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Abstract

A database consisting of 780 ligand-receptor complexes, termed SB2010, has been derived from
the Protein Databank to evaluate the accuracy of docking protocols for regenerating bound ligand
conformations. The goal is to provide easily accessible community resources for development of
improved procedures to aid virtual screening for ligands with a wide range of flexibilities. Three
core experiments using the program DOCK, which employ rigid (RGD), fixed anchor (FAD), and
flexible (FLX) protocols, were used to gauge performance by several different metrics: (1) global
results, (2) ligand flexibility, (3) protein family, and (4) crossdocking. Global spectrum plots of
successes and failures vs rmsd reveal well-defined inflection regions, which suggest the
commonly used 2 Å criteria is a reasonable choice for defining success. Across all 780 systems,
success tracks with the relative difficulty of the calculations: RGD (82.3%) > FAD (78.1%) > FLX
(63.8%). In general, failures due to scoring strongly outweigh those due to sampling. Subsets of
SB2010 grouped by ligand flexibility (7-or-less, 8-to-15, and 15-plus rotatable bonds) reveal
success degrades linearly for FAD and FLX protocols, in contrast to RGD which remains
constant. Despite the challenges associated with FLX anchor orientation and on-the-fly flexible
growth, success rates for the 7-or-less (74.5%), and in particular the 8-to-15 (55.2%) subset, are
encouraging. Poorer results for the very flexible 15-plus set (39.3%) indicate substantial room for
improvement. Family-based success appears largely independent of ligand flexibility suggesting a
strong dependence on the binding site environment. For example, zinc-containing proteins are
generally problematic despite moderately flexible ligands. Finally, representative crossdocking
examples, for carbonic anhydrase, thermolysin, and neuraminidase families, show the utility of
family-based analysis for rapid identification of particularly good or bad docking trends, and the
type of failures involved (scoring/sampling), which will likely be of interest to researchers making
specific receptor choices for virtual screening. SB2010 is available for download at
http://rizzolab.org

INTRODUCTION

A central challenge in computational structure-based drug discovery is routine and robust
prediction of the bound geometry and interactions of small organic molecules (ligands) with
their biological targets (receptors). Computationally, the procedure is referred to as docking,
and the field has seen widespread growth since the first program DOCK1 was introduced in
1982. Since then, numerous docking programs have come into use including Autodock2,
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updated versions of DOCK,3-5 FlexX,6 FRED,7 Glide,8,9 and GOLD10 among others.
Although there are many success stories from academic and industrial groups,11-15 for both
the new and expert users alike, it would be desirable if docking methods were generally
more reliable, more robust, and easier to use. In particular, validation controls to assess
accuracy16-18 are particularly important, as it is critical that each user assess their unique
docking setup(s) and computational infrastructure(s) prior to embarking on a project. A
primary focus of this work is the construction of a docking database to aid users in
establishing the accuracy of their docking codebases and protocols.

In practice, docking is used to accomplish two primary objectives: (1) prediction of the
binding geometry (pose) for a single molecule to a known target and (2) screening a virtual
database of molecules to a target -- filtering for a small subset of predicted actives. In both
cases, good pose accuracy is important. For virtual screening, it is additionally important
that active ligands score better than other decoy molecules (enrichment). Focusing on pose
accuracy, the central idea is to evaluate how well a given docking method can recapitulate
bound ligand conformations using crystallographically determined binding modes contained
in the protein data bank (PDB)19 as a reference. Several PDB-derived databases that provide
useful benchmarks have been previously described usually derived in conjunction with
development of docking programs themselves. A partial list includes databases associated
with the programs GOLD,10,20 FlexX,6 and DOCK5-6.4,5 Recently, there have been efforts
to automate databases construction such as the notably large-scale DOCKBlaster
(N=7755)21 study. Other relevant databases include, for example, DUD,17 which provides
sets of active and decoy ligands to evaluate enrichment, and Binding MOAD,22 Pdbbind,
23,24 BindingDB,25 and LPDB,26 which include experimental binding energies for
corresponding PDB entries to aid scoring function development.

Prompted by the need for a large versatile testset to aid method development and virtual
screening projects ongoing in our laboratory, we have constructed a docking database
termed SB2010 (Stony Brook year 2010) consisting of 780 protein-ligand complexes
derived from the PDB (Table S1). Figure 1a compares SB2010 (red histogram) with four of
the databases noted above: (i) GOLD30510 (green, N=305), (ii) FLEXX200 (blue, N=200),
(iii) DOCK114 (orange, N=114), and (iv) GOLD8520 (magenta, N=85) in terms of overall
ligand flexibility. The larger size of SB2010 compared with other databases leads to greater
numbers of ligands that are more flexible. In particular, SB2010 contains 266 ligands with ≥
10 rotatable bonds compared with the other sets that contain between 0 to 109 entries
(Figure 1b red vs. other color histograms). This is important as many approved drugs and
medically significant experimental inhibitors have more than 10 rotatable bonds as
illustrated in Figure 1b. Thus, the database will likely be of use to researchers wishing to
calibrate virtual screening protocols for a wide range of ligand flexibilities.

Partitioning of the SB2010 database into different subsets was also performed to
characterize how ligand flexibility and/or binding site environment (i.e. protein family)
affects pose accuracy prediction. Entries were grouped into subsets having 7-or-less, 8-
to-15, and 15-plus rotatable bonds. Alternatively, the database was arranged into specific
protein families with seven or greater members (N=25) or between two and seven members
(N=25) which together constitute 83.9% of the data (655/780). Family based groupings
additionally allow for assessment of crossdocking success. All entries in SB2010 were
assessed to be sure there were no intermolecular clashes for cognate protein-ligand pairs,
significant numbers of missing side-chain atoms near the binding site, or for which an inter-
molecular energy minimization substantially moved the ligand. Database files were prepared
to be immediately compatible with the program DOCK4 (MOL2, GRID, SPHGEN formats).
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It is important to emphasize that the calculations in this study employ a rigid receptor
approximation with the primary focus being on ligand-based sampling. However, for
systems in which significant induced fit effects occur for the receptor, or large
conformational changes are observed, a rigid approximation is likely not appropriate.
Previous work addressing protein flexibility in the context of docking include studies by
Knegtel et al,27 Sandak et al,28 Cavasotto et al,29 Sherman et al,30 Moitessier et al,31 and
Amaro et al32 to name a few. In a general sense, the present study does account for receptor
conformational variability through crossdocking experiments which employ family-based
ensembles of crystal structures, somewhat similar for example to using ensembles derived
from molecular dynamics. And, the calculations employ 6-9 van der Waals potentials, which
have been shown to crudely account for partial receptor flexibility through softening of the
intermolecular energy landscape.33 In any event, despite the approximations, for a large
number of cases use of a fixed receptor for docking is reasonable, especially when using
binding site coordinates in which a representative (parent) ligand or substrate was co-
crystallized.

