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Abstract

Wireless broadcast allows widespread and easy information transfer. However, it may

expose the information to unintended receivers, which could include eavesdroppers. As a

solution, cryptography at the higher network levels has been used to encrypt and protect

data. Cryptography relies on the fact that the computational power of the adversary

is not enough to break the encryption. However, due to increasing computing power,

the adversary power also increases. To further strengthen the security and complement

the encryption, the concept of physical layer security has been introduced and surged

an enormous amount of research. Widely speaking, the research in physical layer secu-

rity can be divided into two directions: the information-theoretic and signal processing

paradigms. This thesis starts with an overview of the physical layer security literature

and continues with the contributions which are divided into the two following parts.

In the first part, we investigate the information-theoretic secrecy rate. In the first

scenario, we study the confidentiality of a bidirectional satellite network consisting of

two mobile users who exchange two messages via a multibeam satellite using the XOR

network coding protocol. We maximize the sum secrecy rate by designing the optimal

beamforming vector along with optimizing the return and forward link time allocation.

In the second scenario, we study the effect of interference on the secrecy rate. We

investigate the secrecy rate in a two-user interference network where one of the users,

namely user 1, requires to establish a confidential connection. User 1 wants to prevent

an unintended user of the network to decode its transmission. User 1 has to adjust its

transmission power such that its secrecy rate is maximized while the quality of service at

the destination of the other user, user 2, is satisfied. We obtain closed-form solutions for

optimal joint power control. In the third scenario, we study secrecy rate over power ratio,

namely “secrecy energy efficiency”. We design the optimal beamformer for a multiple-

input single-output system with and without considering the minimum required secrecy

rate at the destination.

In the second part, we follow the signal processing paradigm to improve the security.

We employ the directional modulation concept to enhance the security of a multi-user

multiple-input multiple-output communication system in the presence of a multi-antenna

eavesdropper. Enhancing the security is accomplished by increasing the symbol error

rate at the eavesdropper without the eavesdropper’s CSI. We show that when the eaves-

dropper has less antennas than the users, regardless of the received signal SNR, it cannot

recover any useful information; in addition, it has to go through extra noise enhancing

processes to estimate the symbols when it has more antennas than the users. Finally, we

summarize the conclusions and discuss the promising research directions in the physical

layer security.
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Chapter 1

Introduction

1.1 Motivation and Scope

Wireless communications allows information flow through broadcasting; however, unin-

tended receivers may also receive these information, with eavesdroppers amongst them.

One way to enhance the security is by applying encryption on the information before

transmission. Currently, security in communications is achieved at upper layers by

means of encryption such as the Advanced Encryption Standard (AES) [1, 2]. Nev-

ertheless, cryptography security is based on the assumption of limited computational

capability of the malicious nodes, and thus there exists the risk that a malicious node

can successfully break an encryption and get access to sensitive information [3]. As time

goes on, the increasing computational power of the computers increases the probability

of encryption interception.

In addition to the upper layer encryption techniques, recently, there has been significant

interest in securing wireless communications at the physical layer using an information-

theoretic approach. As a pioneer in information-theoretic physical layer security, Shan-

non mentioned that in order to have a perfectly secure communication, the length of

the key has to be at least equal to the length of the message [4]. Later, Wyner in-

troduced the concept of “secrecy rate” for discrete memoryless channels in his seminal

paper [5] which initiated a research direction for keyless secure communications. Wyner

noted that if the eavesdropper has a noisier channel than the legitimate receiver, we can

achieve a perfectly secure communication with encoding and decoding at the transmitter

and legitimate receiver, respectively. The main advantage of these approaches is that

the malicious nodes cannot get access to the protected information regardless of their

computational capabilities. The secrecy rate defines the bound for a perfectly secure

transmission and coding is being developed to achieve this bound. However, this area

1
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is still in its infancy, and the research effort at the moment is inclined in implementing

practical codes [6–8]. Wyner’s idea was later extended to broadcast channels with con-

fidential messages [9], Gaussian [10], and fading channels [11–13]. We provide a detailed

overview of the information-theoretic research in Chapter 2.

The first part of this thesis focuses on the information-theoretic secrecy rate in both

satellite and terrestrial scenarios. In Chapter 3, we maximize the secrecy rate in a

bidirectional satellite communication network to facilitate fast and secure satellite com-

munications (SATCOM). SATCOM is becoming more and more integrated into com-

munication networks to complement the current terrestrial communication systems [14].

Satellite services have to support increasing demands for data transfer. Traditionally,

orthogonal resources either in frequency or time domain should be used to avoid inter-

ference between users. Bidirectional satellites where users exchange messages simulta-

neously can be one of the solutions to save the precious wireless resources. To realize

bidirectional satellite communications, we use network coding as an efficient protocol

to exchange information between two mobile satellite users. The basic principle is that

the received information from users are combined at the gateway (GW), and then the

mixed signal is simultaneously broadcast to the users using the same frequency. Be-

cause each user can subtract its own message, it can easily decode the message from

the other user. Network coding can greatly improve the system throughput. However,

the security it provides is largely unknown in SATCOM and is not yet compared with

the conventional scheme, which does not use network coding. Due to the broadcast

nature and immense area coverage, satellite communications systems, e.g., in military

and commercial applications, are vulnerable to security attacks such as eavesdropping.

We leverage the physical layer security approach to address the confidentiality issue in

bidirectional SATCOM using the principle of network coding.

In Chapter 4, the effect of interference on the secrecy rate was studied in wiretap in-

terference channels. Broadcasting information over the same frequency band in wireless

networks leads to interference among users. Even in the systems where the spatial

dimension is used to concentrate the signal towards the intended destination, the des-

tination may receive interfering signals from other transmitters operating in the same

frequency band. Also, due to the expansion and deployment of wireless services, the

spectrum is becoming scarce [15]. As one possible solution, devices can share the same

spectrum which results in interference and degradation of the signal quality. For in-

stance, IEEE standards such as WiFi, Zigbee and Bluetooth share the same frequency

band named the industrial, scientific and medical (ISM) band and they may interference

with each other [16]. Furthermore, the wireless medium leaves the information vulner-

able to unintended users who can potentially decode the message which was meant for

other users. By intelligently tuning the system parameters using physical layer security
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techniques, we can prevent the wiretappers from getting access to the information. Con-

sequently, a specific rate can be perfectly secured for the users to transmit their data, so

that the wiretapper is not able to decode the message. Potentially, the interference can

improve the secrecy rate by introducing extra interference at the eavesdropper. To find

a relation between the secrecy rate and energy efficiency, we study the secrecy energy

efficiency in Chapter 5. Energy-efficiency, high data rates and secure communications

are essential requirements of the future wireless networks. We consider a multiple-input

single-output (MISO) and a single-input single-output (SISO) scenario while a single-

antenna unintended receiver, which is part of the network, is listening. The secrecy rate

over the power ratio, named “secrecy energy efficiency”, is maximized with and without

considering the minimum required secrecy spectral efficiency at the destination. For

comparison, we derive the optimal beamformer when the zero-forcing (ZF) technique

is used to null the signal at the eavesdropper with considering the minimum required

secrecy spectral efficiency. Furthermore, we study the trade-off between secrecy energy

efficiency and secrecy spectral efficiency.

The second part of this thesis focuses on enhancing the security through the signal pro-

cessing paradigm. In Chapter 6, we employ the directional modulation concept [17, 18]

to enhance the security for finite-alphabet signaling in a multi-user MIMO channel with-

out relaying on the information-theoretic secrecy rate. In the directional modulation,

the antenna weights are designed such that the desired data constellation is received only

in a specific direction, and is distorted in other directions. Although the Gaussian distri-

bution is optimal when the information-theoretic secrecy rate is the target, the Gaussian

distribution assumption for the signals is rarely satisfied in practical communication sys-

tems. There are digital communication systems which use finite-alphabet signals such

as M -PSK modulation which usually have a discrete uniform distribution [19]. Due to

the non-Gaussian distribution, finite-alphabet signals are not optimal in terms of the

developed secrecy rates in [5, 9–13]. Furthermore, although the physical layer security

concept introduced in [5] provides perfect secrecy with the proper coding scheme, it

also reduces the message transmission rate to the legitimate receiver. Primarily, the

secrecy rate requires perfect or statistical knowledge of the eavesdropper’s channel state

information (CSI) [5, 20–22], however, it may not be possible to acquire the perfect or

statistical CSI of a passive eavesdropper in practice. In addition, in the secrecy rate

approach, the transmission rate has to be lower than the achievable rate, which may

conflict with the increasing rate demands in wireless communications. In Chapter 6, we

study and design the optimal precoder for a directional modulation transmitter in order

to enhance the security in a quasi-static fading MIMO channel where a multi-antenna

eavesdropper is present. Here, enhancing the security means increasing the SER at the

eavesdropper. In directional modulation, users’ channels and symbols meant for the
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users are used to design the precoder. The precoder is designed to induce the symbols

on the receiver antennas rather than generating the symbols at the transmitter and

sending them, which is the case in the conventional transmit precoding [23, 24].

1.2 Thesis Organization

We mention the system model details of each chapter in this section. These explanations

are followed by our contributions. Chapters 3, 4, and 5 span the first part of the thesis

which is focused on the information-theoretic secrecy rate. The second part of the thesis

focuses on enhancing the wireless security via signal processing paradigm. This approach

is described in Chapter 6. Finally, Chapter 7 summarizes the main results of the thesis

and proposes future possible research directions.

