak hydrogen bonds [9]. Prediction of the most stable
tautomeric states for the ligands [10], water-mediated hydrogen-bonds [11], metal
coordination [12, 13] and identification of pKa-based protonation microspecies [14] are
additional challenges that need to be solved before further progress can be made in the field.

Because of the multiple approximations used in docking and scoring, benchmarking
software packages is critically important in structure-based drug discovery. New algorithms
are typically trained against a large number of high quality co-crystal structures collected
from the PDB database [15] and evaluated for their ability to reproduce known binding
modes. On the other hand, retrospective virtual screening benchmarks use test sets with
annotated known binders for particular targets and presumed inactive decoys. Graphical
representation of the true positive rate versus the false positive rate in receiver operating
characteristic (ROC) plots is assumed to provide a measure of both the software
performance and the ligand binding pocket quality for virtual screening purposes. Because
the top scoring compounds will most likely be selected for further testing, early enrichment
measures are important to identify successful VLS runs where active compounds are ranked
ahead of decoys on a large score list [16].

The Internal Coordinate Mechanics (ICM) method has been extensively validated in
bioinformatics and drug discovery projects. Prospective and retrospective studies
demonstrate that ICM is able not only to reconstitute the most critical protein-ligand
contacts, but also to successfully identify high affinity ligands for the most important classes
of targets in drug discovery, such as enzymes [17–24], receptors [25–30], ion channels [31,
32] and transport proteins [33–35]. As part of the programmatic theme, “Docking and
Scoring: A Review of Docking Programs”, ICM was benchmarked for self-docking
accuracy and virtual ligand screening using the Astex [36], DUD [37] and WOMBAT [38]
test sets, and the benchmarking results, current developments and future prospects were
presented during a symposium at the 241st ACS National Meeting held in March 2011 in
Anaheim, CA. This article summarizes the results discussed in Anaheim, adds calculation
details, and proposes how to improve the performance further using our best practices.

Computational methods

The ICM method

Flexible ligand docking with the ICM software uses Monte Carlo simulations to globally
optimize a set of ligand internal coordinates in the space of grid potential maps calculated
for the protein pocket [39], according to the following procedure: (1) a random move is
introduced to one of the rotational, translational or conformational variables of the ligand
within the binding pocket; (2) differentiable terms of the energy function are minimized; (3)
desolvation energy is calculated; (4) the Metropolis selection criterion is used to accept or
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reject the final minimized conformation [40] and the procedure is repeated until the maximal
number of steps is achieved. An adaptive algorithm is used to determine the maximal
number of steps, according to the number of rotatable bonds in the ligand multiplied by a
user-defined thoroughness value. The thoroughness value represents the user-defined
multiplier by which the automatically determined Monte Carlo run length is extended.
Ligand sampling in a set of pre-calculated grid maps accounting for hydrogen bonding
potential, van der Waals potential with carbon-, sulphur- and hydrogen-like probes,
hydrophobic potential and electrostatic potential, significantly reduces the time required for
calculation. The maps are generated in a rectangular box with 0.5 Å grid spacing centered at
the ligand binding site. Each molecule is first submitted to a conformational analysis outside
of the protein pocket and a stack of low energy conformations is collected and used as
starting geometries for the grid docking. Ligand binding modes are scored according to the
quality of the complex and a user-defined number of the top scoring poses is re-ranked using
the full ICM scoring function. The predicted score is calculated as the weighted (α1 to α5)
sum of ligand-target van der Waals interactions and internal force field energy of the ligand
(ΔEIntFF), free energy changes due to conformational energy loss upon ligand binding
(TΔSTor), hydrogen bonding interactions (ΔEHBond), hydrogen bond donor-acceptor
desolvation energy (ΔEHBDesol), solvation electrostatic energy upon ligand binding
(ΔESolEl), hydrophobic free energy gain (ΔEHPhob) and a size correction term proportional
to the number of ligand atoms (QSize) [28, 41, 42]:

Binding mode prediction

The Astex diverse set provides a collection of 85 high-resolution protein structures from
representative target families co-crystalized with drug-like small molecules [36]. The files
used in this study were provided by the thematic ACS meeting organizers and prepared for
docking with ICM version 3.7-2b using a small script written in the ICM language. For each
target:

1. A protein structure with co-factors, metals and other co-crystal molecules
(excluding crystallographic waters) was imported into ICM and ligand binding sites
were enumerated using the co-crystal ligands as reference, provided in a separate
file. Multiple sites per ligand were found in several X-ray structures due to either
oligomeric nature of the target or multiple copies of the protein within the
asymmetric crystallographic unit.

2. Alternative side chain conformations for residues within a 5 Å cut-off distance
from the co-crystal ligands were enumerated and saved. Alternatives A and B were
saved for structures with two alternative side chain conformations of a single
binding site residue. Alternatives AA, BB, AB and BA were saved when two
binding site residues with alternative side chain conformations were found.
Because of the multiple sites per ligand and alternative side chain conformations,
the total number of pockets considered for docking was larger than the initial
number of protein structures.

3. Amino acid protonation states were used as provided. Partial charges of protein
atoms were taken from a library of ECEPP/3 residue templates (icm.res).

4. MMFF atom types and partial charges were assigned to the ligands [43] in a
separate file, using the starting conformations independent of the co-crystal
geometries as provided by the organizers.
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5. For each site, the ligand binding pocket for docking was defined as a rectangular
box centered at the co-crystal molecule and extending additional 4 Å in any
direction.

6. Grid potential energy maps accounting for hydrophobic interactions, van de Walls
interactions, hydrogen bonding and electrostatic potential were calculated within
the ligand binding sites.

7. Ten independent docking runs were performed with the length of the docking
simulation adjusted by the default thoroughness value (thoroughness=1). Five top
quality poses were rescored at the end of each run using the default ICM scoring
function. Calculations took an average of 10 seconds per run using a Linux
workstation (Intel Core i7 Processor 3.07 GHz, 12 GB RAM) running Fedora 12.

Alternative docking solutions for each molecule were loaded into ICM, sorted by
predicted binding score and clustered to remove redundancy, i.e. identical
conformations where the ligand was bound with less than a 0.5 Å symmetry
corrected RMSD cutoff calculated for heavy atoms. Briefly, the second
conformation in the ranked score list was considered unique if the RMSD value
was less than 0.5 Å, as compared to the first conformation, otherwise it was
deleted. This procedure was repeated for the third and consecutive conformations
of the same molecule, using the pool of unique conformations as reference, until all
similar conformations were removed. Symmetry-corrected RMSD was used to
account for topological symmetries of chemical groups (e.g. equivalent atoms in
benzene rings or negatively charged carboxylic acids), as well as three-dimensional
symmetries generated by rotation.

8. As a measure of binding mode prediction accuracy, symmetry-corrected RMSD
was calculated between each unique binding pose found with the ICM software and
the co-crystal ligand. Statistical analysis was performed using RMSD values found
for the top scoring poses in the ranked score lists (top 1) and the lowest RMSD
value among the top 3 unique scoring poses for each site (top 3). Both symmetry
corrected RMSD and contact measures were also used in the GPCRdock evaluation
[44] and are publically accessible at the laboratory web server Simicon,
http://abagyan.ucsd.edu/SimiCon/[45].

Virtual ligand screening

The directory of useful decoys (DUD), a benchmarking test set freely available on the
internet (http://dud.docking.org/) [37], covers 40 different targets with 3950 active ligands
and 36 decoys per active. Decoys have similar molecular weight, number of hydrogen
bonding groups, logP and number of rotatable bonds compared to the active compounds, but
their molecular topologies are different. DUD is currently the largest, and one of the most
challenging test sets for virtual ligand screening benchmarks, however, because a significant
number of the true binders are very close analogs, it has limited usefulness for scaffold
hopping evaluations [38]. The WOMBAT data sets derived from DUD by filtering non-lead-
like compounds, clustering unique chemotypes and expanding the original test sets with
additional active compounds, provide an alternative benchmark for a sub-set of 11 DUD
targets [38].