A long-term objective of our work is development of improved sampling and scoring
methods to enhance docking accuracy. The goals of this specific study are to: (i) Construct a
docking database with a wide range of ligand flexibilities. (ii) Evaluate the accuracy of three
distinct protocols for recapitulating experimentally observed binding poses using the
program DOCK. (iii) Characterize docking outcomes for the testset as a whole, and subsets
based on ligand flexibility, protein family, and crossdocking. To improve protocols and
methods, continued evaluation of success and failure across a wide-range of systems is
important. SB2010 is available for download at http://rizzolab.org

COMPUTATIONAL METHODS

Success, Sampling Failures, and Scoring Failures

The ability to predict how small molecules geometrically interact with protein and nucleic
acid targets remains an important and challenging problem. For virtual screening to be most
useful, an implicit assumption is that the geometric poses generated are accurate. In this
report, unless otherwise noted, a docked pose within 2Å heavy atom root-mean-square-
deviation (rmsd) of a crystallographic pose is considered a successful match. Accuracy is
gauged by three criteria: (1) success, (2) sampling failures, and (3) scoring failures, which
together always sum to make up 100% of the possible docking outcomes. Success is defined
when the best-scoring pose matches the crystallographic pose. This definition mirrors
typical screening applications, which save only a single pose, and thus is comparable across
different docking programs and platforms. Sampling failures quantify the inability of a given
protocol to generate at least one pose similar to the experimental structure within the
ensemble of poses generated. Importantly, a docking experiment that fails sampling cannot
benefit from rescoring results with a more accurate energy function because a native-like
pose is not present in the ensemble. Scoring failures quantify the inability of the energy
function to assign the best score to a correctly sampled (native-like) pose out of the
ensemble generated. In such cases, more accurate energy functions could in principle
improve overall success.

Rigid (RGD), Fixed anchor (FAD), and Flexible (FLX) docking

Three distinct docking experiments were employed in this study to evaluate different
portions of the DOCK sampling algorithm. Rigid docking (RGD) protocols test the ability to
rigidly place and optimize the experimental pose back into the binding site through sampling
the six degrees of rigid body translation and rotation. Although dihedral angles are not
explicitly sampled, ligand torsions are allowed to gently adjust during RGD energy
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minimizations. Fixed anchor docking (FAD) tests re-growth of the molecule starting from
each crystallographic ligand scaffold and progressively samples the torsional degrees of
freedom. In a practical sense, FAD can be used to generate a series of overlapped poses for
chemically related ligands when the position of a common scaffold is known or can be
inferred. Flexible docking (FLX) uses the DOCK anchor-and-grow algorithm3 which starts
by orienting ligand anchors (scaffolds) into the binding site, followed by on-the-fly flexible
conformer growth and minimization, which for many users provides a convenient way to
perform virtual screening. Alternative strategies, not pursued here, include pre-generation of
conformationally expanded databases (flexibase approach)34 for use with rigid docking
protocols. RGD and FAD protocols employ orthogonal components of sampling, scaffold
orientation, and growth respectively, while FLX involves both.

Testset Construction Details

Protein-ligand complexes were extracted from the PDB, separated into individual receptor
and ligand files, and saved in MOL2 format using the program MOE35 for subsequent
processing as described below. PDB biological unit files were used during construction to
account for binding sites occurring at the interface of protein multimers (i.e. homo-dimers as
in HIV protease). Systems containing covalently bound ligands or those with cofactors, with
the exception of monatomic ions, were not included. Figure 2 schematically outlines the
workflow and primary software used for construction of the testset.

All ligands were processed with MOE, which was used to assign connectivities, bond
orders, atom types, and add hydrogen atoms. Each ligand was processed and inspected
manually with every attempt being made to assign ligand protonation states consistent with
the original references describing the complex deposited in the PDB. Following visual
inspection, empirical Gastieger-Marsili36 charges were initially assigned using MOE, thus
defining the formal charge, and the completed ligand saved as a MOL2 file. Semi-empirical
AM1-BCC37,38 charges were then computed using the AMBER839,40 of programs using the
previously determined formal charge.

All protein receptors were processed with the AMBER8 tleap program which was used to
assign hydrogen atoms, create disulphide linkages, and assign force field parameters.
Monoatomic ions were treated as part of the receptor if they were within ca. 10 Å from the
binding site. Unless otherwise stated, all water molecules were removed. AMBER8 default
protonation were used resulting in ASP and GLU as negative and LYS and ARG as positive.
Histidine residues were treated as neutral with hydrogen atoms added to either the epsilon or
delta nitrogen depending on the environment -- i.e. which nitrogen was coordinated with
ions and/or ligands. The prepared receptors were then subjected to a short AMBER energy
minimization (1000 steps) using a stiff 100 kcal/mol Å2 restraint on all heavy atoms to allow
only the added hydrogen atoms to adjust. It should be noted that crystallographic structures
downloaded from the PDB often have incomplete side chains and there may not be enough
atoms to unambiguously construct missing side-chain conformations. In several cases, tleap

assignments yielded rebuilt side chains having intermolecular clashes. The energy
minimization protocol is designed to fail in such situations and very problematic complexes
were removed from the test set. In some instances side chains with missing electron density
were treated as ALA, provided that such residues were distal from the binding site. The
resultant AMBER crd and prm files were then used to prepare complete receptor files in
MOL2 format with added hydrogen atoms and partial atomic charges, and in PDB format
without hydrogen atoms for subsequent binding site preparation calculations described
below. An advantage of the current protocol is the test set can easily be setup for molecular
dynamics simulations (MD). Future work is planned to use MD results in an effort to derive
more accurate DOCK scoring functions.
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Binding Site Preparation Steps

A three-step procedure (see Figure 2) was used to prepare receptor binding sites for DOCK
calculations as previously described.3,4 Briefly, a molecular surface of the receptor (without
hydrogen atoms) is computed using the program DMS (step one).41 The program SPHGEN

is then used to generate a set of “spheres”, located at regions of high inner curvature on the
molecular surface, where ligand atoms could potentially interact favorably with the receptor
(step two).42 Spheres are used to guide ligand placement during RGD and FLX docking.
Finally, the accessory program GRID is used to pre-compute van der Waals and Coulombic
energy grids, storing at each grid point the intermolecular energies between a dummy probe
placed at each point and all receptor atoms (step three).43 Docking grids are primarily used
to speed up the calculations. Example input files for the DMS, SPHGEN, and GRID

preparatory steps are provided as part of the testset distribution.