1.2.1 Chapter 2: Physical Layer Security

In this chapter, we mention the state of the art in physical layer security by dividing

them into two major groups. The first group consists of the works which study the

security based on the information-theoretic secrecy rate. We mention the information-

theoretic secrecy rate literature in detail and classify them into direct link and cooper-

ative communications subcategories. For the direct link communications, we divide the

works into broadcast wiretap channels, broadcast channels with confidential messages,

multiple-access channels, interference channels, and the works which jointly study the

secrecy rate and energy efficiency. The cooperative works are divided into works which

study the secrecy rate in networks with untrusted relays and the works which consider

external eavesdropper.

The second group includes the works which improve the security through the signal

processing paradigm by increasing the symbol/bit error rate or signal to noise ratio at

the eavesdropper. We divide the literature of this group into two categories. The first

category enhances the security using conventional precoding, which only uses the CSI of

the legitimate link in the precoder design. The second category uses both the legitimate

CSI and the symbols to design the precoder.

1.2.2 Chapter 3: Security in Bidirectional Multibeam Satellites

We study network coding based bidirectional SATCOM in this chapter. We consider

a scenario where two mobile users exchange data via a transparent multibeam satellite

in the presence of two eavesdroppers. There is an eavesdropper present for each user
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who overhears the bidirectional communications. The users employ omnidirectional

antennas and the communication is prone to eavesdropping in both the return link1

(RL) and forward link2 (FL). In the RL, two users send signals using two orthogonal

frequency channels; the signals collected by the satellite are passed to the GW, where

they are decoded, XOR-ed and then the produced stream is re-encoded. This combined

stream is multiplied by the beamforming vector which contains the designed weight of

each feed. The beamforming weights are designed to maximize the users’ sum secrecy

rate. Consequently, each element of the resultant vector is transmitted to the satellite

using the feeder link. Each element which includes both the feed weight and the data

signal is applied to the corresponding feed to adjust the beams for broadcasting to both

users simultaneously in the FL. The content of this chapter is published in [22].

1.2.2.1 Contributions

The contributions of this chapter are as follows:

1. XOR network coding is introduced into SATCOM to enable both efficient and

secure bidirectional data exchange.

2. The end-to-end sum secrecy rate is first derived, and then maximized by designing

the optimal beamforming vector and the RL and FL time allocation. The opti-

mization problem regarding the beamforming vector is solved using semi-definite

programming (SDP) along with 1-D search.

3. Comprehensive simulation results are provided to demonstrate the advantage of

the bidirectional scheme over the conventional scheme using realistic SATCOM

parameters.

1.2.3 Chapter 4: Power Control in Wiretap Interference Channels

In this chapter, the secrecy rate is investigated in a two-user wireless interference net-

work. Apart from the two users, one of the idle users (unintended user) in this network

is a potential eavesdropper. Both nodes transmit in a way so that the secrecy rate is

maximized for the first user (user 1), and the second user (user 2) maintains the quality

of service (QoS) at its intended destination. Only user 1 needs to establish a secure

connection and to keep its data secure. For example, in a network with ISM band users,

user 1 and user 2 can be WiFi and ZigBee transmitters. The ZigBee can be used to send

1The return link denotes the data transmission from the user to the gateway via the satellite.
2The forward link denotes the data transmission from the gateway to the user via the satellite.
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measurement data, which is one of its applications, so its data may not be necessarily

important to the potential eavesdropper who is interested in WiFi messages. We study

the effect of interference from user 2 on the secrecy rate of user 1 in two scenarios,

namely altruistic and egoistic scenarios. In the altruistic scenario, we jointly optimize

the transmission powers of both users in order to maximize the secrecy rate of user 1,

while maintaining the QoS at user 2’s destination equal or above a specific threshold.

The incentives for user 2 to cooperate are twofold: 1) when positive secrecy rate cannot

be granted for user 1, it can enjoy an interference-free transmission, 2) user 1 adjusts

its transmission power to maintain the QoS of user 2’s destination equal or above the

threshold. In the egoistic scenario, the users’ powers are still jointly optimized. How-

ever, user 2 is selfish and only tries to maintain the minimum QoS at the corresponding

destination. The content of this chapter is published in [21].

1.2.3.1 Contributions

The contributions of this chapter are as follows:

1. It is shown that by appropriate control of user 1’s power, we can make sure that

the eavesdropper cannot decode the signal of user 2, and thus cannot employ

successive interference cancellation (SIC).

2. It is shown that the transmitted power from user 2 has a crucial role in achieving

a positive secrecy rate for user 1. According to the channel conditions, we define

the proper power transmission for user 2 to maintain a positive secrecy rate for

user 1

3. Closed-form expressions are developed to implement joint optimal power control

for both users in both altruistic and egoistic scenarios.

4. Finally, a new metric called “secrecy energy efficiency” is defined, which is the

secrecy rate over the consumed power ratio. Using the new metric, it is shown

that the interference channel can outperform the single-user channel for specific

values of QoS requirements.

1.2.4 Chapter 5: Secrecy Energy Efficiency Optimization for MISO

and SISO Communication Networks

In this chapter, we consider a multiple-input single-output (MISO) and a single-input

single-output (SISO) scenario while a single-antenna unintended receiver, which is part

of the network, is listening. The secrecy rate over the power ratio, named “secrecy energy
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efficiency” and denoted by ζ, is maximized with and without considering the minimum

required secrecy spectral efficiency, denoted by η0, at the destination. For comparison,

we derive the optimal beamformer when zero-forcing (ZF) technique is used to null

the signal at the eavesdropper with considering the minimum required secrecy spectral

efficiency. Note that the ZF can only be used for the MISO scenario. Furthermore, the

trade-off between ζ and secrecy spectral efficiency, denoted by η, is studied. The content

of this chapter is published in [25].

1.2.4.1 Contributions

The contributions of this chapter are as follows:

1. A convex problem is formulated to derive the exact beamformer to maximize the

secrecy energy efficiency in a MISO wiretap channel.

2. An iterative algorithm is proposed for optimal power allocation in SISO wiretap

channel to maximize the secrecy energy efficiency.

3. The trade-off between the secrecy rate and energy efficiency is analyzed to figure

out the optimal operating point.

1.2.5 Chapter 6: Security Enhancing Directional Modulation via Symbol-

Level Precoding

In this chapter, the optimal precoder is designed for a directional modulation transmitter

to enhance the security in a quasi-static fading MIMO channel where a multi-antenna

eavesdropper is present. Here, enhancing the security means increasing the SER at

the eavesdropper. In directional modulation, users’ channels and symbols meant for the

users are used to design the precoder. The precoder is designed to induce the symbols on

the receiver antennas rather than generating the symbols at the transmitter and sending

them, which is the case in the conventional transmit precoding [23, 24]. In other words,

in the directional modulation, the modulation happens in the radio frequency (RF)

level while the arrays’ emitted signals pass through the wireless channel. This way,

we simultaneously communicate multiple interference-free symbols to multiple users.

Also, the precoder is designed such that the receivers antennas can directly recover the

symbols without CSI and equalization. Therefore, assuming the eavesdropper has a

different channel compared to the users, it receives scrambled symbols. In fact, the

channels between the transmitter and users act as secret keys [26] in the directional

modulation. Furthermore, since the precoder depends on the symbols, the eavesdropper
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cannot calculate it. In contrast to the information theoretic secrecy rate paradigm, the

directional modulation enhances the security by considering more practical assumptions.

Particularly, directional modulation does not require the eavesdropper’s CSI to enhance

the security, furthermore, it does not reduce the transmission rate and signals are allowed

to follow a non-Gaussian distribution. A part of the content of this chapter is published

in [27], and all of the content is submitted to [28].

1.2.5.1 Contributions

The contributions of this chapter are as follows:

1. The optimal symbol-level precoder is designed for a security enhancing directional

modulation transmitter in a MIMO fading channel to communicate with arbitrary

number of users and symbol streams. In addition, we derive the necessary condition

for the existence of the precoder. The directional modulation literature mostly

includes LoS analysis with one or limited number of users, and multi-user works

do not perform security enhancing optimization.

2. It is shown that when the eavesdropper has less antennas than the transmitter,

regardless of the SNR level, it cannot extract useful information from the received

signal and when it has more antennas than the transmitter, it has to estimate the

symbols by extra processes which enhance the noise. We minimize the transmission

power for the former case and maximize the SER at the eavesdropper for the latter

case to prevent successful decoding at the eavesdropper. This is done while keeping

the SNR of users’ received signals above a predefined threshold and thus the users’

rate demands are satisfied. The directional modulation literature do not analyze

the abilities of a multi-antenna eavesdropper and rely on the fact that it receives

scrambled symbols

3. It is shown that in conventional precoding, the eavesdropper needs to have more

antennas than the receiver to estimate the symbols since the eavesdropper can

calculate the precoder. In our design, the eavesdropper has to have more antennas

than the transmitter since the precoder depends on both the channels and symbols.

The transmitter, e.g., a base station, probably has more antennas than the receiver,

hence, it is more likely to preserve the security in directional modulation, specially

in a massive MIMO system.

4. The power and SNR minimization precoder design problems are simplified into a

linearly-constrained quadratic programming problem. For faster design, we intro-

duce new auxiliary variable to transform the constraint into equality and propose
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two different algorithms to solve the design problems. In the first algorithm, we

use a penalty method to get an unconstrained problem and solve it by proposing

using an iterative algorithm. Also, we prove that the algorithm converges to the

optimal point. In the second one, we use the constraint to get a non-negative least

squares design problem. For the latter, there are already fast techniques to solve

the problem.

1.3 Publications

The author has published his PhD research in the IEEE journals and international

conferences. The publications are listed below with the acronyms “J” and “C” defining

the journal and conference publications, respectively.

1.3.1 Journals

❼ J1: A. Kalantari, S. Maleki, G. Zheng, S. Chatzinotas, and B. Ottersten, “Joint

power control in wiretap interference channels”, IEEE Trans. Wireless Commun.,

vol. 14, no. 7, pp. 3810–3823, Jul. 2015.