Virtual ligand screening performance using the ICM method was evaluated with modified
versions of the DUD and WOMBAT test sets provided by the ACS meeting organizers.
Protein targets were prepared for docking using a similar procedure described above. Ligand
binding pockets were initially defined as a rectangular box centered on a known co-crystal
ligand, provided with the test set, and extended additional 4 Å in any direction. However,
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given the large diversity of ligands and protein pockets, box dimensions were subsequently
adjusted manually after visual inspection of the protein-ligand complex and the list of
known binders. For each target, active compounds and decoys were grouped into an
annotated sdf file and used as provided. Semi-randomized pairings of small molecules and
targets were used to detect potential chemical bias on the DUD test sets that might
contribute for discrimination based on anything other than protein-ligand contacts. Target
sites of approximately the same size but different families were matched as described by
McGann [46] and their ligands included in the annotated sdf file for docking. For example,
cyclooxygenase 2 actives and decoys were docked against neuraminidase, and vice-versa.
WOMBAT ligands for a subset of 11 DUD targets were also included in this study. Three
independent docking runs were performed with a thoroughness value set to 1 and the top 5
best quality complexes rescored. The top scoring pose was selected for each compound.

For each target the true positive rate was plotted as a function of the false positive rate for all
positions of the ranked score list. Binding pockets with perfect discrimination, i.e. scoring
all true positives at the top ranked positions, have ROC plots that pass through the upper left
corner and area under the curve (AUC) equal to 100. Therefore the higher the AUC value in
a ROC curve, the better the discrimination. Because successful VLS ranks active
compounds early on a large score list, the fraction of actives recovered at 0.1%, 1% and 2%
decoys recovered (abbreviated to ROC(0.1%), ROC(1%) and ROC(2%)) were used in this
study as early recognition metrics. AUCs, early enrichment values and statistical analysis
were calculated with appropriate ICM macros. Because there are no decoys available with
the WOMBAT test sets, enrichment studies were performed using DUD decoys derived for
the same targets. This approach allows comparison between benchmarks of different
software packages but introduces some chemical bias to the results because, contrarily to
DUD, WOMBAT actives are predominately lead-like molecules with lower molecular
weights and logP, as well as less hydrogen bonding groups.

Best practices: soft out-of-pocket penalty function and ligand binding site optimization

Virtual ligand screening with ICM was further improved using our best practices for binding
rescore and induced fit analysis. The default ICM scores were rescored using predicted out-
of-pocket protein-ligand contacts according to the following penalty function:

Near-native interactions important for productive binding were defined as the superset of
contacts between the top 10 scoring actives (Ctop10) and protein atoms within a 3.5 Å cutoff.
Contacts beyond this distance were considered to be out-of-pocket. For each ligand in the
test set, the total number of contacts within a 3.5 Å cutoff (Cligand) was compared with
Ctop10 to derive a subset of common protein-ligand interactions (Ctop10 ∩ Cligand). The
fraction between common contacts and total contacts was then used in a function to increase
the original ICM score whenever the molecule binds extensively to a new surrounding area.
However, the penalty applied gradually decreases as the overlap with binding modes of
known actives increases. Because large compounds have higher propensity to occupy
additional surrounding areas of the pocket, a scaling factor was introduced based on the
fraction between the average number of non-hydrogen atoms of active compounds in the test
set (Āactives) and the number of non-hydrogen atoms of each ligand in the test set (Aligand).
Therefore, the function assigns a larger penalty for out-of-pocket binding of small ligands
than compounds with more heavy atoms.
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Induced fit upon small molecule binding was simulated by fully-flexible ligand and protein
docking. To this purpose, crystallographic coordinates of a single co-crystal ligand per
target, provided with the DUD test sets, were used. For each target, residues with side chain
atoms within a 5 Å cutoff from the seed ligand were allowed to randomly move using the
ICM Biased Probability Monte Carlo algorithm, followed by full local energy minimization
[42]. Geometrically diverse low-energy conformations were saved in a conformational
stack. The number of alternative conformations generated during this procedure was largely
dependent on the pocket plasticity. The maximal number of structures in the conformational
stack was set to 300 by adjusting the maximum angular RMSD per variable when two
structures are still considered belonging to the same cluster. Calculations took less than 60
minutes per pocket in all cases using a Linux workstation (Intel Core i7 Processor 3.07 GHz,
12 GB RAM) running Fedora 12. The files were prepared for docking using the VLS
procedure described before. For each new conformation, grid potential maps were calculated
and three independent docking runs were performed with a thoroughness value set to 1 and
the top 5 best quality complexes rescored.