To define each binding site, spheres were retained within ca. 8 Å of ligand heavy atoms in
the crystallographic pose, up to a maximum of 75 (closest first), which provided a
reasonable number of points for RGD and FLX orienting routines. As a baseline, energy
grids employed a 8 Å margin size, a 0.3 Å grid spacing, a 4r distance dependent dielectric
constant, and 6-9 van der Waals exponents. The protocols described above yield on average
62 docking spheres. To probe the effects of using smaller numbers of spheres, test
calculations using FLX protocols were also performed in which the sphere cutoff criteria
was varied from 2 Å (24.3 average spheres) to 8 Å (65.2 average spheres) in 1 Å increments.
Interestingly, under these conditions overall success varied by only about 2% which is an
indication of robust sampling. We elected to retain a larger sphere protocol, which in
principle should be important for screening applications in which greater coverage of a
targeted binding site would be desirable. For comparison, prior DOCK studies have
employed sphere sets ranging from 100 to 130 spheres.4,5 Additional testing to determine
optimal protocols is in progress, including examination of parameters which affect docking
orienting routines and ligand growth such as grid spacing, grid van der Waals exponents,
and partial atomic charge.

Figure 3 graphically depicts setups for HIV protease (1HVR) and HIV reverse transcriptase
(1VRT) which are representative, and lists average, minimum, and maximum grid sizes and
number of spheres for the entire testset. It is important to note the 8 Å margin parameter is
computed in relationship to all retained docking spheres, this results in relatively large grids
(avg size 34 × 34 × 34 Å3) that generously encompass each binding site. In addition, grid
generation protocols use essentially an infinite cutoff (999 Å) thus all protein atoms are
included at every grid point and each docked pose interacts with the entire receptor.

DOCK Codebase and Input Parameters

All docking calculations in this paper employed a modified version of DOCK available to
registered users as DOCK6.4 through the official UCSF website
(http://dock.compbio.ucsf.edu). Briefly, major changes include: (1) Code restructuring and
modifications to save ligand growth trees, (2) an enhanced ligand internal energy function,
and (3) implementation of an rmsd-based harmonic restraint for minimization. The growth
tree feature allows the user to visualize all stages of ligand growth, before and after each
sampling/minimization step, from the initial anchor placement to the final scored pose. The
modified internal energy functions include a repulsive-only term for minimization, pruning,
and clustering which significantly improves sampling, reduces runtime, and most
importantly effectively eliminates ligand intermolecular clashes which could occur under
certain circumstances with earlier DOCK versions. The rmsd-based restraint allows the user
to perform energy minimizations in which a pose can be tethered to a reference. A
manuscript describing code improvements is in preparation.
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Complete input files for the RGD, FAD, and FLX protocols used in this work are provided
as part of the testset distribution. Key sampling parameters include 1000 orientations
(max_orientations) for RGD and FLX protocols. During simplex minimization, 1000
iterations were used for RGD, while 500 iterations each for anchor orienting
(simplex_anchor_max_iterations) and ligand segment growth
(simplex_grow_max_iterations) was used for FAD and FLX. Multiple anchor fragments
were enabled, with a minimum anchor size of 5 heavy atoms, and a maximum of 1000
anchor orients (pruning_max_orients). For pruning partially grown conformers at every step
during anchor and grow, an energy cutoff of +100.0 kcal/mol
(pruning_conformer_score_cutoff), with a target population of 100 conformers
(pruning_clustering_cutoff). A van der Waals repulsive-only ligand internal energy function
with an exponent of 12 was used in all calculations. Final pose ensembles are composed of
representative favorably scored members clustered by similarity (2Å rmsd) and ranked by
energy score.

Crossdocking setup and methods

Structural alignment of SB2010 entries was additionally performed to assess docking
sensitivity for placing all the ligands into all the receptors in common for a given protein
family (termed crossdocking). Members were aligned to a master protein by minimizing
differences in C-alpha positions using the matchmaker tool in the program Chimera.44 Care
was taken to ensure alignments yielded reasonably low pair-wise rmsds to the master
reference frame (typically 0.2 to 0.9 Å depending on the family), and that a high number of
backbone alpha carbon atoms were used in the match. Entries with less than ~60% C-alpha
matches or large rmsds to the reference were excluded from the crossdocking families. For
each aligned protein, the same transformation matrix was applied to the ligand, which
yielded a set of bound complexes in the same coordinate frame. The same binding site
preparation steps for standard docking consisting of molecular surface generation (DMS),
spheres generation (SPHGEN), and docking grids (GRID) was also applied to crossdocking.
Family alignments are provided as part of the testset distribution.

RESULTS AND DISCUSSION

SB2010 Testset Properties

Figure 4 plots properties of interest including number of ligand heavy atoms, ligand
molecular weight, ligand formal charge, ligand root-mean-square-deviation (rmsd) after
energy minimization, number of intermolecular hydrogen bonds, and DOCK intermolecular
score which is the sum of van der Waals (ΔEvdw) and Coulombic (ΔEcoul) energy score
components. Most molecules in Figure 4 have 15-25 heavy atoms, Lipinski-like molecular
weights (MW >=500 g/mol, N=608) and formal charges in the range -1 to +1 (N= 631).
Although the majority of ligands have 7-or-less rotatable bonds (N=423), a substantial
number of ligands with medium (#RB = 8-to-15, N=268) and high (#RB = 15-plus, N=89)
flexibility are also included (Figure 1a). While this may reduce overall success rates, it
results in a challenging testset more useful as an evaluation tool. Importantly, no systems
were removed from SB2010 because ligands failed to dock correctly. Instead, the set was
deliberately populated with entries where docking was observed to be problematic.

Intermolecular properties in Figure 4 include rmsd of the crystallographic ligand pose after
an energy minimization, number of hydrogen bonds (#HB), overall DOCK energy score,
and energy component breakdowns. Low rmsds after an energy minimization (Figure 4d)
help to confirm that both the experimental structures, and subsequent computational models
with added hydrogen atoms and force field parameters, are reasonable starting points for
docking. Minimizations using a tether-based restraint of 10 kcal/mol Å2 that resulted in
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larger than expected movement (>2Å rmsd) or unfavorable (positive) scores indicate
potential experimental or computational setup errors and were not included. The majority of
ligands make 1-6 intermolecular H-bonds (Figure 4e) however there is a wide range from 0
to 18. Most DOCK energy scores are in the range -40 to -50 kcal/mol (Figure 4f) which
reflects the large number of neutral small organic molecules in the testset. Neutral ligand
scores tend to be dominated by van der Waals (ΔEvdw) energy given that the Coulombic
components (ΔEcoul) are scaled by a distance dependent dielectric constant (ε=4r) to crudely
mimic solvent screening. For charged molecules however, scores can be dominated by
ΔEcoul.

