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Abstract

An adequate description of entire genomes has to include information on the three-dimensional (3D)
structure of proteins. Most of these protein structures will be determined by high-throughput modeling
procedures. Thus, a structure-based analysis of the network of protein–protein interactions in genomes
requires docking methodologies that are capable of dealing with significant structural inaccuracies in the
modeled structures of proteins. We present a systematic study of the applicability of our low-resolution
docking method to protein models of different accuracies. A representative nonredundant set of 475 cocrys-
tallized protein–protein complexes was used to build an array of models of each protein in the set. A
sophisticated procedure was created to generate the models with RMS deviations of 1, 2, 3, . . ., 10 Å from
the crystal structure. The docking was performed for all the models, and the predictions were compared with
the configurations of the original cocrystallized complexes. Statistical analysis showed that the low-reso-
lution docking can determine the gross structural features of protein–protein interactions for a significant
percent of complexes of highly inaccurate protein models. Such predictions may serve as starting points for
a more detailed structural analysis, as well as complement experimental and computational data on protein–
protein interactions obtained by other techniques.
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Protein interactions are the basis of life processes at the
molecular level. Most of the protein interactions are with
other proteins. Thus, the efforts to recreate the network of
protein–protein interactions are important for the interpre-
tation of the information encoded in genomes. The number
of protein–protein interactions is significantly larger than
the number of individual proteins. Thus, high-throughput
methods are needed for studies of these interactions on a
genome scale. The existing methodologies, both experimen-
tal and computational, may be roughly separated into meth-
ods detecting direct physical interactions between proteins
(e.g., two-hybrid analysis, mass spectrometry, etc.) and the

function-assigning methods (e.g., correlation of mRNA lev-
els, method of phylogenetic profiles, fusion pattern method,
sequence alignment, and fold comparison). The outline of
“the postgenomic” methods is presented in several reviews
(Eisenberg et al. 2000; Oliver 2000; Skolnick et al. 2000;
Vukmirovic and Tilghman 2000).

The only computational approaches that directly model
physical interactions between proteins are docking (Vajda et
al. 1997; Sternberg et al. 1998) and binding simulations
(McCammon 1998). Docking approaches, as opposed to
binding simulations, are not concerned with modeling of
real binding pathways, but rather focus on the final configu-
ration(s) of the complex. This makes docking computation-
ally efficient and potentially suitable for high-throughput
“first approximation” structural analysis on a genome scale.

Because proteins are 3D objects, the importance of the
direct 3D analysis of protein–protein interactions is obvi-
ous. Such analysis is necessary for the prediction of these
interactions, their adequate study, and for further applica-
tions (e.g., structure-based drug design). The direct experi-
mental approaches (primarily, X-ray crystallography) are
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developing fast. However, they are capable of determining
only a fraction of all protein structures. Thus, the structures
of most of the individual proteins in genomes have to be
modeled by high-throughput modeling approaches (Burley
2000; Sanchez et al. 2000). The growing availability of the
experimentally determined structures of representative pro-
tein folds makes the template-based modeling of the major-
ity of proteins in genomes quite realistic in the near future.
The limitations of the direct experimental techniques are
even more evident in the case of the structures of protein–
protein complexes, which are, in general, more difficult to
determine than the structures of individual proteins. How-
ever, even the first consideration only—the fact that almost
all individual protein structures will be models—makes the
computational docking approaches indispensable for the di-
rect 3D analysis of protein–protein interactions in genomes.

The number of potential protein–protein interactions and
the nature of protein structures to be docked impose strong
requirements on the docking techniques. Because of the
large number of proteins to dock, the docking has to be fast.
At the same time, because the majority of individual protein
structures in a genome will be models, the docking has to be
capable of predicting complexes of modeled proteins. The
major difference between an experimental (X-ray) protein
3D structure and a model, in general, is a substantially lower
accuracy of the latter (Jones and Kleywegt 1999; Murzin
1999; Orengo et al. 1999). The accuracy of the protein
models may vary significantly, based on the availability of
the structural templates and the degree of target-template
similarity, from ∼1 Å RMSD (high sequence similarity to
templates) to >6 Å RMSD (low sequence similarity to tem-
plates, no templates). Thus, the docking procedure has to be
capable of tolerating very significant structural inaccura-
cies.