Results and Discussion

Ligand binding mode prediction

The 85 X-ray co-crystal structures used in this study provide a representative ensemble of
non-redundant ligand binding pockets for self-dock benchmarks. Detailed statistical analysis
on ligand binding accuracy using the ICM method is provided in Table 1, whereas
individual RMSD values for predictions on every ligand binding site are shown in Fig. 1.

ICM was found to predict the top 1 scoring poses below 2 Å RMSD in 91% of the sites with
an average RMSD of 0.91 Å (median= 0.54 Å). Predictions below 1 Å and below 0.5 Å
were found in 78% and 43% of the cases, respectively. When the lowest RMSD value
among the top 3 solutions in the ranked score list was considered, near native conformations
below 2 Å RMSD were found in 95% of the sites with an average RMSD value of 0.67 Å
(median= 0.48 Å). In all cases, the highest RMSD prediction among the top 3 scoring poses
was below 3.8 Å.

The top 1 scoring solutions provided the lowest RMSD among the top 3 in 76% of the sites.
However, with PDB entries 1jje, 1gpk, 1sq5, 1gm8 and 1meh, illustrated in Fig. 2, predicted
binding modes considering the top 3 ensemble provided geometries significantly closer to
the co-crystal ligand. PDB entry 1jje (top 1 RMSD= 8.2 Å, top 3 RMSD= 0.4 Å, Fig. 2A)
provided the highest RMSD value for the top 1 predictions in the whole set. Visual
inspection of the protein-ligand complex revealed a 180° flip where most native contacts are
captured. Because the ligand is highly symmetric, benzyl moieties and the succinyl acid
group are perfectly aligned with the co-crystal structure. Furthermore, analysis of crystal
packing interactions revealed the presence of charged residues Lys8 and Asp10 in the ligand
binding pocket vicinity with stabilizing effect over the co-crystal binding mode. Highly
symmetric protein-ligand hydrophobic interactions are also involved in a 180° flip found
with the top 1 prediction of PDB entry 1gpk (top 1 RMSD= 3.6 Å, top 3 RMSD= 0.3 Å, Fig.
2B). The co-crystal ligand is additionally stabilized by a water-mediated hydrogen bond
involving the amide nitrogen, Glu199 and Gly117. Water mediated hydrogen bonds between
co-crystal ligands and at least one protein residue are also found in PDB entries 1gm8 (top 1
RMSD= 3.0 Å, top 3 RMSD= 1.5 Å, Fig. 2C) and 1meh (top 1 RMSD= 2.4 Å, top 3
RMSD= 0.6 Å, Fig. 2D). The β-lactam ring in PDB entry 1gm8 interacts with Ser386
through a water-mediated hydrogen bond and the contact is correctly predicted with the top
1 scoring pose. However, because water molecules were excluded from the calculation, the
penicillin core is translated by approximately 3 Å (Fig. 2C). On the other hand, the
heterocyclic moiety of mycophenolic acid in PDB entry 1meh is correctly predicted but the
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highly flexible aliphatic chain adopts an alternative conformation. The native binding mode
is stabilized by hydrogen bonding contacts between the carboxylic acid and Ser263, and a
water-mediated hydrogen bond involving Asp261. For this ligand ICM predicts a non-native
charged interaction with Arg414 (Fig. 2D).