Global Docking Success

Overall docking results, as a function of reproducing experimental poses (from 0 to 4 Å
rmsd), are plotted in Figure 5 which shows success in blue, sampling failures in red, and
scoring failures in green for the three different RGD, FAD, and FLX protocols (see methods
for definitions). For each individual system, success rates are computed using the best-
scoring pose found, while sampling and scoring failures statistics are derived using the
ensemble of docked cluster heads. The sum of the three metrics at any defined rmsd value
equals 100%, which provide a convenient way to assess success in relationship to the
underlying cause of docking failures. Sampling and scoring failures should ideally be near
0%. Success (Figure 5 blue) is probably the most useful day-to-day metric, it implicitly
includes all sampling and scoring failures, and deviation from 100% provides a quantitative
way for users to measure potential docking accuracy.

Changing the rmsd criteria from perfect pose overlap (0 Å) to more realistic values (2 Å)
shows, in particular for RGD and FAD protocols, a relatively steep initial increase in overall
success (Figure 5 blue) followed by an inflection region after which successes begin to
plateau. Compared with the other protocols, RGD yields a particularly sharp knee point at
around 1.0 Å. In contrast, the FLX success curve rises much less steeply and the inflection
region is less sharp. As expected, all protocols yield initially high sampling failures (Figure
5 red) at very tight rmsds, however these quickly drop as tolerance for perfectly generating
the crystal pose is loosened. By about 1.4 Å for RGD, 2.0 Å for FAD, and 3.0 Å for FLX,
the failures in sampling are minimal (4-5%). Failures in scoring show a different behavior.
At very low rmsds, scoring failures are essentially non-existent (Figure 5 green), suggesting
that the standard DOCK scoring function is highly accurate provided sampling algorithms
are able to generate a pose which overlaps closely with the experimental pose (presumed
global minimum). Conversely, as rmsd cutoffs increase, the conformational space available
for generating acceptably correct poses also increases, which makes ranking more difficult
due to potentially larger, more diverse ensembles. Interestingly, maximum errors in scoring
appear at ca. 1.5-2.0 Å rmsd (Figure 5 green) for all three protocols. Moreover, the eventual
plateau of scoring failure curves beginning in this region highlights the greater need for
improved scoring functions relative to sampling across the entire range. Overall, the general
shape for the intersection of the three curves (Figure 5 green, red, blue) suggests a 2.0 Å
rmsd definition for docking success is reasonable and, unless otherwise stated, this criteria is
used throughout this work.

Alternative Ligand Geometries

To probe possible starting condition effects, additional docking calculations were performed
using energy minimized ligand geometries, optimized without the protein, using one of six
methods as shown in Table 1. Optimizations employed the General Amber Force Field
(GAFF)45 as implemented in AMBER8 using 100, 1000, or 10,000 steps of minimization
(ε=4r dielectric), the Merck Force Field (MMFF94x)46,47 as implemented in MOE using
default protocols, and AM148 and PM3MM49 semi-empirical methods as implemented in
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Gaussian9850 using max 10,000 cycles of minimization. Ligand geometries optimized using
MMFF94x with MOE are provided as part of the testset distribution.

As expected, docking success rates decrease when using energy minimized ligand
geometries as input versus the crystallographic structures (Table 1). The most likely reason
involves the fact that on-the-fly DOCK algorithms do not currently sample dihedral angles
within ring systems, bond angles, or bond lengths. Thus, as average rmsds and min/max
ranges for the ligands used as docking input increase relative to the original crystallographic
geometries, docking success rates generally decrease (Table 1). On the other hand, even
short optimizations will yield modified bond lengths, bond angles, and dihedral angles thus
the small 2-5% decrease using input geometries obtained from the GAFF 100 step protocol
is notable. Unsurprisingly for RGD protocols, given that dihedral angles are not sampled
during docking, the results in Table 1 show the widest range of variation depending on
which method was used to generate the input (5 to 30% decrease). In contrast, FAD (3-9%
decrease) and FLX (2-9% decrease) protocols appear much less sensitive as expected. An
interesting observation is GAFF (10,000 steps), MMFF94x, AM1, and PM3MM results are
all very similar for FAD (70.0-72.0%) and FLX (55.5-57.9%) despite the fact that four
different models (GAFF, MMFF94x, AM1, PM3MM) and three different modeling
programs (Amber8, MOE, Gaussian98) were used to generate alternative structures. While
these results might be indicative of typical FAD and FLX success rates for DOCK6.4,
regardless of the source of ligand geometry, additional testing to assess the role of initial
starting conditions is required. For this study, given the potential bias in choosing any single
procedure to generate alternative input structures, the original crystallographic geometries
were employed in all analysis and discussion that follow.

Results by Ligand Flexibility

Table 2 and Figure 6 shows a detailed breakdown of the global results from Figure 5 for
subsets of ligands with 7-or-less (low), 8-to-15 (middle), or 15-plus (high) number of
rotatable bonds. Table 2 also contains raw numerical values (No. of molecules) and the
average docking run times (minutes / molecule). As a result of sampling and optimization of
torsions during growth, compared RGD docking times which are linear, FAD and FLX
timings exhibit the expected exponential increase (Figure 6b) going from rigid to more
flexible subsets. Overall, for virtual screening on this particular platform, a maximum of up
to 15 rotatable bonds per ligand represents a reasonable compromise between docking speed
(Figure 6b) and accuracy (Figure 6a) using current FLX protocols.

For RGD, nearly constant success values of 83.2%, 83.9%, and 78.7% are obtained for low,
middle, and high flexibility subsets respectively (Table 2, column E). For all 780 systems
RGD success equals 82.9%. Notably, RGD failures in sampling (0.4 - 1.1%) are negligible
(Table 2, column G) which indicates excellent orienting. Scoring failures for RGD across
the subsets yield 16.1%, 15.7%, and 20.2% (Table 2, column I). Overall, RGD docking is
the protocol evaluated for which success, sampling failures, and scoring failures remains ca.
constant and independent of ligand flexibility (Table 2).