Obviously, docking cannot yield greater precision than
the precision of the participating protein structures. How-
ever, even the low precision of ∼10 Å displacement of the
ligand (the smaller protein in the complex) relative to the
receptor (the larger protein in the complex) results in mean-
ingful predictions of the binding interfaces and the gross
structural features of the complex (Vakser et al. 1999). Our
procedure GRAMM was shown to adequately address the
variable resolution docking of protein structures, by per-
forming fast, approximate docking of low-resolution mo-
lecular images and slower, precision docking of more ac-
curate molecular representations (Katchalski-Katzir et al.
1992; Vakser and Aflalo 1994; Vakser 1995). These studies
suggested the possibility of docking inaccurate protein mod-
els.

In our earlier work (Vakser et al. 1999), we reported the
application of GRAMM at low resolution to X-ray protein
structures form our nonredundant database of 475 cocrys-
tallized protein–protein complexes. The results of the study
were further analyzed in our subsequent report (Tovchigre-

chko and Vakser 2001), using various statistical models. In
the present report, we apply the same techniques to the
docking of protein models of different accuracies. To simu-
late the precision of protein models, all proteins in the pro-
tein–protein database were structurally modified in the
range of 1–10 Å RMSD, with 1 Å interval. A sophisticated
procedure was specifically designed and implemented for
that purpose. All resulting models of the proteins were
docked. The statistical significance of the docking was ana-
lyzed, and the results were correlated with the precision of
the models. The data showed that even highly imprecise
protein models (>6 Å RMSD) may still yield structurally
meaningful docking results, that are accurate enough to pre-
dict binding interfaces and to serve as starting points for
further structural analysis. The study demonstrated the ap-
plicability of existing docking techniques to genome-wide
modeling of protein–protein interactions.

Docking tools

Docking algorithm

The docking was performed by our program GRAMM. The
details of the docking approach are described elsewhere
(Katchalski-Katzir et al. 1992; Vakser 1995). The docking
algorithm predicts the structure of a complex by maximiz-
ing the geometric match of the molecular images. The dig-
itized images are obtained by projecting the 3D atomic
structures of the molecules on a 3D grid. The algorithm is
based on the correlation between the digitized molecular
images, using fast Fourier transformation. The approach
was later reformulated in terms of atom–atom potentials and
energy landscapes (Vakser 1996a).

The procedure performs an exhaustive 6D search on a
grid and outputs all intermolecular matches with the energy
below a set level. An important implication of the grid
representation of molecules is that no structural details
smaller than the grid step are present in the molecular im-
ages. Thus, large grid steps (e.g., 6–7 Å) make it possible to
ignore smaller structural inaccuracies. The high-resolution
protein docking yields a broad distribution of low-energy
positions of the ligand, corresponding to the multiple-
minima character of the intermolecular energy landscape.
The low-resolution docking, which smoothes the energy
landscape, usually results in clustering of the low-energy
minima in the area of the binding site (Vakser 1996a; Vak-
ser et al. 1999), corresponding to the position of the binding
funnel in the intermolecular energy landscape (Tsai et al.
1999; Shoemaker et al. 2000). The smoothing approach is to
a certain degree similar to the concept of Scheraga and
associates (Piela et al. 1989), which utilizes an alternative,
diffusion-equation formalism. Application of potential
smoothing algorithms to protein docking is described in
several reports (Vakser 1996a; Trosset and Scheraga 1998;
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Pappu et al. 1999). Although the atom-precision docking,
naturally, becomes impossible in a low-resolution represen-
tation, the docking still predicts the gross features of the
complex (an approximate orientation of the molecules, the
binding residues, etc.). The validity of the low-resolution
docking was confirmed in a large number of studies (see,
e.g., Vakser 1996b, 1996c, 1997; Chang et al. 1997; Bridges
et al. 1998; Vakser et al. 1999).

Set of cocrystallized proteins

The database of protein models used in this study was gen-
erated from a representative set of cocrystallized protein–
protein complexes. The set of cocrystallized proteins (Vak-
ser and Sali, http://guitar.rockefeller.edu and http://reco3.
ams.sunysb.edu) was built by the following procedure. A
pair of chains was considered belonging to the complex if
the chains had the same PDB four-character structure iden-
tifier and a different chain identifier. A family of complexes
was defined as a set of complexes with homologous (>30%
sequence identity) receptors and homologous ligands. The
set of representative complexes (one complex per family)
included 475 complexes with >1000 Å2 interface area.