In a few cases ICM failed to predict the co-crystal binding mode below 2 Å RMSD within
the top 3 scoring poses. PDB entry 1jd0 is predicted at 3.8 Å RMSD because of an
alternative bi-dentate metal coordination geometry with zinc between the nitrogens of the
sulfonamide and the thiadiazole ring (Fig. 2E). Furthermore, the native binding mode is
stabilized by a water-mediated hydrogen bond between the thiadiazole ring and Pro201.
Binding to multiple sites of PDB entry 1hvy is predicted at RMSD values between 2.2 Å and
2.8 Å. ICM provides good predictions for the heterocyclic ring moieties but the highly
flexible aliphatic chain, stabilized in the X-ray co-crystal structure by a complex network of
water-mediated hydrogen bonds between the terminal carboxylic acids and Lys77, Leu221,
Ile307 and Met309, adopts an alternative conformation (Fig. 2F). Similar self-docking
inaccuracies have been reported with PDB entries 1jje, 1hvy, 1gm8, 1jd0 and 1sq5 using
alternative docking and scoring methods [36, 47–49].

ICM predicted similar binding poses for multiple sites of the same ligand, providing final
docked conformations independent of the initial site selection. The average difference
between the highest and the lowest RMSD predictions for multiple sites of the same ligand
was 0.4 Å, and only 3 cases of RMSD differences above 2 Å were found, i.e. PDB entries
1w1p, 1tz8 and 1sq5 (Fig. 2). Out of two sites in PDB entry 1w1p, only one ICM prediction
matches to the co-crystal binding mode. Visual inspection revealed the presence of glycerol
molecules in only one of the pockets, establishing additional favorable interactions that
correctly align the ligand, such as a hydrogen bond between the amide nitrogen and one of
the primary glycerol hydroxyls and hydrophobic contacts between the ligand and the
aliphatic chain of the second glycerol. The alternative binding mode predicted for the second
site corresponds to a 180° flip (RMSD= 2.9 Å, Fig. 2G) that is fully compatible with the
available electron density. Ligand binding to PBD entry 1tz8 was predicted at 2.9 Å RMSD
in one out of 3 possible sites. However, analysis of symmetry related neighbors revealed an
alternative ligand binding conformation that is predicted as top 1 scoring pose (RMSD= 1.3
Å, Fig. 2H). One out of four sites in PDB entry 1sq5 is incorrectly predicted at the top 1
scoring pose (top 1 RMSD= 3.3 Å, top 3 RMSD= 0.7 Å). Residue conformations are well
conserved among different sites but a slight rotation of the Cα-Cβ bond in His177 causes a
small displacement of the imidazole ring (0.4 Å translation of the ε2 nitrogen) that favors a
strong non-native hydrogen bond with the top 1 prediction.

In all cases ICM provided identical binding mode predictions below 1.5 Å RMSD when
alternative side chain conformations for residues located within the binding pocket were
considered. On average, selecting the alternative A provided slightly better predictions than
alternative B or any combination of alternatives A and B for cases where two variable
residues were present.

Alternative binding modes available for ligands in PDB entries 1ig3, 1sg0 and 1tz8 were
predicted below 2 Å RMSD within the top 3 scoring poses, as described previously for 1tz8
(Fig. 2H). This result highlights the good sampling performance of the ICM docking
algorithm.

Virtual ligand screening

Virtual screening with the ICM method was benchmarked against 40 protein targets using
single ligand binding site conformations and the DUD and WOMBAT test sets. Statistical
analyses of the results obtained are provided in Table 2, Table 3 and Table S1. Individual
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values of ROC AUC, ROC(0.1%), ROC(1%) and ROC(2%) are reported in Fig. 3, Fig. 4 and
Fig. S1.