For FAD, as ligand flexibility increases, success rates drop with near perfect linear behavior
(Figure 6a) going from 7-or-less (87.5%), 8-to-15 (71.6%), and 15-plus (52.8%) subsets
(Table 2, column E). Sampling failures steadily increase across the three subsets (0.9%,
5.2%, 18.0%) although a low overall failure of 4.4% (N=780) indicates conformer growth
by torsion sampling is generally successful if the initial scaffold (anchor) is placed
accurately (Table 2, column G). Nevertheless, re-parameterization of dihedral angle torsion
drive files could potentially be used to correct some FAD sampling failures and is currently
under investigation. Failures due to scoring for FAD (Table 2, column I) increase in going
from low (11.6%), to middle (23.1%), to high (29.2%) numbers of rotatable bonds.
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Interestingly, despite the complexities associated with flexible growth, scoring failures for
the FAD 7-or-less subset are less than those for RGD docking by ca 5 %. In general, the
high average success rate of 78.1% (N=780) indicate good overall FAD outcomes. This is
important, as FAD protocols are expected to be a useful protocol for placement of functional
groups when the position of a ligand scaffold is already known (i.e. generation of structures
for subsequent SAR studies).

For FLX, success performance also degrades linearly (Figure 6a) in going from low to high
(74.5%, 55.2%, 39.3%) flexibility subsets respectively (Table 2, column E). Despite the
challenges associated with anchor orientation and on-the-fly growth for larger flexible
ligands the average success rate of 63.8% (N=780) is very encouraging. However, although
sampling failures are low for the rigid 7-or-less group (4.3%), poorer statistics for the
flexible 8-to-15 (15.3%) and 15-plus (39.3%) groups indicate substantial room for
improvement (Table 2, column G). In particular, higher sampling failures for FLX compared
with FAD indicate that alternative anchor orientation and pruning protocols should be
explored. Although FLX protocols for the 15-plus group yield sampling failures (39.3%)
that outweigh scoring (21.3%), for the more rigid 7-or-less and 8-to-15 groups, in general
scoring failures are always dominant. This trend is in general agreement with the global
rmsd spectrum plots shown in Figure 5. To identify which systems have particularly poor
sampling or scoring and low or high success rates, as described further below, SB2010
members were alternatively grouped into families consisting of related protein entries.

Family-based Analysis

As shown in Figure 7 and Table 3, a large percentage (73%) of the testset could be grouped
into 25 different protein families containing ≥ 7 members (N=566) and is referred to here as
“Large Families”. The remaining systems (N=214), which include 25 smaller families
containing from 2 to 6 members as well as all single unique proteins, were combined into a
group termed “Small Families”. Both groups, together with “All Systems” (N=780),
represent baseline results. A true protein diversity subset of SB2010 would contain 166
complexes. Results in Figure 7 employ the three color scheme defined earlier (successes
blue, sampling failures red, scoring failures green). For FLX results, the differences between
sampling and scoring failures are also shown (Figure 7d orange). The results in Figure 7 and
Table 3 are sorted based on decreasing FLX success rates (blue).

Family-based Successes

Although some variation is observed, in general, family-based successes follow the order
reflecting the relative difficulty of the various experiments (RGD > FAD > FLX). Notably,
results for the three baseline groups cluster together (Large Families, Small Families, All
Systems). Specific families with particularly high docking success (>80% across all
protocols) are Sialidase, OMP Decarboxylase, HIV RT, Neuraminidase, Factor Xa, T4
Lysozyme, and Estrogen Receptor. Although all methods generally yield good results, there
are some significant outliers (Table 3 columns D, G, J and Figure 7a-c blue bars). For
example, RGD protocols yield > 50% success for egg lysozyme (42.9%). For FAD, > 50%
success is obtained for three systems: egg lysozyme (28.6%), carbonic anhydrase (44.8%),
and phospholipase A2 (46.7%). And for FLX, nine families have > 50% success: HIV
protease (43.3%), thermolysin (42.3%), acetylcholinesterase (42.1%), matrix
metalloprotease (35.7%), carbonic anhydrase (31.0%), egg lysozyme (28.6%),
phospholipase A2 (26.7%), carboxypeptidase A (25.0%), and thymidylate synthase (16.7%).
Interestingly, in three of the nine families with poor FLX results, failures are dominated by
poor sampling (Figure 7d orange). Further, four of the nine also contain Zn2+ in the binding
site suggesting a potentially systematic problem with zinc. This latter result is consistent
with findings in an earlier DOCK study by Moustakas et al.4
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Family-based Sampling

In general, the three protocols yield excellent-to-reasonable sampling across the families
(Figure 7, Table 3). RGD sampling failures are trivial and for FAD only two families show
≥ 15%. For FLX, eight families show ≥ 15% sampling failures. Although greater ligand
flexibility can lead to increases in FLX sampling failures (Figure 7c red bars), interestingly
there is not a well-defined or systematic correlation between sampling failure and average
number of ligand rotatable bonds (#RB). For example, matrix metalloprotease (#RB=7.5)
and carboxypeptidase A (#RB=8.1) ligands are more rigid than for many of the systems
studied yet both families stand out as having the highest number of FLX sampling failures
(35.7% and 62.5% respectively). In contrast the more flexible sialidase (#RB=10.5) and
HMG COA reductase (#RB=14.1) groups show low sampling failures of 0% and 10%.
Particularly encouraging sampling results are obtained for the highly flexible egg lysozyme
family (#RB=19.6, sampling failures =14.3%). On the other hand, the HIV protease family
with the same average number of rotatable bonds shows two-fold worse sampling
(#RB=19.6, sampling failures=35.0%). For the latter case however, a subgroup (N=11) of
HIV protease ligands (1HVR, 1AJV, 1DMP, 1G35, 1HVH, 1HWR, 1MER, 1MES, 1MET,
1PRO, 1QBS) based on a cyclic urea scaffold (avg #RB=12.5) yield much lower sampling
failures (2/11=18.2%) although interestingly the success is ca. the same (5/11=45.4%). To
explore if including the well-known flap water in HIV protease would improved sampling,
additional FLX calculations were run for the dataset excluding the group of cyclic urea-
based inhibitors designed to displace the flap water. However, unlike the carbonic anhydrase
systems for which including crystallographic waters did lead to enhanced results (see
Crossdocking section below), interestingly no improvement was found here for HIV
protease. Finally, an extreme sampling case is for the highly flexible carbohydrate-based
ligands contained in the smaller (N=6) hevamine family (#RB = 26.5). Notably, 0%
sampling failures are obtained across all docking protocols for hevamine, and for the FLX
results, four of the six members yield correctly docked lowest-energy poses
(success=66.6%) with low rmsd: 1KQZ (0.63 Å), 1KR0 (0.55Å), 1KR1 (0.65 Å), and 1LLO
(0.86 Å). In total, the sampling results overall (Table2, Figure 7) indicates that for most
families the modified anchor-and-grow sampling routines in DOCK are performing well.