❼ J2: A. Kalantari, G. Zheng, Z. Gao, Z. Han, and B. Ottersten, “Secrecy analysis

on network coding in bidirectional multibeam satellite communications”, IEEE

Trans. Inf. Forensics Security, vol. 10, no. 9, pp. 1862–1874, Sep. 2015.

❼ J3: A. Kalantari, M. Soltanalian, S. Maleki, S. Chatzinotas, and B. Ottersten, “Se-

curity enhancing directional modulation via symbol-level precoding”, submitted to

IEEE Journal of Selected Topics in Signal Processing.

1.3.2 Conferences

❼ C1: Sina Maleki, Ashkan Kalantari, Symeon Chatzinotas, Björn Ottersten, “Power

Allocation for Energy-Constrained Cognitive Radios in the Presence of an Eaves-

dropper,” IEEE International Conference on Acoustics, Speech, and Signal Pro-

cessing (ICASSP), Florence, Italy, May 2014.

❼ C2: A. Kalantari, S. Maleki, G. Zheng, S. Chatzinotas, and B. Ottersten, “Fea-

sibility of positive secrecy rate in wiretap interference channels”, in IEEE Global

Conf. on Signal and Inf. Proces. (GlobalSIP), Atlanta, GA, Dec. 2014, pp.

1190–1194.
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Physical Layer Security

In this chapter, we review the physical layer security literature which relates to this

thesis. Broadly speaking, we divide the related literature into two parts. For the first

part, we mention the works which use the information-theoretic secrecy rate as a metric

for establishing the security. In this part, we firstly elaborate on the secrecy rate concept

and then classify the related literature into direct link and cooperative wireless networks.

To go further into the literature depth, we discuss and classify each group into subgroups.

For the second part, we review the works which rely on the signal processing paradigm

to improve the security of wireless communication systems. A summary of the literature

review of this chapter is given in Table 2.1. For a detailed review of the physical layer

security state of the art, we refer the interested readers to [29]. Here, we use the word

“unintended receiver” to refer to the eavesdropper.

2.1 Information-Theoretic Secrecy Rate Paradigm for Se-

curity

In his fundamental work [4], Shannon mentions the conditions for having perfect secrecy

using a secret key. He shows that in order to have a perfectly secure transmission,

the length of the secret key needs to be at least equal to the length of the message.

Later, Wyner introduced the secrecy rate for the keyless secure transmission paradigm

in his seminal paper [5]. Wyner considered a discrete memoryless channels and showed

that it is possible to design a pair of encoder-decoder to establish a perfectly secure

transmission when the eavesdropper has noisier channel than the legitimate receiver.

The introduction of the keyless information-theoretic secrecy rate by Wyner opened up

many research areas. In the following, we overview the works built upon the information-

theoretic secrecy rate. Apart from the secrecy rate, another metric to measure the

11
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Table 2.1: Classification of physical layer security literature

Category Related research

Secrecy in wiretap broadcast channels:
single-antenna nodes

[5, 10–12, 30–34]

Secrecy in wiretap broadcast channels:
multiple-antenna nodes

[35–68]

Secrecy in broadcast channels with confi-
dential messages

[9, 69–87]

Secrecy in multiple-access channels [20, 70, 88–93]

Secrecy in interference channels [21, 94–112]

Energy efficiency and secrecy rate [25, 113–118]

Cooperative communication and secrecy
rate: untrusted relay

[119–126]

Cooperative communication with external
eavesdropper

[22, 127–150, 150, 151]

Signal processing paradigm for security:
conventional precoding

[152–157]

Signal processing paradigm for security:
directional modulation via symbol-level
precoding

[17, 18, 23, 27, 28, 158–176]

physical layer security is the secrecy outage probability, which measures the probability

that the secrecy rate goes below a predefined threshold rate.

2.1.1 Secrecy Rate in Non-cooperative Links

Since the introduction of the information-theoretic secrecy rate by Wyner for discrete

memoryless channels, this concept has been extended to different types of direct link

wireless networks. In this part, we categorize these works based on the wireless channel

type and mention the related literature.

2.1.1.1 Secrecy in wiretap broadcast channels

In wiretap broadcast channels, the aim is to keep the message secret from external

unintended receivers or eavesdroppers. A generalized wiretap broadcast channel is shown

in Fig. 2.1. Here, we categorize the literature into single-antenna and multiple-antenna

works.

❼ Wiretap broadcast channel with single-antenna nodes: Inspired by Wyner,

[30] shows that for a noiseless legitimate channel and a binary symmetric channel,

it is possible to establish a secure transmission at the rate of the legitimate link.

To further push the limits, [10] extends Wyner’s secrecy rate to Gaussian wiretap
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Figure 2.1: Broadcast MIMO communications over wiretap fading channels.

channels. The authors of [31] extend [10] by considering a Gaussian interference

known at the encoder and propose the coding strategy to achieve the perfect se-

crecy rate. The authors of [12] analyze the secrecy rate when the main channel

is additive white Gaussian noise (AWGN) and the wiretap channel is Rayleigh

fading. They show that under artificial noise injection, positive secrecy rate is

achievable even when the average channel gain of the legitimate receiver is worse

than the eavesdropper. To analyze the secrecy rate in more general channels,

the authors of [32] derive a closed-form expression for the secrecy capacity and

an upper bound for the secrecy outage probability of α-µ fading wiretap chan-

nels. By taking into account more practical assumptions, the works in [11, 33]

study the secrecy rate by assuming the absence of the eavesdropper’s CSI. The

work of [11] studies strategies to achieve the secrecy rate over fading channels by

assuming both the availability and the absence of the eavesdropper’s CSI at the

transmitter. Assuming long coherence intervals for the eavesdropper’s channel, the

authors propose a on/off power allocation which gets close to optimal performance

for asymptotically infinity SNR. Compound1 wireless channels for the legitimate

receiver and the eavesdropper are studied in [33]. It is shown that without the

eavesdropper CSI knowledge at the transmitter and assuming limited states for it,

it is possible to guarantee perfect secrecy. The work of [34] determines the sensing

threshold, sensing time, and the transmission power to maximize the secrecy rate

of a cognitive radio using the statistical CSI of the eavesdropper.

❼ Wiretap broadcast channel with multiple-antenna nodes: The work of [35]

1The compound channel models transmission over a channel that may take a number of states and
reliable communication needs to be guaranteed regardless of which state occurs.
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initiated the extension of Wyner’s secrecy rate to multiple-antenna wiretap chan-

nel. In [35], space-time codes are used to initiate secure transmission in a multiple-

input multiple-output multiple-antenna eavesdropper (MIMOME) Rayleigh fading

channel. The secrecy rate for single-input multiple-output multiple-antenna eaves-

dropper (SIMOME) slow fading channel is derived in [36] and it is shown that

reception diversity improves the secrecy rate. The authors of [37] derive the opti-

mal transmit covariance matrix for a multiple-input single-output single-antenna

eavesdropper (MISOSE) channel where they consider AWGN legitimate channel

and Rayleigh fading and AWGN channels for the eavesdropper. The effect of

beamforming on the secrecy rate is investigated in [38]. The authors determine the

secrecy capacity of Gaussian MIMO wiretap channel with two antenna legitimate

nodes and a single-antenna eavesdropper and show that applying beamforming on

Gaussian signaling is the optimal strategy. The work of [39] derives the secrecy

rate in terms of generalized eigenvalues for a multiple-input multiple-output single-

antenna eavesdropper (MIMOSE) Rayleigh fading channels. The secrecy rate is

extended to multi-user scheduling scenario in [47]. The authors derive the achiev-

able secrecy sum-rate in a multi-user scenario where each user is wiretapped by

multiple eavesdroppers. In a new paradigm, [49] calculates the optimal jamming

covariance matrix for a full-duplex receiver in a SIMOME wiretap channel where

the receiver can both receive the signal and jamm the eavesdropper at the same

time. The advantage in [49] compared to cooperative jamming scenarios is the

“self-protection” ability at the receiver, which is that the destination can remove

the jamming from the received signal since it knowns the jamming pattern.

The secrecy rate of MIMOME network is studied in [40–42, 44, 45, 48]. To further

study the MIMOME channel, [41] derives the exact secrecy capacity of a MIMOME

AWGN wiretap channel. The analyzes of [39] are extended to include a multiple-

antenna eavesdropper in [40] and the authors derive the optimal covariance matrix

for Gaussian distributed inputs. The work of [42] characterizes the secrecy rate of

a MIMOME wiretap channel by considering a more general transmit covariance

matrix compared to [40, 41]. The achievable secrecy rate is studied while jointly

minimizing the power received by the eavesdropper and maximizing the power

received by the desired terminal. The precoding at the transmitter to maximize the

secrecy rate in a MIMOME channel is studied for space shift keying transmission

in [45]. Not all the research in the physical layer security is built from scratch,

the cognitive communications has shown to be useful in the information-theoretic

secrecy rate research. For example, a new relationship between the wiretap channel

and the cognitive radio channel is set up in [48]. The authors derive the optimal

covariance matrix of Gaussian input signal which maximizes the secrecy rate and
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calculate the achievable rates in MIMOSE and MIMOME wiretap channels. The

work of [44] designs the transmit precoding in a MIMOME channel.

The works of [43, 46] study the secrecy outage probability. To perform secrecy

rate analysis on other channel types, [43] studies the secrecy outage probability

over MISOME generalized K-fading channels. The frequency domain analysis is

employed in [46] to derive a unified communication-theoretic approach in order to

analyze the probability of nonzero secrecy capacity, the secrecy outage probability,

and the secrecy capacity over MIMO fading channels.