Analysis of docking

The analysis of large-scale low-resolution (6.8 Å grid step)
docking is described in detail elsewhere (Vakser et al. 1999;
Tovchigrechko and Vakser 2001). The results based on
large data sets are statistical in nature. Thus, a certain num-
ber of correct docking predictions could be obtained just by
randomly placing proteins next to each other. Because of
that, we define the docking of two proteins as successful if
the probability of obtaining the same or better results by a
random procedure is <0.05. The random model is based on
two assumptions: first, the proteins A and B in the complex
may be roughly considered as spheres, and second, the ran-
dom matches are uniformly distributed around the receptor
(Fig. 1). Assuming that the atoms are homogeneously
packed inside the spheres, the radii of the spheres (RA and
RB) are such that the average distance of the atoms from the
sphere’s center of mass is the same as it is in the real
protein. These radii were calculated and taken into account
individually for each complex. The random procedure
places the center of mass of a ligand on a sphere with the
radius RA + RB. For both docking and random sets, we cal-
culate the number of matches within “the binding site,”
defined as <10 Å distance from the correct (crystallo-
graphic) position of the ligand’s center of mass. The analy-
sis of the low-resolution docking of 475 cocrystallized pro-
teins in our database indicated that 52% of the protein pairs
were docked successfully (Vakser et al. 1999).

Results and Discussion

Because most protein 3D structures in genomes will be
computational models, adequate docking techniques are
needed for genome-wide structural studies of protein inter-
actions. Large-scale structural features are less affected by
inaccuracies in protein modeling. Thus, the low-resolution
approach is the appropriate technique for docking these
models. The low-resolution docking is applicable to cases
of structural inaccuracies in general, not necessarily caused
by modeling. GRAMM was applied in the low-resolution
mode to the benchmark set of 54 protein–protein complexes
(http://zlab.bu.edu/∼rong/dock/ benchmark.shtml), in which
protein structures were determined by X-ray crystallogra-
phy in both bound and unbound conformation. The results
revealed no statistically significant difference between the
docking of bound and unbound structures (the difference
appears only at high, atomic-level, resolution). The similar-
ity of bound and unbound protein structures at low resolu-
tion is natural because the structural differences, in general,
are smaller than the 6.8 Å grid resolution. However, the case
of modeled structures is much more complicated, because of
potentially large degrees of structural inaccuracies. A num-
ber of docking experiments, reported earlier, support the
applicability of our GRAMM approach to modeled struc-
tures (Vakser 1996b, 1996c; Chang et al. 1997; Bridges et
al. 1998). The goal of this study is to provide a systematic
evaluation of the GRAMM procedure, applied in the low-
resolution mode to a representative set of protein models.

Such a set has to satisfy three basic conditions: (a) to be
suitable for the validation purpose, the correct docking
mode for each structure in the set has to be known; (b) to
provide statistical significance to the evaluation results, the
set has to be large; (c) to reflect different accuracies of

Fig. 1. Model used to calculate the statistical significance of the docking
results. Proteins are approximated by spheres. Matches, represented by
ligand’s center of mass, are placed around the receptor using the uniform
random distribution for each match. The binding site is shown in gray. The
size of the proteins, shown relative to the size of the binding site (<10 Å),
approximately corresponds to the average RA and RB values in the database.
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protein models in genomes, the accuracy of the structures in
the set has to vary. Our dataset of 475 cocrystallized pro-
tein–protein complexes satisfies conditions (a) and (b). To
satisfy condition (c), for each protein in the dataset, we need
to build a set of models of different accuracies. We define
the accuracy of a model as the RMS deviation of C� atoms
from the crystal structure at the best superposition. To be
representative, the array of models for each protein has to
have at least 10 models, with the accuracy distributed uni-
formly in the range of 1 to 10 Å. The concept of the whole
database is shown in Figure 2.

A natural approach to building the array of models for
each protein in the database would be to use a template-
based modeling procedure (e.g., homology modeling).
However, these procedures do not provide direct control of
the RMS deviations. The goal of these procedures is to
minimize the RMS deviation from the template structure(s).
It is impossible to find a set of templates for each protein in
a large database, such that the templates would uniformly
cover the required RMSD range for each target protein.