Family-based Scoring

In agreement with the rmsd spectrum results presented earlier for the testset as a whole
(Figure 5), family-based RGD, FAD, and FLX results (Figure 7a-c green) show scoring
failures overwhelmingly dominate sampling failures. For the FLX results, only four systems
show the opposite trend (Figure 7d orange). In terms of magnitude, the three families with
the most significant FLX scoring failures (>50% Figure 7C green) include thymidylate
synthase (75.0%), carbonic anhydrase (65.5%), and egg lyzozyme (57.1%). Interestingly,
side-by-side comparisons of FAD vs FLX scoring failures for all the families reveals that in
all but the above three cases, fewer failures are obtained using FAD. In a global context this
may be partly explained by the fact that FAD protocols sample poses in a smaller region of
conformational space closer to the native pose which leads to more accurate scoring/ranking.
This hypothesis is consistent with the conclusions derived from the global rmsd spectrum
plots in Figure 5, which revealed that at very low rmsds scoring failures are negligible.

Crossdocking Matrices (Heatmaps)

A natural extension of the family-based analysis involves crossdocking, as illustrated for
two representative families (carbonic anhydrase and thermolysin) in Figure 8. In
crossdocking, all members of a given family are aligned to a common reference structure
and all ligands are docked into all receptors in the common frame. The structural alignments
provide a crystallographic pose reference to assess docking success for all possible receptor-
ligand combinations. An underlying assumption is all the ligands theoretically could be
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accommodated into all the receptors. While for many systems this is reasonable, larger
ligands for example might not sterically fit into some binding sites. Alternatively, receptor
point mutations could preclude some ligands from binding or adopting the same binding
pose as the hypothetical reference. Thus, while the diagonal elements in crossdocking
matrices (yellow circles) represent experimentally observed cognate ligand-receptor pairs,
off diagonal elements represent virtual results and thus should be interpreted with care.
Despite these cautions, crossdocking matrices allow for rapid identification of particularly
good or bad docking trends, which will likely be of interest to researchers making specific
receptor choices for virtual screening. Matrix colors show success in blue, scoring failures in
green, and sampling failures in red.

Figure 8a clearly reveals carbonic anhydrase has a relatively low matrix success rate
(number of blue squares in matrix = 17.7%) despite the fact that nearly complete sampling is
achieved (number of red squares = 8.2%). Thus, this family would be a good test system to
evaluate alternative procedures that affect scoring (see discussion below). On the other hand,
thermolysin shows greater matrix success (36.9%), however sampling failures in this system
are also significantly higher (37.4%). Compared to carbonic anhydrase, thermolysin would
provide a good test system for evaluation of alternative docking procedures that would
primarily affect sampling.

An alternative way of assessing potential compatibility between ligands and receptors is the
evaluation of baseline reference scores after a short energy minimization of each
experimental ligand pose in each receptor. Figure 9 shows prototypical matrices for four
structurally aligned families in which the elements colored white represent favorable DOCK
scores compared with unfavorable scores in black. The calculations here employed a 10
kcal/ mol Å2 harmonic tether to help reduce rmsd differences between minimized and
unminimized ligand poses. The central idea is that compatible partners will show favorable
scores while complexes with intermolecular clashes will show unfavorable scores. As
expected, based on the good sampling for carbonic anhydrase seen in Figure 8 (green
elements) the energy-minimized structures for carbonic anhydrase reveal only a few
combinations with intermolecular clashes (Figure 9 black elements). Interestingly for
thermolysin, there are also relatively few intermolecular clashes, which is surprising given
the large number of crossdocking sampling failures seen for this family (Figure 8 large
numbers of red elements). Here, an under sampling of torsions, specific to ligands in the
thermolysin family, could be involved and this hypothesis is being investigated. In sharp
contrast, results for HIV protease, and HIV reverse transcriptase both show a significant
number of matrix elements with unfavorable (positive) scores. The presence of unfavorable
matrix elements in the structurally aligned reference systems strongly suggests significant
structural rearrangements may be required to achieve compatibility, which, in some
instances will be difficult to achieve in the context of a rigid receptor. Importantly, the
protocols outlined here provide a framework for identifying potentially problematic systems
and for evaluating the utility of alternative sampling methods which aim to improve
crossdocking.

Focusing on carbonic anhydrase, two ligands show systematic poor sampling in all receptors
(Figure 8 rows 1CNW, 1CNY) and in some cases no viable poses were generated (Figure 8
white matrix entries). However, in comparison with ligands without failures, these entries
are much more flexible (15 and 17 rotatable bonds, Figure 8a right y-axis) thus the results
have a physical explanation. Examination of diagonal results (Figure 10a black lines), in
comparison with the experimental structures (Figure 10 molecular surface), reveals a
substantial number of docked poses which occupy space normally containing
crystallographic waters (Figure 10b red spheres). And, waters which interact with nearby
H64, Y31, and zinc (Figure 10) have been shown to be particularly important for enzyme
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function.51 Given the remarkably low number of sampling failures in this system (Figure
8a), a reasonable hypothesis is that the absence of waters contributes to high scoring
failures. Specifically, waters likely provide steric hindrance and hydrogen bonding
capability, without which, artificially good scores may result due to favorable interactions
with H64 and Y31 (Figure 10a). In general agreement with this hypothesis, calculations
redone including waters within 10 Å of the binding site zinc ion (Figure 10b) show docked
poses overlay more completely with the envelope defined by experiment (Figure 10a vs
10b). Further, both cognate (17% increase) and matrix (14% increase) success rates
improved. However, as a cognate success rate of > 50% is less than optimal other scoring
options should be explored. Moustakas et al4 recently showed results for zinc containing
systems could be improved by using different Lennard Jones parameters depending on local
coordination states. However, examination of the docked vs experimental poses in Figure 10
shows zinc to be correctly coordinated thus other factors (e.g. polarization, desolvation) are
more likely to be involved.