The security of the systems with finite-alphabet inputs is considered in [50, 51].

The authors in [50] study the information-theoretic secrecy rate for a multiple-

antenna transmitter, receiver, and eavesdropper when finite-alphabet signal is

used. The authors assume that the eavesdropper CSI is available at the trans-

mitter. An external helper generating interference in the form of fine-alphabet

signal is considered in [51]. Information-theoretic secrecy rate expressions are de-

rived by approximating the beneficial interference distribution as sum of Gaussian

distributions and assuming the availability of the eavesdropper’s CSI.

As a way to exploit the diversity and reduce the amount of radio frequency

(RF) chains, antenna selection at the transmitter/receiver can be employed. The

physical layer security research also incorporates antenna selection to reduce the

transceiver complexity while improving the security. The work of [52] derives the

secrecy outage probability in a MISOME channel using transmitter antenna selec-

tion. As an extension of [52], the authors of [53] derive a closed-form expression

for the secrecy outage probability when transmit antenna selection is used in a MI-

MOME wiretap channel to maximize the SNR at the receiver. In [54], the authors

perform transmit antenna section to improve the secrecy outage probability in

MIMO wiretap channel with multiple multiple-antenna eavesdroppers. The work

of [55] considers optimal and suboptimal antenna selection at the transmitter in

a MIMOME wiretap channel. The authors maximize the secrecy rate and derive

the secrecy diversity order.

The usage of artificial noise to enhance the secrecy rate is studied in [56–62].

The work of [56] considers a MIMOME channel where it proposes using external

helpers to jamm the eavesdropper. This work derives the noise covariance matrix

to improve the secrecy rate. The authors of [57] calculate the optimum power

allocation strategy between the transmitted information and artificial noise to

guarantee a specific secrecy outage probability. The authors of [58] extend [57]

by defining a “Protected Zone” around the transmitter and study it by statistical

modeling. The work of [59] analyzes the secrecy rate in a slow flat fading MISO

wiretap channel where multiple eavesdroppers are present. The authors jointly
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optimize the transmit and artificial noise covariance matrices. The work of [60]

considers a MISOSE wiretap channel in fast fading channels. The optimal transmit

and artificial noise matrices to maximize the secrecy rate are designed using perfect

CSI of the legitimate link and the statistics CSI of the eavesdropper. The power

splitting between the data and artificial noise transmission is proposed in [61]

to prevent the energy collector nodes to intercept the message. Secrecy rate is

extended to green wireless communications in [62], where the authors consider a

two-phase communication procedure. In the first phase, the source sends power

to the jammer through wireless channel. Then, the source communicates with

the destination in the second phase while the jammer creates interference at the

eavesdropper. The authors maximize the average rate and minimize the secrecy

outage probability.

To move toward practical scenarios and considering system errors, the physical

layer security research society has tried to study the effect of imperfect and partial

CSI on the secrecy rate. The authors of [63] minimize the secrecy outage proba-

bility in a MISOSE flat fading wiretap channel where perfect CSI of the legitimate

and partial CSI of the wiretap channel is considered. To further improve the se-

crecy, artificial noise is injected in the null direction of the legitimate receiver. The

authors of [64] follow a robust design approach along with Taylor series approxima-

tion to minimize the power and secrecy rate maximization over MIMOME wiretap

channel using imperfect global CSI. Robust design of transmit and receiver filters

over a MIMOME wiretap channel is studied in [65]. Considering the imperfect

CSIs of the legitimate link and the eavesdropper, the authors minimize the mean

square error (MSE) at the legitimate receiver, whereas keeping the MSE at the

eavesdropper above a threshold. The secrecy rate of a MISO transceiver in the

presence of multiple single-antenna eavesdroppers is studied in [66]. The secrecy

rate constrained to secrecy rate outage probability and power is maximized by

designing a robust beamformer using the imperfect CSI of the eavesdroppers. The

secrecy rate in a MIMOME channel is analyzed in [67] using the distribution of the

eavesdropper’s channel at the transmitter and the effect of the channel estimate

feedback. Stochastic geometry is used in [68] to minimize the secrecy outage prob-

ability in a MISO wiretap channel in the presence of multiple randomly located

single-antenna eavesdroppers. The authors maximize the throughput constrained

to outage of the legitimate link by designing the transmit beamformer with the

eavesdropper’s channel state distribution while the quantization error is consid-

ered.
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2.1.1.2 Secrecy in broadcast channels with confidential messages

In broadcast channels with confidential messages, the goal is to keep the message of

each user secret from the other users, and a common message is usually transmitted to

the users. As a pioneer, the work of [9] considers a two-user network where a secret

message is transmitted to the first user and a common message to both of the users.

The secret and common messages are transmitted using different rates over discrete

memoryless channels. Works [69, 70] study a similar scenario as in [9] for Gaussian and

fading channels, respectively. The authors of [70] minimize the secrecy outage probabil-

ity using optimal power allocations and derive the secrecy capacity region. Broadcast

channels with one-sided interference are studied in [71, 72]. In [71], an easier way is

proposed to derive an outer bound for secrecy capacity region of a two-user one-sided

interference channel where the message of one user needs to be kept confidential while

message of other user is assumed to be alway transmitted securely. In [72], a two-user

network with one-sided interference where each destination is a potential eavesdropper

for the other one is studied. Using game theory, it is concluded that depending on the

objective of each pair, the equilibrium can include or exclude the self-jamming strat-

egy. The work of [69] characterizes the capacity region of the broadcast channel with

confidential messages by decomposing the legitimate receiver into two virtual receivers.

The authors of [73] derive the inner and outer bounds of the secrecy capacity region

for a memoryless interference MIMO broadcast channels where artificial noise is used to

enhance the secrecy of the private message. To further generalize the scenario, [74, 75]

consider transmitting two private messages to the users. The authors of [74] derive

the secrecy rate region for a two-user MIMO network where the transmitter wants to

transmit private message to each of the receivers. The work of [75] derives the secrecy

capacity for a two-user MIMO channel where each user should receive a private mes-

sage and both users need to receiver a common message. Later, [76] extended [73] to

the case where both users transmit artificial noise along with data. Outer bounds on

sum secrecy rate of a two-user Gaussian interference channel are studied in [77] where

message confidentiality is important for users. Secrecy capacity region for a two-user

MIMO Gaussian interference channel is investigated in [78] where each receiver is a po-

tential eavesdropper. The authors show that larger secrecy rate region can be achieved

when one or both destinations are considered as eavesdropper. The work in [177] an-

alyzes a two-user interference channel with one-sided noisy feedback where a common

message is sent to users and a confidential message to both users. The authors derive

the rate-equivocation region when the message of one user needs to be kept secret. As

a generalization, [79–81] consider sending a private message to each of the users in a

multi-user network. A multi-user interference channel where only one user as a potential

eavesdropper receives interference is considered in [81]. The sum secrecy rate is derived
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using nested lattice codes. The work of [79] derives he optimal precoder to maximize

the sum secrecy rate in a large multi-user MIMO channel. The authors of [82] derive

closed-form optimal beamformers for two MIMO transmitters where each of them wants

to communicate a private message with its own receiver. The work of [83] studies the

secrecy rate competition. The authors study the rank of the optimal input covariance

matrix that achieves the secrecy capacity in a Gaussian interference channel with two

MISO links where each transmitter tries to maximize its own secrecy rate compared to

the secrecy rate of the other transmitter. The authors of [84] analyze a two-user MISO

Gaussian interference channel where each destination is a potential eavesdropper. Game

theory is used to tackle the scenario where each user tries to maximize the difference

between its secrecy rate and the secrecy rate of the other user. Beamformers under

full and limited channel CSI are designed at each transmitter to achieve this goal. A

two-user MISO interference channel is considered in [85] where each users may decode

the message of the other user. The beamforming is performed to jointly optimize the se-

crecy rates of the users. The broadcast channels with confidential messages is extended

to multi-user case in [86]. The authors consider a communication network comprised

of multiple-antenna base stations and single-antenna users. The total transmit power

is minimized while the signal-to-interference plus noise ratio and equivocation rate for

each user is satisfied. The extension of broadcast channel with confidential messages to

finite-alphabet input is considered in [87]. The authors maximize the secrecy rate in

a two-user channel where the transmitter sends a common message to both users and

private message to each of them.

2.1.1.3 Secrecy in wiretap multiple-access channels

As a natural extension, the Wyner wiretap channel was also extended to multiple access

(MAC) channel with external eavesdroppers, which can be seen in Fig. 2.2. As the first

work, [88] considers a MAC channel with an external eavesdropper where the authors

derive the outer bounds for the secrecy rate region and the power allocation to maximize

the secrecy sum rate. The upper bound for the secrecy sum rate of the MAC channel

is derived in [89]. In another scenario, [70] considers a two-user MAC channel where

each user is a potential eavesdropper for other users. The authors derive the rate-

equivocation pair for each user. The secrecy analysis of MAC channel is extended to

two-way communications in [20]. The authors consider two-way MAC channel where an

eavesdropper wiretaps the communication between two users. The work of [90] derives

the secrecy capacity region for a two-user MAC channel where both users transmit a

common message to the destination while one of them has a private message to transmit.

As a new approach, [91] uses uplink training to hide the CSI from eavesdroppers and
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Figure 2.2: A MIMO multiple access channel over wiretap fading channels.

designs codes to create high decoding error at the eavesdropper. The security analysis

of a two-user MAC channel is extended to multiple-antenna nodes in [92] where an

external eavesdropper wiretaps the channel. The work of [93] characterizes the secrecy

rate region for discrete and Gaussian memoryless channels for a two-user MAC channel

in the presence of an external eavesdropper where individual secrecy rate constraints are

considered.