Thus, we chose to simulate the modeled structures by
designing a procedure that would distort the experimentally
determined structure of a protein to a required degree of
inaccuracy. Protein structures in artificially generated con-
formations, “protein decoys,” have long been built by re-
searchers for testing force fields in protein modeling. There
are publicly available libraries of the decoys on the Internet
(http://prostar.carb.nist.gov, http://dd.stanford.edu). These
libraries, however, do not contain any significant number of
structures that can be used in our set (i.e., the structures that
satisfy the conditions formulated above). Thus, our task was
to build decoy-like structures, based on our dataset of pro-
tein–protein complexes.

In addition to the requirement of control over RMSD, we
formulated the following criteria for such structures:

1. The structures must be in densely packed conformations.
The packing has to be similar to the packing in the ex-
perimentally determined conformations.

2. The conformations have to include the secondary struc-
ture elements—helices and �-strands.

3. Because the structures will be used for low-resolution
docking, the atom-size details are not critical. In particu-
lar, the structures can have a certain number of stereo-
chemical clashes between atoms, as long as it does not
involve significant interpenetration of large structural
blocks (e.g., secondary structure elements).

4. The total number of generated models has to be: (475
complexes) × (2 chains in a complex) × (10 RMSD lev-
els) � 9500 (actually, a little less, because some protein
chains participate in more than one complex). Thus, the
procedure for generating these structures has to be com-
putationally efficient.

None of the existing methods of structure randomization
or decoy building could satisfy these criteria. Our compu-
tational experiments showed that a naïve approach of ran-
domly shifting atoms positions in the crystal structure, at
RMSD >2 Å, destroys the packing (condition 1) and the
secondary structure (condition 2). Molecular dynamics runs
are computationally very expensive (violating condition 4).
The decoy-building method of Park and Levitt (1996), faces
the problem of combinatorial explosion for medium and
large-size proteins (violating condition 4). Thus, we had to
design a new approach to this problem.

Generating protein models

The method that we developed and applied is close to the
one of Park and Levitt (1996). First, we obtained the sec-
ondary structure assignment in the crystal structure, using
the DSSP algorithm. At that point, Park and Levitt choose
up to 10 flexible residues in the areas between secondary
structure elements, and allow each flexible residue to have
four possible conformations. They then enumerate all the
conformations, filtering out protein structures with large
gyration radii or a large number of clashes. In the case of
large proteins, however, 10 flexible residues are not enough
to obtain tight packing for large RMSD. If we increased the
number of flexible residues, the complete enumeration soon
would lead to the combinatorial explosion. Because of that,
we adopted another approach, outlined in Figure 3. We
marked the � and � angles at all C� atoms outside the
secondary structure elements (helices and �-strands) as
flexible. All other internal degrees of freedom were “fro-
zen.” Then the protein’s PDB coordinates were converted
into internal coordinates in z-matrix representation, with
free coordinates corresponding to the selected angles (typi-

Fig. 2. The concept of the database of protein models for validation of
docking. Each of 475 protein–protein complexes is complemented by 10
models of both protein subunits. The accuracy of the models ranges from
1 to 10 Å, with a 1 Å interval.
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cally, >200 degrees of freedom). The coordinates could
change continuously. The following Monte Carlo-like pro-
cedure was applied to obtain a set of distorted structures in
two stages.

Distortion stage.

The procedure performs a random change (move) of each
coordinate, randomly choosing the coordinate to change.
After each move, it evaluates the objective function, which
favors the increase in RMSD and gives a penalty for
clashes. The move is accepted with the probability based on
the value of the objective function. Because we are inter-
ested in faster movement in configurational space and not in
obtaining configurations from any particular thermody-
namic ensemble, the procedure generates values of random
moves from the uniform distribution. While the RMSD
gradually increases, the program stores one structure for
each RMSD interval 1–2 Å, 2–3 Å, . . ., 9–10 Å, . . ., 14–
15 Å.

Compression stage.

The purpose of this stage is to optimize the packing of the
distorted structures obtained at the first stage. For each
stored structure, we perform the same Monte Carlo-like
procedure as above, with the objective function that favors
reduction of the gyration radius and penalizes for clashes.

The coordinates are dynamically ranked by their “effective-
ness”: those that recently led to a larger reduction of the
gyration radius are used more often. The compressed struc-
tures are stored in a table, with 10 elements corresponding
to RMSD intervals 1–2 Å, 2–3 Å, . . ., 10–11 Å (Fig. 2). If
a new structure with a smaller gyration radius than the one
of the structure already stored is obtained, the procedure
stores the new one instead. If the procedure went through all
structures obtained at the distortion stage and did not fill all
the elements in the table, it goes to the first stage starting
with RMSD 1 Å below the lowest missing value.