As another example of the utility of crossdocking, Table 4 and Figure 11 shows results for
the anti-influenza52 target neuraminidase (43 × 43 matrix). All ligands in this family are
based on the same sialic acid scaffold and include the FDA approved compounds
oseltamivir (Tamiflu) and zanamivir (Relenza), and the related drug candidate peramivir
(emergency use authorization).53 Several PDB codes among the group contain the same
ligand (i.e. seven entries were co-crystallized with oseltamivir) which permits additional
examination of the effects of different ligand starting conditions on docking outcomes.
Ideally, all oseltamivir ligands should yield identical results. Table 4 lists row-based failures
derived from docking multiple copies of the inhibitors DANA (N=7), oseltamivir (N=7),
zanamivir (N=4), and peramivir (N=4) to all 43 neuraminidase receptors (columns A-D).
Graphics depicting the experimental poses for each group are also shown. The small
structural variation among the references highlights both good receptor alignments (based on
C-alpha atoms) and well-defined experimental poses.

Importantly, results for sampling and scoring failures show minor differences (0-2 failures
for each row of 43 receptors) for most entries. Only the DANA group (Table 4 column A)
shows larger than expected variation. And, in all cases the larger differences arise from
scoring and not sampling. Interestingly, the largest changes observed for DANA occur using
ligands 1IVF and 2HTW, both of which have the central ligand carboxylate group rotated by
ca 90 degrees in comparison to other crystal poses (Table 4 Column A). Although subtle,
small internal coordinate differences (bond lengths, angles, dihedrals, ring pucker, etc)
ultimately influence all aspects of the calculations including partial charge assignments,
anchor orientation, functional group sampling, energy minimization, and final rankings.
Nevertheless, the remarkably consistent results in Table 4 obtained using multiple ligand
copies for neuraminidase is highly encouraging. Studies to characterize docking noise
among other families are ongoing.

In comparison with carbonic anhydrase and thermolysin families (Figure 8), neuraminidase
shows striking overall matrix success (Figure 11a blue squares total 87.6%). Birch et al54

similarly found good results for the neuraminidase systems in a comprehensive crossdocking
study using the program GOLD. Against the mostly blue heatmap in Figure 11, several
distinct vertical (receptor-based) failure patterns are visible, in particular for receptors 2HU0
(30 failures), 1L7G (17 failures), and 2HT7 (12 failures). Interestingly, 1L7G is the only
system studied here which contains the deleterious E119G mutation. For many
neuraminidase inhibitors, strong electrostatic interactions between the glutamic acid side
chain at position E119 and positively charged functionality on the ligand lead to enhanced
binding.52,55 Thus, the reduction in accuracy using receptor 1L7G appears to have a
physical explanation. Interestingly, the other two receptors with the poorest overall results
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represent the recently reported open loop56 form of neuraminidase (2HU0 subtype N1, and
2HT7 subtype N8). For 2HU0, E119 adopts a rotameric state which points away from the
ligands thus the poor receptor-based results in Figure 11a for 2HU0 (open loop) and 1L7G
(E119G mutant) likely share a common origin. In support of this argument, results using
2HT7 show fewer failures, despite having an open loop conformation, likely because the
E119 rotamer more closely resembles that seen in closed loop forms.

Finally, Figure 11b-c shows a comparison of results for docking all 43 ligands with 2HU0
(open loop) vs the adjacent entry 2HTR (closed loop), which were both originally co-
crystalized with oseltamivir.56 Structurally, all poses docked into 2HTR show strikingly
tight grouping in comparison with the 2HU0 open loop form (Figure 11b vs c). Although
ligand poses in 2HU0 are mostly ranked incorrectly when compared with the reference
poses, given that the sampling failures are in fact negligible, the greater structural variation
seen in Figure 11b suggests the open loop form provides an alternative yet favorable binding
environment. This observation is important, as the open loop form of neuraminidase has
been proposed as an attractive drug target.56,57 In total, twenty-six out of forty-three
neuraminidase receptors show perfect sampling with all ligands tested and the best overall
docking success are for receptor codes 1NSD (type B), 3CKZ (type N1), 1F8E (type N9),
1F8B (type N9), 1MWE (type N9), and 1A4Q (type B). These results are generally
consistent with the study by Birch et al54 in which enhanced results were obtained using
1MWE (100%), and to a lesser extent 1F8B (93%), 1F8E (93%), and 1A4Q (93%)
structures using a success definition of > 2.0 Å. As a general rule, crossdocking matrices
should be useful to identify receptors with the lowest number of sampling failures and
highest overall success rates for docking known ligands. Depending on the target of interest,
specific receptors with particularly good properties across a variety of ligand chemotypes
could be considered as well-behaved for the purposes of virtual screening.

CONCLUSION

This work has resulted in construction and refinement of a database called SB2010,
consisting of 780 complexes (Figures 1a, 3, Table S1) derived from the protein databank,
which can be used to assess accuracy for ligand pose prediction in comparison with
experiment. The primary goal is to aid development of robust, improved docking procedures
for structure-based drug design and virtual screening. Strengths of the testset include: (1)
publically available files downloadable in a ready-to-dock format, (2) larger than other
comparable hand-curated databases, (3) large numbers of ligands with significant flexibility,
(4) ligand protonation states visually compared against available crystallographic references,
(5) family-based and ligand flexibility subsets, (6) and family-based crossdocking protocols.

Using three distinct computational experiments, representing rigid (RGD), fixed anchor
(FAD), and flexible (FLX) ligand docking, database statistics as a whole were evaluated in
terms of success, scoring failures, and sampling failures (Figure 5) with increasing root-
mean-square-deviation (rmsd). As rmsd criteria changes from perfect pose overlap to higher
values, all three docking protocols show steep increases for overall success (Figure 5 blue)
with concomitant decreases for failures due to sampling (Figure 5 red) and increases for
failures due to scoring (Figure 5 green). At the commonly employed 2.0 Å rmsd definition
(Table 2), docking success tracks with the relative difficulty of the calculation with RGD
(82.3%) > FAD (78.1%) > FLX (63.8%). In general, failures in scoring overwhelmingly
outweigh failures due to ligand sampling.

To evaluate the effects of ligand flexibility, the database was arranged into three groups
consisting of 7-or-less (N=423), 8-to-15 (N=268), and 15-plus (N=89) number of rotatable
bonds. Docking successes (Table 2) degrade linearly across the increasingly flexible subsets
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using FAD (87.5 > 71.6 > 52.8%) or FLX (74.5 > 55.2 > 39.3%) protocols in contrast to
RGD results (83.2 ~ 83.9 ~78.7%) which remain relatively constant. Average docking times
(minutes / molecule) show analogous behavior with RGD protocols exhibiting linear
behavior compared with FAD and FLX which show exponential growth (Figure 6).