2.1.1.4 Secrecy in wiretap interference channels

Wireless transmission in the same frequency band causes interference at the receivers.

Physical layer security researchers have tried to study the interference effect on the se-

crecy rate and calculate the secrecy rate in the presence of interference. Secrecy rate

in a two-user interference channel is studied by [94–97]. The authors of [94] investigate

the secrecy rate in a two-user interference channel with an external eavesdropper. They

show that the structured transmission results in a better secrecy rate compared to ran-

domly generated Gaussian codebooks. The authors of [95] study the secrecy capacity

region for a two-user interference channel in the presence of an external eavesdropper.

The users jointly design randomized codebooks and inject noise along with data trans-

mission to improve the secrecy rate. The work of [96] considers a user who gets helping

interference in order to increase its confidentiality against an eavesdropper. The achiev-

able secrecy rate for both discrete memoryless and Gaussian channels is derived. The

possibility of secure transmission in a multi-user interference channel using interference

alignment and secrecy precoding is investigated in [98]. A two-user symmetric linear

deterministic interference channel is investigated in [99]. The achievable secrecy rate is
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investigated when interference cancellation, cooperation, time sharing, and transmission

of random bits are used. It is shown that sharing random bits achieves a better secrecy

rate compared to sharing data bits. The authors in [100] consider a wireless network

comprised of users, eavesdroppers and interfering nodes. It is shown that interference

can improve secrecy rate. A transceiver pair is studied in [101] where they try to increase

the secrecy rate using an external interferer when a passive eavesdropper is present. The

authors of [102] consider a user and an eavesdropper where known interference which

only degrades the decoding ability at the eavesdropper is used to enhance the secrecy

capacity. The secrecy capacity and secrecy outage capacity when closest interfering node

and multiple interfering nodes are separately employed to prevent eavesdropping is stud-

ied in [103]. It is demonstrated that multiple interferes method is superior to the closet

interfering method. The exact secure degrees of freedom for different types of Gaussian

wiretap channels are discussed in [104] where cooperative jamming from helpers is used.

A scenario in [105] considers two sources where each of them communicates with its own

destination and each of them is wiretapped by a specific eavesdropper. The authors

investigate the effect of interference caused by sources transmission on the secrecy rate.

As an application of interference channels, the effect of interference on the secrecy rate

is also investigated in cognitive radio systems. In cognitive radios, secondary user trans-

mits in the primary user’s operating frequency band when it is not in use. Stochastic

geometry is used in [106] to analyze physical layer secrecy in a multiple node cognitive

radio network where an eavesdropper is present. The secrecy outage probability and the

secrecy rate of the primary user is derived while secondary user produces interference.

The equivocation-rate for a cognitive interference network is analyzed in [107] where

the primary receiver is a potential eavesdropper and should not decode the secondary

message. The authors of [108] maximize the secrecy rate for a multiple-antenna sec-

ondary user in the presence of an external eavesdropper while considering the QoS at

the primary receiver. In [109], a cognitive radio network with single-antenna nodes is

considered. The secondary user causes interference to both primary destination and

eavesdropper. The primary user is interested in maintaining secrecy rate while the sec-

ondary is aiming to increase its transmission rate. The achievable pair rate for both

users is derived and then the interaction is modeled as a game. Similar problems to

maximize the secrecy rate through beamforming design in cognitive radio are studied

in [110–112].

Our contributions in [21, 97] fall into the categories of secrecy in interference channel.

We consider a two-user interference channel with an external eavesdropper in [21] where

one user tries to maximize its secrecy rate while the other user is interested in keeping the

QoS at its destination. We derive closed-form expressions for the optimal power control

of the users to maximize the secrecy rate and preserving the QoS while preventing
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the SIC at the eavesdropper. Depending on the channel conditions, bounds on the

transmission power of the interfering user are derived such that a positive secrecy rate

is sustained for the other user.

2.1.1.5 Secrecy rate and energy efficiency

While security is a concern, power consumption is also another important issue in wire-

less communications since some wireless devices rely on limited battery power. Recently,

researchers have shown interest to jointly optimize the secrecy rate and the power con-

sumption. In [113], sum secrecy outage probability over the consumed power is studied

where multiple layer optimization is used. The optimal power allocation is carried out

for each user on a specific subcarrier in a scalar manner in a MISO channel. The work

of [114] uses switched beamforming to maximize the secrecy outage probability over the

consumed power ratio, while delay and power constraints are considered. The optimal

beamformer a wiretap channel with multiple-antenna nodes is designed in [115] using

first-order Taylor series expansion and Hadamard inequality are used to maximize se-

crecy rate over power ratio. The work of [116] maximizes the secrecy energy efficiency

in a cooperative network with multiple decode-and-forward (DF) relays. The secrecy

energy efficiency is extended to cooperative networks in [117, 118]. Power consumption

for a fixed secrecy rate is minimized in [117] for an AF rely network. The work of [118]

maximizes the secrecy outage probability over the consumed power subject to power

limit for a large scale AF relay network.

Our contribution in [25] falls into the secrecy rate and energy efficiency category. The

work of [25] derives the exact solution for the optimal beamformer which maximizes the

secrecy rate over power, denoted by “secrecy energy efficiency”, for a MISO channel

wiretapped by a single-antenna eavesdropper. In addition, we propose an efficient itera-

tive algorithm to calculate the closed-form expression for maximizing the secrecy energy

efficiency in a SISO channel where a single-antenna eavesdropper is present.

2.1.2 Cooperative Communication and Secrecy Rate

Relay-aided cooperative communications helps improving the transmission coverage

without increasing the transmission power. Keeping a sufficiently low transmission power

prevents interference in other adjacent wireless networks. Furthermore, reducing the in-

terference improves the overall capacity [178]. While cooperative networks improve the

communications, similar to direct link communications, the security is sill an issue since

the information can be wiretapped by unintended receivers and the encryption can be

compromised. A typical wiretap relay channel in the presence of a helper is shown in
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Figure 2.3: A cooperative relay link over wiretap fading channels in the presence of
a helper.

Fig. 2.3. In this part, we review the physical layer security literature in the cooperative

communications networks. We divide the literature into two parts. In the first part,

we review the works where the unintended node is the relay, which is regarded as the

“untrusted relay” in the literature. In the second part, we mention the research which

consider scenarios where external eavesdroppers wiretap the cooperative network.

2.1.2.1 Untrusted relay

Analyzing the security for untrusted relays in a cooperative network is a more practi-

cal scenario. This is due to the fact that the relay node is part of the network and is

used to complete the transmission process; hence, its perfect of partial CSI is probably

available at the transmitter. As one of the first works, [119] studies the security perfor-

mance of a cooperative network by considering different malicious behaviors from the

DF relays and proposing a trust-assisted communication protocol. The Wyner’s secrecy

rate is developed to the untrusted relay channel in [120] where achievable secrecy rate

is derived for the relay channel. The source and untrusted AF relay beamformers are

jointly designed in [121] to maximize the secrecy rate. The work of [121] is extended to

a two-way network with an untrusted AF relay in [122] where the beamformer of the

two sources and the relay are jointly designed to maximize the secrecy rate. The se-

crecy outage probability for a single-antenna and multiple-antenna AF untrusted relay

is studied in [123]. Furthermore, as the first work, the authors investigate the effect

of antenna selection at the relay on the secrecy outage probability. The work of [124]

introduces the destination-based jamming to handle single or multiple untrusted AF

relays. To evaluate the security, the authors derive the achievable secrecy rates. In a

novel approach, [125] applies beamforming at the transmitter so that the untrusted relay
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only receives the real valued part of the signal, whereas the receiver gets both the real

valued and imaginary valued parts of the signal. To perform a global optimization over

the cooperative network, [126] designs the precoder for the source, relay and destina-

tion. The authors consider a cooperative network with multiple-antenna nodes where

the relay is a potential eavesdropper. The precoding is applied at the source and relay

for message transmission and at the destination to jamm the relay such that the secrecy

rate is maximized.

2.1.2.2 Cooperative communication with external eavesdropper

As a extension to secrecy in broadcast wiretap channels, Wyner’s secrecy rate can be

analyzed in cooperative communications where the source/relay is being intercepted by

one or multiple eavesdroppers. Wyner’s secrecy rate concept was first extended to coop-

erative networks with external eavesdropper in [127]. The achievable rate-equivocation

region of the network is characterized when the relay transmits artificial noise. The

average secrecy outage probability is optimized in [128] for a cellular network with

multiple-antenna base station, relays, and eavesdropper where multiple single-antenna

users communicate with the base station. The work of [129] considers a cooperative

network consisting of multiple relays which are wiretapped by multiple eavesdroppers.

The relay weights are designed under total and individual power constraints to maxi-

mize the secrecy rate or null the information at the eavesdroppers. Upper and lower

bounds for the secrecy capacity of a diamond wiretap channel is derived in [130] where a

source communicates with a destination through two relays in the presence of an eaves-

dropper. As an application of full-duplex radios, [131] considers single-antenna source,

destinations, and eavesdroppers where they communicate through a multiple-antenna

full-duplex relay. The beamforming at the relay is designed to cancel self-interference

and satisfying different SINRs at the destination and eavesdroppers. Works [132, 133]

incorporate large arrays in cooperative networks and study the secrecy rate. A large

array MIMO relay is studied in [132] where it is powered by the signal from the source

and can freely change its location to improve the secrecy. The secrecy outage proba-

bility is derived for both AF and DF relaying protocols. A cooperative network with

single-antenna source and destination along with a large array relay is studied in [133].