The main reason for splitting the algorithm into two
stages is that increasing RMSD and keeping the gyration
radius from growing are two tasks that work in opposite
directions, when started from a tightly packed crystal struc-
ture. Thus, the whole procedure can be viewed as heating
the system, to jump over the energy barriers at the distortion
stage, and then cooling it and falling into some distant mini-
mum, at the compression stage.

The algorithm was implemented in Fortran using mod-
ules from TINKER molecular modeling toolkit (Pappu et al.
1998). The procedure proved to be computationally effi-
cient. On average, it took <30 min on an SGI Octane work-
station to generate 10 structures with RMSD 1, 2, . . ., 10 Å
for one protein.

The application of the procedure to the set of 475 cocrys-
tallized protein complexes yielded 8285 structures. The pro-
cedure failed to generate structures with high RMSD values
for several smallest proteins because the movement of sec-
ondary structure elements in such proteins would never put
them far enough from the original structures. By its nature,
the algorithm did not work for any protein chain composed
entirely from a single �-helix.

Analysis of generated structures

Visual inspection of the generated structures revealed good
preservation of the secondary structure elements, even at
RMSD � ∼10 Å, although, at large RMSD, �-sheets tend
to be destroyed due to a relative movement of the strands.

We analyzed how the distortion of native protein struc-
tures affected the binding site area, defined as the original
interface area between two proteins in a complex. We assign
the residues to the interface if C�–C� (C� for Gly) distance
between two residues from different proteins is <7 Å.

The quantitative analysis showed that most of the original
interface surface residues (the interface residues in the na-
tive structures) remain on the surface in generated structures
of different accuracies (Fig. 4). We further calculated the
d-RMSD values, which characterize the average change of
C�–C� distance between the residues, for the surface patch
at the interface area and for the surface patches of the same
size outside the interface (Fig. 5). The data show a slight
trend toward relatively larger distortion of noninterface ar-

Fig. 3. The outline of the algorithm for generating protein structures with
the predefined RMSD from the native structure. Areas with flexible � and
� angles (see magnified inset) are shown in green. Secondary structure
elements, shown in gray, are treated as rigid bodies. See text for details.
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eas in low-accuracy models. However, comparing with the
large absolute values of d-RMSD in these models, the dif-
ference is not significant for the purposes of low-resolution
docking.

An example of the evolution of the interface at the in-
creasing RMSD values is shown in Figure 6. In the protein
chain shown, the geometry of the binding site is still pre-
served at 4 Å RMSD and is completely destroyed at 10 Å
RMSD, with the 6 Å RMSD model being an intermediate
case.

Docking of models

For each complex in the database, we performed the low-
resolution docking of the original receptor and ligand, then

the docking of 1 Å RMSD receptor model with 1 Å RMSD
ligand model, 2 Å RMSD receptor model with 2 Å RMSD
ligand model and so on, up to 10 Å RMSD models. The
docking protocol (see Docking tools) was the same as in our
previous study of cocrystallized structures (Vakser et al.
1999). As in that earlier work, the presence of low-resolu-
tion protein–protein recognition was detected by estimating
statistical significance of the number of predictions found in
the correct location of the binding site (see Docking tools).
To evaluate the predictions for a complex of two distorted
structures, we assumed the “correct” orientation to be the
one defined by the original cocrystallized complex, with the
models fitted to the crystal structures (by minimizing the C�

RMSD).
An example of the docking results is shown in Figure 7.

In this example, the correct binding site is easily identified
in the case of the crystal structures by a large cluster of
matches. The cluster is still present in the case of a low-
accuracy (6 Å RMSD) model.

For a systematic evaluation of the docking results for all
complexes, at each level of models accuracy (RMSD � 1,
2, 3, . . ., 10 Å), we calculated the percent of complexes
with the correctly predicted low-resolution docking mode.
As discussed above, the “correct prediction” means a sig-
nificantly larger number of matches in the binding site area
than in the case of a random distribution of matches. The
results (Fig. 8a) show that the ability of the docking proce-
dure to predict the correct structure of a complex declines
with the decrease of the protein model’s accuracy. How-
ever, the percent of correct predictions is still large for
significantly inaccurate models—38% for 6 Å RMSD mod-
els. Moreover, the percent is still ∼30% for models distorted
up to 10 Å RMSD. Although the 10 Å RMSD level implies
highly inaccurate protein models, the deviation from the
original crystal structure may be created by a relative move-
ment of domains. The domains responsible for the interac-
tion may have a lower level of inaccuracy than the structure
in general. That may explain the presence of a significant
number of successfully docked complexes at the 10 Å
RMSD level.