To identify which systems show particularly high or low docking success rates, SB2010
members were arranged into families (N=25) consisting of related protein entries provided
groups contained 7 or greater members (Figure 7, Table 3). Family-based successes also
generally follow the RGD > FAD > FLX trend. Families with particularly high docking
success (>80% across all protocols) include Sialidase, OMP Decarboxylase, HIV RT,
Neuraminidase, Factor Xa, T4 Lysozyme, and Estrogen Receptor. Families with particularly
low docking success (>50% across FLX, FAD protocols) include egg lysozyme, carbonic
anhydrase, and phospholipase A2. Three of the nine families with the poorest FLX results
show failures are dominated by poor sampling (Figure 7d orange) however in general there
is no well-defined or systematic correlation between average number of ligand rotatable
bonds (#RB) and sampling failure. Four of the nine contain Zn2+ in the binding site
suggesting a potentially systematic problem.

As further examples of the potential utility of the SB2010 database, crossdocking
experiments were performed (Figures 8, 10, 11, Table 4), for three representative protein
families (carbonic anhydrase, thermolysin, neuraminidase), in which all ligands of a given
family are docked into all receptors. The resultant carbonic anhydrase heatmap shows
relatively low matrix success despite the fact that nearly complete sampling is achieved
(Figure 8a green). Additional calculations suggest high scoring failures in this system are
due in part to the absence of key binding site waters (Figure 10). In contrast, results for
thermolysin show significantly more failures as a result of sampling (Figure 8b red). For
neuraminidase, remarkably high matrix success is observed (Figure 11a blue). In general
agreement with earlier studies,54 the identification of specific heatmap patterns (Figure 11a)
for neuraminidase receptors containing either an open loop form or an E119G mutant
demonstrate how crossdocking matrices can be used to gauge which receptor(s) might be
most appropriate for virtual screening. The similarity in crossdocking results obtained using
multiple copies for four different neuraminidase inhibitors (Table 4) suggests small
variations in starting conditions may minimally impact final docking outcomes. In general
support of this observation, experiments using a large subset of the database (Table 1,
N=697) revealed a 2 to 9% decrease in FAD and FLX success rates which were dependent
on which energy-minimization protocol and/or force field was used to generate alternative
sets of input geometries.

In conclusion, the composition of SB2010 provides a versatile resource for users to address
performance across a wide range of docking experiments including global success/failure,
ligand flexibility, family-based analysis, and crossdocking. In conjunction with the database
itself, the well-tested protocols will likely be useful for researchers performing a wide
variety of real-world docking projects as well as additional methodological studies to
characterize the effects of various starting conditions on final docking outcomes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
(a) Ligand flexibility histogram for SB2010 in comparison with other docking databases. (b)
Representative examples of FDA approved drugs and medically significant experimental
inhibitors in SB2010 having ≥ 10 rotatable bonds. Ligand flexibility (#RB) for all datasets
computed using DOCK.
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Figure 2.
Flowchart depicting the protocol used for ligand and receptor preparation for each protein-
ligand complex downloaded from the Protein Databank. Details of each step are discussed in
the text.
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Figure 3.
(a) Prototypical docking setups showing energy grids as grey box, docking spheres as red
balls, ligand as green surface, and protein backbone as orange tubes. (b) Average, minimum,
and maximum grid sizes and number of spheres for the entire testset.
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Figure 4.
Properties of the SB2010 docking testset (N=780): (a) number of ligand heavy atoms, (b)
ligand molecular weight, (c) ligand formal charge, (d) rmsd of ligand experimental pose
after energy minimization, (e) number of intermolecular hydrogen bonds after minimization,
(f) DOCK intermolecular energy score (gray), van der Waals energy components (ΔEvdw,
blue), and Coulombic energy components (ΔEcoul, red) after minimization.
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Figure 5.
Docking outcomes using SB2010 (N=780) as a function of rmsd from 0 to 4.0 Å for rigid
(RGD, left), fixed anchor (FAD, middle), and flexible (FLX, right) ligand docking. The
outcomes are docking success rates (blue), sampling failures (red), and scoring failures
(green); the vertical width of each solid color defines the percentage of each outcome at a
given rmsd value. See Methods for protocol definitions.
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Figure 6.
Results by subset flexibility using rigid (RGD), fixed anchor (FAD), and flexible (FLX)
protocols for (a) total docking success (%) and (b) average docking time (min/mol) on 3.2
Ghz Intel Xeon processors.
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Figure 7.
Family-based: (a) rigid (RGD), (b) fixed anchor (FAD), and (c) flexible docking (FLX). For
each system, the sum of the widths of success (blue), sampling failures (red), and scoring
failures (green) is equal to 100%. The left y-axis shows protein family and size and the right
y-axis shows average number of ligand rotatable bonds (#RB). (d) (orange bars) shows
difference in scoring - sampling failures for FLX.
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Figure 8.
Family-based carbonic anhydrase (a) and thermolysin (b) FLX crossdocking results. Matrix
rows and columns correspond to a given ligand or receptor and identified by PDB codes.
Diagonal entries indicate cognate docking (yellow circles). Docking outcomes classified as
sampling failure (red), scoring failure (green), docking success (blue), or incomplete growth
(white). Ligand formal charge and number of rotatable bonds listed on right y-axis. Bottom
stacked bar plots indicate outcomes for all ligands with a given receptor. Left stacked bar
plots indicate outcomes for any given ligand with all receptors. Matrix elements sorted in
order of decreasing success for each ligand with all receptors (left stacked bar plots).
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Figure 9.
DOCK score matrices from energy minimizations of experimental ligand poses in each
receptor color coded by favorable (white) and unfavorable (black) intermolecular energies
for carbonic anhydrase, thermolysin, HIV protease (HIV PR), and HIV reverse transcriptase
(HIV RT) systems.
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Figure 10.
Carbonic anhydrase crossdocking results (N=29 diagonal/cognate structures) from
calculations (a) without or (b) with crystallographic waters within 10 Å of zinc ion.
Representative side chains shown as CPK-colored lines, docked poses as black lines,
experimental poses as molecular surfaces, and waters as red spheres.
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Figure 11.
(a) Family-based FLX crossdocking results for neuraminidase. Legend description as in
Figure 8. (b) Column-based results for docking all ligands with receptor 2HTR. (c) Column-
based results for docking all ligands with receptor 2HU0. Ligands show as CPK colored
licorice, neuraminidase shown as green (closed form) or red (open form) colored tubes.
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