The authors study the secrecy of AF and DF protocols at the relay in the presence of a

single-antenna eavesdropper. To move toward more practical scenarios, [134, 135] study

the robust design when the eavesdroppers’ imperfect CSI is available. The work of [134]

follows robust design to calculate the relay weights using the eavesdropper’s imperfect

CSI for a multiple relay cooperative network with single-antenna nodes in the presence

of a single-antenna eavesdropper. The work of [135] proposes a robust beamforming



Chapter 2. Physical Layer Security 24

design for a multiple-antenna relay using eavesdropper’s imperfect CSI to maximize the

secrecy rate. The secrecy analysis when the satellite works as a relay is studied in [22].

In this work, two users exchange messages using XOR network coding protocol while

each of them is being wiretapped by a specific eavesdropper. The authors derive the

satellite antenna weights to maximize the sun secrecy rate.

The effect of jamming and artificial noise in the secrecy of cooperative communications

is studied in [136–142]. The maximum number of eavesdropper for maintaining a secure

communication in a multiple relay cooperative network is studied in [136] where a set of

relay nodes are selected to transmit artificial noise in order to improve the secrecy rate.

The work of [137] studies the achievable secrecy rate in the cases where the relay performs

jamming or artificial noise generation from a known codebook to improve the secrecy

rate. A similar scenario as [127] is considered in [138] where the relay improves the

secrecy by jamming the eavesdropper. The authors derive the optimal power allocation

for the source and relay to maximize the secrecy rate. Cooperative jamming along with

interference aliment are used in [139] to improve the secrecy rate in a cooperative network

with multiple antenna nodes where the communication is wiretapped by a multiple-

antenna eavesdropper. Multiple scenarios where multiple relays perform AF, DF, or

jamming are considered in [179]. The authors derive the relay weights to maximize

the secrecy rate in the presence of one or more single-antenna eavesdroppers. The work

of [140] designs linear precoding and proposes using inactive DF relays of the cooperative

network as jammers to improve the secrecy where a multiple-antenna eavesdropper can

intercept the transmission in both hops. Similar as in [140], [141] considers cooperative

jamming by inactive nodes of a cooperative network consisting of multiple single-antenna

DF relays and single-antenna source and destination to counteract a single-antenna

eavesdropper. The authors propose optimal relay section and optimal power allocation

for signal transmission and jamming to improve the secrecy rate. As a usage of full-

duplex radios, a cooperative network including a full-duplex relay with the jamming

ability is considered in [142] to counteract a single-antenna eavesdropper.

As the relay selection can be used to improve the rate, it can be used to improve the

secrecy rate. Relay selection in cooperative networks to improve the secrecy is employed

in [143–148]. The authors of [143] propose relay selection and cooperative beamform-

ing to improve the secrecy. Optimal AF and DF relay selection is investigated in [144]

for a cooperative network with single-antenna nodes in the presence of single-antenna

eavesdropper. It is shown that the probability of interception for the proposed scheme

outperforms the conventional approach. Opportunistic relay selection in a cooperative

network with single-antenna nodes is employed in [145] to lower the probability of inter-

ception at the eavesdropper and outage probability at the destination. Relay selection
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between multiple DF relays is carried out in [146] and the resulting secrecy rate is de-

rived. The authors in [147] consider a cooperative network consisting of multiple DF

relays and destinations. The relays perform collaborative beamforming to send the mes-

sage to the destination with the strongest link to the relays to maximize the secrecy

rate. The work of [148] considers a cooperative network with multiple AF relays and

users. The selected user jamms the transmission from source to relay and subtracts the

jamming after receiving the signal from the relay in order to improve the secrecy rate.

A part from two-hop cooperative networks, the secrecy rate in multi-hop networks is

studied in [149, 150, 150, 151]. A multi-hop cooperative network with full-duplex DF

relays is considered in [149] where a single-antenna eavesdropper wiretaps each hop. The

secrecy rate is evaluated when the relay receives the message and jamms the eavesdropper

at the same time. As another study in multi-hop relays, [150] performs security analysis

of a multi-hop DF relay network where the eavesdropper can wiretap all the hops.

The authors perform optimal power allocation/beamforming for single/multiple antenna

relay nodes to improve the secrecy rate. The work of [151] considers a cooperative

network with multiple AF relays with single-antennas nodes which is wiretapped by a

single-antenna eavesdropper. The authors derive the secrecy outage probability using

the CSI feedback.

Our contribution in [22] falls into the category of Cooperative communication with

external eavesdropper. The secrecy analysis when the satellite works as a relay is studied

in [22]. In this work, two users exchange messages using XOR network coding protocol

while each of them is being wiretapped by a specific eavesdropper. The authors derive

the satellite antenna weights to maximize the sun secrecy rate.

2.2 Signal Processing Paradigm for Security

In the information-theoretic secrecy rate, the perfect, imperfect, or statistical CSI knowl-

edge of the eavesdropper or specific assumptions on the eavesdropper’s CSI are required

at the transmitter. The transmitter uses these information to design the system pa-

rameters in order to maximize the secrecy rate. Moreover, when using the secrecy rate,

the secrecy rate is lower than the achievable rate of the channel. As an alternative, a

signal processing approach can be followed at the transmitter to improve the security.

Here, we divide these signal processing-based works into two groups. The first group

enhances the security by designing the precoding using the legitimate CSI. The second

group enhances the security by designing the precoding using both the legitimate CSI

and the symbols, which is referred to as “directional modulation”. In the following, we

mention these two groups.
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2.2.1 Conventional precoding

As the first work, [152] mentions the concept of enhancing the security using artificial

noise, which deviates from the information-theoretic secrecy rate concept introduced by

Wyner [5]. This approach relys on the signal processing at the transmitter to design

the artificial noise in the null space of the legitimate receiver. One major advantage of

this technique is that the eavesdropper’s CSI is not required for the system design. In a

similar approach, the work of [153] designs a Robust beamformer in a MIMOME wiretap

channel. The beamformer is designed to maximize the jamming power, which is in the

null direction of the legitimate receiver, and sustains a predefined SINR at the legitimate

receiver without the eavesdropper’s CSI and imperfect CSI of the legitimate link. The

authors of [154] use the artificial noise in the null space of the legitimate channel to

prevent decoding at the eavesdropper over a MIMOME channel. The perfect secrecy is

achieved when the number of antennas of the legitimate receiver goes to infinity. Linear

precoding to transmit data and artificial noise is studied in [155] to improve the security

in a multi-cell environment without eavesdropper’s CSI where the number of antennas

and users increase asymptotically.

Although the Gaussian distribution is optimal when secrecy rate is the target, the Gaus-

sian distribution assumption for the signals cannot be always satisfied in practical com-

munication systems. There are digital communication systems which use finite-alphabet

signals such as M -PSK modulation which usually have a discrete uniform distribu-

tion [19]. Due to having a non-Gaussian distribution, finite-alphabet signals are not

optimal in terms of the developed secrecy rates in [5, 9–13]. Furthermore, although the

physical layer security concept introduced in [5] provides perfect secrecy, i.e., zero bit

leakage, it also reduces the message transmission rate to the legitimate receiver. There

have been research interests in investigating the security issues when finite-alphabet sig-

nal is used in a communication system [156, 157]. The authors in [156] devote some

of the available power in order to add a randomly scaled version of the finite-alphabet

data to itself to create induced fading without optimal beamforming and preserving the

phase of the symbol at the receiver. This way, the channel seen by the eavesdropper will

be different. If the added random part rotates the M -PSK constellation enough, the

eavesdropper decodes the wrong symbol. In [157], suboptimal random beamforming is

used to assure the security without requiring the eavesdropper channel state information

(CSI) when finite-alphabet signal is used.
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2.2.2 Directional modulation via symbol-level precoding

Recently, there has been growing research interest on directional modulation technology

and its security enhancing ability for finite-alphabet input signals. As a pioneer, [17]

implements a directional modulation transmitter using a parasitic antenna. This system

creates the desired amplitude and phase in a specific direction by varying the length of

the reflector antennas for each symbol while scrambling the symbols in other directions.

The authors of [18] suggest using a phased array at the transmitter and employ a genetic

algorithm to derive the phase values of a phased array in order to create symbols in a

specific direction. The directional modulation concept is later extended to directionally

modulate symbols to more than one destination. In [158], the singular value decomposi-

tion (SVD) is used to directionally modulate symbols in a two user system. The authors

of [159] derive the array weights to create two orthogonal far field patterns to direction-

ally modulate two symbols to two different locations and [160] uses least-norm to derive

the array weights and directionally modulate symbols towards multiple destinations in

a multi-user multiple-input multiple-output (MIMO) system.

Array switching at the symbol rate is used in [161, 162, 176] to induce the desired symbols

without using actively driven elements, phase shifter and amplifier, in the RF chain. The

work of [161] uses an antenna array with a specific fixed delay in each RF chain to create

the desired symbols by properly switching the antennas. The authors in [162] use an

array where each element can switch to broadside pattern2, endfire pattern3, or off status

to create the desired symbols in a specific direction. Switched phased array to enhance

the security is proposed in [176].

In the second group, a parasitic antenna is used to create the desired amplitude and

phase in the far field by near field interactions between a driven antenna element and

multiple reflectors [17, 163, 164]. In [17, 163], transistor switches or varactor diodes are

used to change the reflector length or its capacitive load, respectively, when the channel

is line of sight (LoS). This approach creates a specific symbol in the far field of the an-

tenna towards the desired direction while randomizes the symbols in other directions due

to the antenna pattern change. In connection with [17], [164] studies the far field area

coverage of a parasitic antenna and shows that it is a convex region. The first group em-

ploys amplifiers and/or phases shifters to create an array with actively driven antennas

to directionally modulate the data [18, 27, 28, 158–160, 165–175], where [27, 158, 174]

consider fading channels. The authors of [18] use a genetic algorithm to derive the phase

values of a phased array and create symbols in a specific direction. The technique of [18]

is implemented in [165] using a four element microstrip patch array where symbols are

2Maximum radiation of an array directed normal to the axis of the array.
3Additional maxima radiation directed along the axis.
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directionally modulated for Q-PSK modulation. The authors of [166] propose an iter-

ative nonlinear optimization approach to design the array weights which minimizes the

distance between the desired and the directly modulated symbols in a specific direction.