Docking DUD test sets against the original ligand binding site coordinates provided by the
ACS meeting organizers and scoring with the default ICM function provided good results
for a significant number of targets. On average, the AUC in linear ROC plots was 71.6
(median= 69.4, Table 2A). However, individual performances were largely target-dependent
(Fig. 3A.). Neuraminidase (na, AUC= 95.8), peroxisome proliferator activated receptor γ
(ppar, AUC= 94.5), epidermal growth factor receptor kinase (egfr, AUC= 92.9), trypsin
(AUC= 92.6) and glycinamide ribonucleotide transformylase (gart, AUC= 92.1) were
among the best performing targets, whereas platelet derived growth factor receptor kinase
(pdgfrb, AUC= 27.0), P38 mitogen activated protein kinase (p38, AUC= 41.4),
glucocorticoid receptor (gr, AUC= 41.8) and fibroblast growth factor receptor kinase (fgfr1,
AUC= 46.7) performed close to, or worse than random (Fig. 3A). As expected, semi-
randomized target/ligand test sets for the null hypothesis testing provided ROC AUC values
close to random (AUCnull= 46.7 on average, median= 43.4) suggesting minimal chemical
bias for most of the test sets. However, exceptions were found when dihydrofolate reductase
(dhfr) was used to dock glycinamide ribonucleotide transformylase molecules (gart), when
the mineralocorticoid receptor (mr) was used to dock estrogen receptor agonists (er_agonist)
and when thrombin was used to dock factor Xa compounds (fxa). These 3 cases provided
abnormally high ROC AUCnull values of 85.1, 83.1 and 87.4, respectively (Fig. 3A). Factor
Xa and thrombin are trypsin-like serine proteases with similar catalytic domains and many
ligands are cross-active indeed [50, 51]. On the other hand, the nuclear receptors for
estrogens and mineralocorticoids bind to a similar steroid scaffold.

True positive rates ROC(0.1%), ROC(1%) and ROC(2%) at 0.1%, 1% and 2% false positive
rates were calculated as a metric of early enrichment. On average the ICM method provided
good early enrichments identifying 7.3%, 21.0% and 26.6% of true positives (median=
3.8%, 14.8% and 22.0%), respectively, using the original pocket coordinates and the default
scoring method (Table 2A). Also in this case, individual values were highly target-
dependent (Fig. 3A), being maximal with the peroxisome proliferator activated receptor γ
(ppar, ROC(2%)= 77.7%), neuraminidase (na, ROC(2%)= 77.6%) and glycogen
phosphorylase β (gpb, ROC(2%)= 65.2%) and minimal with thymidine kinase (tk, ROC(2%)=
0%), human heat shock protein 90 (hsp90, ROC(2%)= 2.7%) and acetylcholine esterase
(ache, ROC(2%)= 2.8%).

Given the fast computation time, rescoring default docking results is a popular approach to
improve chemical recognition. Here we propose a simple rescoring approach based on a soft
out-of-pocket penalty described in detail in the experimental section. Improvements in ROC
AUC and early enrichment measures were found with most targets (Table S1A and Fig.
S1A), such as with acetylcholine esterase (ache, AUCinitial= 67.8, AUCrescored= 77.8,
ROC(2%)initial= 2.8%, ROC(2%)rescored= 49.5%), adenosine deaminase (ada, AUCinitial=
50.3, AUCrescored= 72.3, ROC(2%)initial= 7.7%, ROC(2%)rescored= 25.6%), poly(ADP-ribose)
polymerase (parp, AUCinitial= 84.6, AUCrescored= 90.5, ROC(2%)initial= 17.1%,
ROC(2%)rescored= 57.1%) and thymidine kinase (tk, AUCinitial= 74.7, AUCrescored= 80.1,
ROC(2%)initial= 0%, ROC(2%)rescored= 36.4%).