A further analysis of these results helped in their inter-
pretation. In a number of complexes, the position of the
clusters of matches (clusters appear because of the smooth-
ing of the intermolecular energy landscape, see Docking
Tools) is unrelated to the crystallographically determined
binding mode. An important reason for such “incorrect”
clusters is the alternative binding modes of the proteins in
the complex (Vakser et al. 1999). We analyzed the results to
determine the degree to which the docking success rates
may be attributed to the clustering itself, rather than to the
protein–protein recognition in the correct configuration of
the complex. For that purpose, in each complex of crystal
structures we placed the binding site in a random place on
the receptor. The application of our statistical criterion

Fig. 5. Average change of distance between residues (d-RMSD) in model
structures of different accuracies. The noninterface data is the average over
the interface-size surface patches outside the interface.

Fig. 4. Percent of original interface residues that remain on the surface in
model structures of different accuracies. The surface residues were defined
as residues with the side-chain accessible surface >7% of the total acces-
sible surface of the side chain for the residue type (Mizuguchi et al. 1998).
The accessible surface was calculated by PSA (Sali and Blundell 1993).
The data is averaged over all 475 complexes and over 110 complexes with
large interfaces (>4000 Å2).
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(same as for the real binding sites) to the random binding
sites resulted in 18% of complexes placed in the “correctly”
predicted category (horizontal line in Fig. 8). Thus, for ex-
ample, we may estimate that, at the 10 Å RMSD level,
approximately half of the correct predictions may come
from the clustering of matches only and, thus, may be con-
sidered random. However, it is important to emphasize that
this is the upper estimate of such randomness. One cannot
claim that in a given complex the cluster of matches is
positioned near the binding site strictly due to coincidence,
and not due to the nature of the interaction.

Because our docking is based on shape complementarity,
it is natural to expect that the docking of proteins with large
interfaces, on average, will be more successful than the
docking of proteins with small interfaces. Indeed, it is the
case for the crystal structures (Vakser et al. 1999). To find
out whether the same effect exists for inaccurate models, we
determined the percent of correctly docked complexes for
proteins with small interfaces (1000–2000 Å2, 189 com-
plexes) and large interfaces (>4000 Å2, 110 complexes).
The results (Fig. 8b,c) confirm that the proteins with small
interfaces are docked less reliably, over the entire range of
model accuracy (except for what appears to be a fluctuation
at 10 Å RMSD level). The subset with large interfaces was
docked more reliably than average. In particular, the com-

plexes of models with 6 Å RMSD and large interfaces were
docked successfully in about 50% of cases.

Conclusions

Knowledge of 3D protein structures is important for an
adequate description of genomes. Most of these protein
structures will be determined by high-throughput modeling
procedures. Thus, a structure-based analysis of the network
of protein–protein interactions in genomes requires docking
methodologies that are capable of dealing with significant
structural inaccuracies in the modeled structures of proteins.
We present a systematic study of the applicability of our
low-resolution docking method to protein models of differ-
ent accuracies. A representative nonredundant set of 475
cocrystallized protein–protein complexes was used to build
an array of models of each protein in the set. A sophisticated
procedure was created to generate the models with RMS
deviations of 1, 2, 3, . . ., 10 Å from the crystal structure.
The docking was performed for all the models, and the
predictions were compared with the configurations of the
original cocrystallized complexes. Statistical analysis
showed that the low-resolution docking can determine the
gross structural features of protein–protein interactions for a
significant percent of complexes of highly inaccurate pro-

Fig. 6. Evolution of the interface in a set of models with increasing RMSD from the native structure. The structure shown is 1cyd,
subunit D. The interface is with the subunit C. The definition of the interface is in the text. The interface residues are in black.
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tein models. Such predictions may serve as starting points
for a more detailed structural analysis, as well as comple-
ment experimental and computational data on protein–pro-
tein interactions obtained by other techniques. Our current
efforts focus on improving the reliability of the large-scale
docking of protein models by taking advantage of physico-
chemical preferences and knowledge-based information.
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