In [167], baseband in-phase and quadrature-phase signals are separately used to excite

two different antennas so that symbols are correctly transmitted only in a specific di-

rection and scrambled in other directions. In another paradigm, [168] uses random and

optimized codebook selection, where the optimized selection suppresses large antenna

side lobes, in order to improve the security in a millimeter-wave large uniform linear an-

tenna array system. The authors of [169] derive optimal array weights to get a specific

bit error rate (BER) for Q-PSK modulation in the desired and undesired directions.

The work of [170] uses the Fourier transform to create the optimal constellation pattern

for Q-PSK directional modulation, while [171] uses the Fourier transforms along with

an iterative approach for Q-PSK directional modulation and constraining the far field

radiation patterns. The Fourier transform is used in [170, 171] to create the optimal

constellation pattern for Q-PSK directional modulation. In [158, 172–174] directional

modulation is employed along with noise injection. The authors of [172, 173] utilize an

orthogonal vector approach to derive the array weights in order to directly modulate

the data and inject the artificial noise in the direction of the eavesdropper. The work

of [172] is extended to retroactive arrays4 in [174] for a multi-path environment. An

algorithm including exhaustive search is used in [175] to adjust two-bit phase shifters

for directly modulating information. Since the location of the eavesdropper is unknown,

the transmitting angle of the interference is changed randomly. The directional mod-

ulation literature do not analyze the abilities of a multiple-antenna eavesdropper and

rely on the fact that it receives scrambled symbols. In addition, the works of [158, 173]

also transmit interference to degrade the signal quality at the eavesdropper. However,

depending on the eavesdropper’s number of antennas, it can remove the interference and

estimate the symbols. They show that compared to the conventional zero-forcing (ZF)

at the transmitter [23], directional modulation is more secure.

On top of the works in the directional modulation literature where antennas excita-

tion weight change on a symbol basis, the symbol-level precoding to create constructive

interference between the transmitted symbols has been developed in [180–183] by focus-

ing on the digital processing of the signal before being fed to the antenna array. The

main difference between directional modulation and the digital symbol-level precoding

for constructive interference is that the former focuses on applying array weights in

the analog domain such that the received signals on the receiving antennas have the

4A retroactive antenna can retransmit a reference signal back along the path which it was incident
despite the presence of spatial and/or temporal variations in the propagation path.



Chapter 2. Physical Layer Security 29

desired amplitude and phase, whereas the latter uses symbol-level precoding for digi-

tal signal design at the transmitter to create constructive interference at the receiver.

Furthermore, directional modulation was originally motivated by physical layer security,

whereas symbol-level precoding by energy efficiency.

Our contributions in [27, 28] fall into the the category of directional modulation via

symbol-level precoding. In [27, 28], we design the array weights of a directional mod-

ulation transmitter in a single-user MIMO system to minimize the power consumption

while keeping the signal-to-noise ratio (SNR) of each received signal above a specific

level.

2.3 Conclusion

In this chapter, we reviewed the physical layer security literature by dividing it into

the works based on the keyless information-theoretic secrecy rate and signal processing

paradigms in Sections 2.1 and 2.2. The signal processing paradigm handles one of the

most important shortcomings of the keyless information-theoretic secrecy rate, which is

the requirement of the eavesdropper CSI at the transmitter, which may not be possible

to acquire in practice.

We divided the information-theoretic research into non-cooperative and cooperative cat-

egories in Sections 2.1.1 and 2.1.2. We further divided the secrecy rate analysis of the

non-cooperative category into: 1) wiretap broadcast channels, 2) broadcast with confi-

dential messages, 3) wiretap multiple access channels, and 4) secrecy rate and energy

efficiency. We divided the literature of the cooperative part into: 1) Untrusted relay, and

2) cooperative communication with external eavesdropper. The information-theoretic

secrecy rate literature considers the secrecy rate and the secrecy outage probability as

the security metric. These metrics along with the perfect, imperfect or partial CSI of

the legitimate and wiretap CSIs are used to design the transmitter, receiver, and/or the

relay, e.g., deriving the precoding at the transmitter.

The signal processing paradigm works were divided into two major categories: 1) con-

ventional precoding in Section 2.2.1, and 2) directional modulation via symbol-level

precoding in Section 2.2.2. In the conventional precoding literature, the transmitter is

designed only using the legitimate CSI knowledge. On the other hand, in the direc-

tional modulation via symbol-level precoding, the transmitter is designed using both

the symbols and the legitimate CSI. The directional modulation shows to outperform

the conventional precoding in terms of the imposed BER at the eavesdropper.





Chapter 3

Security in Bidirectional

Multi-beam Satellites

Network coding is an efficient means to improve the spectrum efficiency of satellite com-

munications. However, its resilience to eavesdropping attacks is not well understood.

This chapter studies the confidentiality issue in a bidirectional satellite network consist-

ing of two mobile users who want to exchange message via a multibeam satellite using

the XOR network coding protocol. We aim to maximize the sum secrecy rate by de-

signing the optimal beamforming vector along with optimizing the return and forward

link time allocation. The problem is non-convex, and we find its optimal solution using

semidefinite programming together with a 1-D search. For comparison, we also solve

the sum secrecy rate maximization problem for a conventional reference scheme without

using network coding. Simulation results using realistic system parameters demonstrate

that the bidirectional scheme using network coding provides considerably higher secrecy

rate compared to that of the conventional scheme. The contributions of this chapter are

published in [22].

3.1 Introduction

Satellite communications (SATCOM) is getting more and more integrated into communi-

cation networks to compliment the current terrestrial communication systems. Satellite

services have to support increasing demands for data transfer. To realize bidirectional

satellite communications, traditionally orthogonal resources either in frequency or time

domain should be used to avoid interference between users. To save the precious wireless

resources, network coding has been used in this work as an efficient protocol to exchange

information between two mobile satellite users. The basic principle is that the received

31
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information from users are combined on the satellite or gateway (GW), and then the

mixed signal is broadcast to users at the same time and using the same frequency. Be-

cause each user can subtract its own message, it can easily decode the message from the

other user.

However, due to the broadcast nature and immense area coverage, satellite commu-

nications systems, e.g., in military and commercial applications, are vulnerable to se-

curity attacks such as eavesdropping. Currently, security in SATCOM is achieved at

upper layers by means of encryption such as the Advanced Encryption Standard [1, 2].

Nevertheless, traditional security is based on the assumption of limited computational

capability of the malicious nodes, and thus there exists the risk that a malicious node

can successfully break an encryption, and get access to sensitive satellite data [3]. In

contrast to the upper layer encryption techniques, recently there has been significant

interest in securing wireless communications at the physical layer using an information-

theoretic approach named “secrecy rate” [5]. The main advantage of this approach is

that the malicious nodes cannot even get access to protected information regardless of

their computational capabilities.

While network coding can greatly improve the system throughput, whether it is more

secure than the conventional scheme, which does not use network coding, is largely

unknown in SATCOM. In this work, we will leverage the physical layer security approach

to address the confidentiality issue in bidirectional SATCOM using the principle of

network coding. Below, we provide an overview on the applications of network coding

to SATCOM and the related work in the physical layer security literature.

3.1.1 Literature Review

3.1.1.1 Network coding related works

Network coding technique, first introduced in [184], can considerably reduce delay, pro-

cessing complexity and power consumption, and can significantly increase the data rate

and robustness [185]. In the popular XOR network coding scheme, the received signals

at an intermediate node are first decoded into bit streams, and then XOR is applied on

the bit streams to combine them. The processed bits are re-encoded and then broadcast.

Utilization of network coding has been studied in both terrestrial and satellite networks.

The authors in [186] apply superposition coding and XOR network coding to a bidi-

rectional terrestrial relay network. A multi-group multi-way terrestrial relay network is

considered in [187] where superposition coding and XOR network coding are investigated

and compared to each other. Network coding can also considerably improve the spectral
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efficiency in bidirectional SATCOM in which two mobile users exchange information via

the satellite. The work in [188] compares the amplify-and-forward (AF) method with

the XOR network coding scheme in a satellite scenario. A joint delay and packet drop

rate control protocol without the knowledge of lost packets for mobile satellite using

network coding is studied in [189]. In [190], buffers are designed for satellites when the

network coding scheme is employed. Random linear network coding is used in [191] to

minimize the packet delivery time. Satellite beam switching for mobile users is tackled

in [192] where the network coding scheme increases the robustness in delivery of the

packets when mobile terminals move from beam to beam. The XOR network coding

protocol is demonstrated in a satellite test bed in [193].