Energy-based refinement accounting for pocket plasticity upon ligand binding provided
consistent improvements for most DUD targets in terms of ROC AUC and early
enrichments (Table S1B and Fig. S1B). Examples include catechol-O-methyltransferase
(comt, AUCinitial= 83.0, AUCrefined= 85.7, ROC(2%)initial= 9.1%, ROC(2%)refined= 54.6%),
cyclooxygenase 2 (cox2, AUCinitial= 75.1, AUCrefined= 82.1, ROC(2%)initial= 7.0%,
ROC(2%)refined= 38.5%), fibroblast growth factor receptor kinase (fgfr1, AUCinitial= 46.7,
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AUCrefined= 73.2, ROC(2%)initial= 7.5%, ROC(2%)refined= 30.0%), poly(ADP-ribose)
polymerase (parp, AUCinitial= 84.6, AUCrefined= 92.9, ROC(2%)initial= 17.1%,
ROC(2%)refined= 77.1%), progesterone receptor (pr, AUCinitial= 62.0, AUCrefined= 68.7,
ROC(2%)initial= 11.1%, ROC(2%)refined= 37.0%), tyrosine kinase SRC (src, AUCinitial= 69.3,
AUCrefined= 82.7, ROC(2%)initial= 13.8%, ROC(2%)refined= 44.0%) and thymidine kinase (tk,
AUCinitial= 74.7, AUCrefined= 79.7, ROC(2%)initial= 0%, ROC(2%)refined= 54.6%). Because a
single seed ligand was used for the induced fit modeling of each target (co-crystal ligand
provided by the ACS meeting organizers), the conformational sampling was somehow
limited. Better performances are expected for this method if more co-crystal ligands are
used.

Optimal virtual ligand screening performance was obtained combining pocket refinement
with out-of-pocket rescoring (Table 2B, Fig. 3B). An average ROC AUC of 79.4 (median=
82.2) with 24.7%, 39.5% and 44.3% of true positives (median= 20.4%, 37.0% and 45.2%)
identified at 0.1%, 1% and 2% false positive rates, respectively, was obtained using this
combined approach. Moreover, ROC AUC values above 70 and ROC(2%) above 20 were
found in 78% of the targets, being potential good candidates for virtual screening. While for
most targets ligand recognition was improved after pocket refinement and out-of-pocket
penalty, worse than random models such as pdgfrb, p38 and gr did not change significantly
with any of the approaches used.

Virtual screening with actives from WOMBAT (combined with decoys for the same targets
derived from DUD), provided an average ROC AUC value of 63.1 (median= 64.8) with
12.8% (median= 12.5%) true positives identified at a 2% false positive rate (Table 3A and
Fig. 4A). Pocket refinement followed by out-of-pocket rescoring led to an average
AUCrefined/rescored= 72.1 (median=69.8) and ROC(2%)refined/rescored= 28.7% (median= 22.8%
Table 3B). Despite more conservative than DUD, these results confirm the good overall
virtual ligand screening performance of ICM. Peroxisome proliferator activated receptor γ
(ppar, AUCrefined/rescored= 92.7, ROC(2%)refined/rescored= 69.8%) and estrogen receptor
antagonists (er_antag, AUCrefined/rescored= 89.0, ROC(2%)refined/rescored= 53.0%) were among
the best performing targets (Fig. 4B).

Virtual ligand screening benchmarks using the WOMBAT test sets of lead-like, chemically
diverse small molecules is inherently more challenging than DUD. This is particularly
critical when using a single ligand binding pocket conformation because of potential
induced fit mechanisms upon binding of different chemotypes. On the other hand, chemical
bias was introduced combining WOMBAT actives with DUD decoys. Compared to
WOMBAT actives, DUD decoys have higher molecular weights and more functional groups
than WOMBAT, which in turn leads to additional favorable contacts and better scores.

Conclusions

In this study, docking and scoring with ICM was benchmarked for ligand binding mode
accuracy and virtual screening against publicly available test sets. ICM was highly
successful in generating multiple poses that include experimentally solved near native
conformations. Known co-crystal binding modes were reproduced as the top 1 scoring pose
in most sites. Visual inspection of a few cases with larger RMSD predictions revealed that
the ligands were correctly positioned within the protein pocket and that the most critical
contacts were captured. Difficult cases included PDB entries with protein-ligand water-
mediated hydrogen bonds, metal coordination, highly symmetrical and flexible molecules.
Our results demonstrate that ICM performs remarkably well in self-docking experiments;
however, cross-docking tests where the extracted ligands are docked into protein structures
from different complexes, would provide a more challenging and realistic assessment.
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Cross-docking pose prediction test sets using experimentally solved conformational
ensembles of druggable binding pockets will be important for future software comparison
benchmarks [52].

Virtual ligand screening using the default ICM scoring method, single pocket conformations
per target and no additional modeling steps to account for protein plasticity, showed good
overall performance, yet highly dependent on the target of interest. This finding highlights
the importance of target and software validation before undergoing time- and cost-
consuming screening of large compound databases followed by experimental evaluation of
new molecules. Rescoring based on out-of-pocket contacts was an efficient and CPU-time
inexpensive method to improve recognition in virtual ligand screening. On the other hand,
an intrinsic complexity in the structure-based identification of new active compounds is
related to the flexibility of the protein binding pockets. Co-crystal structures of identical
ligand-binding domains bound to different chemotypes reveal more or less pronounced
conformational changes to accommodate binding of ligands. Our results using energy-based
pocket refinement, accounting for induced fit and protein plasticity, dramatically improved
the overall discrimination and early enrichments using a single binding site model per target.
However, because different chemotypes can induce alternative conformational changes to
the ligand binding pocket, such as rotation of side chains and small loop rearrangements,
each of them represents only a fraction of the total molecular chemical recognition
properties and has somewhat limited potential for virtual screening of novel chemotypes.
Increasing evidence, including our own results, suggests that pocket ensembles and 4D
(multi-conformational) docking are more effective to recognize ligands in virtual screening
and predict their binding geometries [53–55].

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
RMSD values for ICM predictions on all ligand binding sites. Red bars indicate RMSD
values for the top 1 scoring poses, whereas blue bars indicate the lowest RMSD among the
top 3 scoring poses. PBD entries with binding mode predictions above 2 Å RMSD are
labeled.

Neves et al. Page 14

J Comput Aided Mol Des. Author manuscript; available in PMC 2012 July 17.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Fig. 2.
Ligand binding mode predictions above 2 Å RMSD. Top 1 scoring poses are represented
with cyan carbons and magenta oxygens whereas co-crystal ligands are represented with
yellow carbons and red oxygens. Crystallographic residues, water molecules, metal ions and
other small molecules found in the binding site are labeled and numbered as they appear in
the PDB files. Water molecules were excluded for docking purposes. Hydrogen bonds are
represented with spheres and colored according to the estimated energy (blue – strong
interaction, red – weak interaction). Fig. G shows the predicted binding modes for two sites
in PDB entry 1w1p. Fig. H displays an alternative co-crystal binding mode represented with
orange carbons. Electron density maps at 1.0 and 2.5 sigma levels are represented with
yellow and blue meshes, respectively, around the co-crystal ligands of PDB entries 1w1p
and 1tz8.
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Fig. 3.
Virtual ligand screening benchmark of 40 DUD test sets docked against the original target
coordinates using the default ICM scoring method (A), or docked against refined induced fit
models followed by out-of-pocket rescoring (B). ROC AUC values were calculated for the
true ligands (blue) and null hypothesis (gray). Early enrichments are reported as the fraction
of true positives recovered at 0.1% (blue), 1% (red) and 2% (green) false positive rates. A
list of abbreviations is provided as Supporting Information.
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Fig. 4.
Virtual ligand screening benchmark of 11 WOMBAT test sets docked against the original
target coordinates using the default ICM scoring method (A), or docked against refined
induced fit models followed by out-of-pocket rescoring (B). ROC AUC values obtained with
the WOMBAT test sets (blue) are compared with the corresponding DUD results (gray).
Early enrichments for the WOMBAT test sets are reported as the fraction of true positives
recovered at 0.1% (blue), 1% (red) and 2% (green) false positive rates. A list of
abbreviations is provided as Supporting Information.
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