3.1.1.2 Physical layer security related works

Wyner in [5] first showed that secure transmission is possible for the legitimate user given

the eavesdropper receives noisier data compared to the legitimate receiver. Inspired by

Wyner’s work, [10] extended the idea of physical layer secrecy rate from the discrete

memoryless wiretap channel to Gaussian wiretap channel. The Wyner’s wiretap channel

was generalized in [9] to the broadcast channel. After the seminal works done in [5, 9, 10],

there have been substantial amount of works in physical layer secrecy. Here, we only

review those most relevant to network coding and bidirectional communications. The

authors in [194] consider a relay utilizing the XOR network coding protocol where joint

relay and jammer selection is done to enhance the secrecy rate. A bidirectional AF relay

network with multiple-antenna nodes is considered in [195] where the relay beamforming

vector is designed by the waterfilling method to improve the secrecy rate. The authors

in [196] consider random relay selection in a bidirectional network in which the relay

performs both data transmission and jamming the eavesdropper at the same time to

increase the secrecy. The work in [139] performs selection over AF relays and jammers

in a bidirectional network for the single-antenna case, and precoding in the multiple-

antenna case to enhance the secrecy. To maximize the secrecy in a bidirectional network,

the authors in [197] consider the location and distribution of nodes while joint relay and

jammer selection is performed. Distributed beamforming along with artificial noise

and beamforming is studied in [198] for a bidirectional AF relay network. The work

in [199] designs the distributed beamforming weights for a bidirectional network where

one intermediate node acts as a jammer. In contrast to the terrestrial literature, there are

very few works in physical layer security for SATCOM. The problem of minimizing the

transmit power on a multibeam satellite while satisfying a minimum per user secrecy rate

is studied in [200]. Iterative algorithms are used to joint optimize the transmission power

and the beamforming vector by perfectly nulling the received signal at the eavesdropper.
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Both optimal and suboptimal solutions are developed in [201] where the use of artificial

noise is also studied.

Despite the physical layer security and network coding works in the terrestrial and

SATCOM scenarios, some unaddressed issue are left. In [186], only downlink bottlenecks

are considered when designing the beamforming weights for the XOR network coding

case. The uplink bottlenecks also need to be considered when optimizing the uplink-

downlink time allocation. In [187], the authors consider the decoding-re-encoding and

designing the beamforming vector separately. The works in [196, 197] consider single-

antenna relay where the AF protocol is used in a bidirectional network. The authors

in [195, 198, 199] use the analog network coding protocol in a two-way relay network to

facilitate secure information exchange between two users. Furthermore, the mentioned

terrestrial works in physical layer security for bidirectional communications assume one

eavesdropper in the environment. The works in [200, 201] design the beamforming

weights for unidirectional service for fixed users in the forward link (FL).

3.1.2 Our Contribution

In this work, we study the network coding based bidirectional SATCOM in which two

mobile users exchange data via a transparent multibeam satellite in the presence of

two eavesdroppers. There is an eavesdropper present for each user who overhears the

bidirectional communications. The users employ omnidirectional antennas and the com-

munication is prone to eavesdropping in both the return link (RL) and FL. In the RL,

two users send signals using two orthogonal frequency channels; the signals collected

by the satellite are passed to the GW, where they are decoded, XOR-ed and then the

produced stream is re-encoded. This combined stream is multiplied by the beamforming

vector which contains the designed weight of each feed. Consequently, each element of

the resultant vector is transmitted to the satellite using the feeder link. Each element

which includes both the feed weight and the data signal is applied to the corresponding

feed to adjust the beams for broadcasting to both users simultaneously in the FL. This

scheme is more power-efficient than the conventional method where network coding in

not utilized and the power is splitted into two data streams. This benefit is extremely

vital for SATCOM because of the limited on-board power.

Our main contributions in this work are summarized below to differentiate it from the

prior work:

1. XOR network coding is incorporated into SATCOM in to enable both efficient and

secure bidirectional data exchange.
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2. The end-to-end sum secrecy rate is first derived, and then maximized by designing

the optimal beamforming vector and the RL and FL time allocation. The opti-

mization problem regarding the beamforming vector is solved using semi-definite

programming (SDP) along with 1-D search.

3. Extensive simulation results are presented to demonstrate the advantage of the

bidirectional scheme over the conventional scheme using realistic SATCOM pa-

rameters.

3.2 System Model

Consider a satellite communication system comprised of two users denoted by U1 and

U2 who exchange information with each other, one multibeam transparent satellite de-

noted by S, one GW, two eavesdroppers denoted by E1 and E2 as depicted in Fig. 4.1.

Users are located in different beams of the satellite, and they transmit the RL signals

using different frequency channels simultaneously. We assume that each user and each

eavesdropper is equipped with a single omni-directional antenna. Because of the long

distance between the users, there is no direct link between them; furthermore, eaves-

droppers cannot cooperate and Ei can only overhear Ui for i = 1, 2. Contemporary

orbiting satellites such as ICO, SkyTerra, and Thuraya have limited power, here de-

fined as PS , and some of them do not have the on-board processing ability to decode

the received messages or perform on-board beamforming, so they have to forward the

received signal to the GW to get it processed [202–204]. Using the GW to process the

signal and designing the feed weights is referred to as the ground-based beamforming

technique. The ground-based beamforming technique is perceived as the most conve-

nient and economical approach [204]. In this chapter, we consider a commercial satellite

without digital processing ability and follow the ground-based beamforming paradigm.

In our satellite network model, we assume that the eavesdropper is a regular user which

is part of the network. However, it is considered as an unintended user, potential eaves-

dropper, which the information needs to be kept secret from it. Due to the fact that

the eavesdropper is part of the network, it is possible to estimate the channels to it.

Hence, similar to the works [20, 42, 179, 205, 206], we assume that the eavesdropper’s

channel state information (CSI) is known. Based on the mentioned assumption, we as-

sume that the users and eavesdropper know all the CSIs. Further, all communication

channels are known and fixed during the period of communication. It is worth men-

tioning that in the secrecy rate analysis of XOR network coding, only the CSI of the

eavesdroppers in the RL is required. Although we assume the availability of the eaves-

dropper’s CSI, there are methods such as null-space artificial noise transmission [207],
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random beamforming [51, 157, 208], or effective channel coding design to strengthen

the cryptography [209] in order to sustain secrecy without having the knowledge of the

eavesdropper’s CSI. Another alternative can be using the statistical knowledge of the

eavesdropper’s CSI in order to improve the secrecy [210–213]. Also, the interference

alignment technique can be used along with statistical knowledge of the eavesdropper’s

CSI to enhance the secrecy [95]. In the situations when the geographical area of the

eavesdropper is known, the worst-case scenario can be considered. In this scenario, the

best CSI from the user to the eavesdropper’s area is considered for the design. One pos-

sible example for the worst-case scenario can be when the occupied zone by the enemy

is known. This example can be one of the applications of this chapter.

To acquire the RL channel state information (CSI) at the GW, the users send the pilot

signals along with the data toward the satellite. For the FL CSI, the GW sends pilots

to the users. Afterwards, the estimated CSI by the users is sent back to the GW.

Therefore, getting the FL CSI takes more time compared to the RL CSI [214]. The

GWs are equipped with advanced transceivers and antennas and because of this reason,

the communication link between the GW and the satellite (feeder link) is modeled as

an ideal link. Hence, similar to the works [203, 215–218] which are carried out in the

satellite communications literature, we assume that the channel between the satellite

and the GW, which is referred to as the feeder link, is ideal with abundant bandwidth.

The complete communication phases of the network coding based scheme are summa-

rized in Table 3.1. The conventional scheme without using network coding is also in-

cluded for comparison and details are given in Section 3.2.2. The first two phases for the

RL are the same for both schemes while the main difference lies in the FL transmission.

In the conventional scheme, signals are sent in different time slots for each user in the

FL, so this scheme has less available transmission time for each user. In the bidirectional

scheme, signal streams are combined, and then sent in the FL using the XOR network

coding protocol, therefore, the spectral efficiency is significantly improved compared to

the conventional scheme.

3.2.1 Network coding based bidirectional SATCOM

3.2.1.1 Signal model

In this case, the whole communication takes place in four phases. In Phase I, both users

transmit signals using different frequencies simultaneously. The signals received at the
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Gateway
(GW)

Satellite 
(SAT)

Phase I: U1-E1; U2-E2 
Phase I: U1-SAT; U2-SAT

E1

Phase II: SAT-GW

Phase III: GW-SAT
Phase IV: SAT-U1; SAT-U2
Phase IV: SAT-E1; SAT-E2

E2

Figure 3.1: Bidirectional satellite communication network.

satellite and the eavesdroppers are

yS1 =
√
PU1hU1,S s1 + nS1 , (3.1)

yS2 =
√
PU2hU2,S s2 + nS2 , (3.2)

yRLE1
=
√
PU1hU1,E1s1 + nE1 , (3.3)

yRLE2
=
√
PU2hU2,E2s2 + nE2 , (3.4)

where PUi
is the transmitted power by the users for i = 1, 2, h and h represent the user-

eavesdropper and user-satellite channels, respectively, and the corresponding source and

destination are denoted by the subscript. The channel for the satellite is a NS×1 vector

where NS is the number of the satellite feeds. Additive white Gaussian noises (AWGN)

are denoted by n and n with n ∼ CN (0, σ2) and n ∼ CN (0, σ2INS×NS
), respectively. We

consider the noise power for users, satellite and eavesdroppers as KTB, where K is the

Boltzman’s constant which is −226.8 dBW/K/Hz, T is the on-board temperature and

B is the carrier bandwidth. We assume that s1 and s2 are independent and identically

distributed (i.i.d.) Gaussian random source signals with zero mean and unit variance.

For convenience, we use the noise variance, σ2, instead of KTB and omit the bandwidth,

B, in the rate expressions throughout the chapter. Note that we consider different

temperatures for ground nodes and the satellite. The satellite forwards the received

signal to the GW using the feeder link in Phase II and thanks to the ideal link between

the satellite and the GW, the same signals as (3.1) and (3.2) are present at the GW to

be processed.

At the GW, the received signal is filtered and users’ data are separated and decoded

into two bit streams denoted by x1 and x2, respectively. The GW applies the bit-wise

XOR algebraic operation to the decoded bit streams of the users to get the combined
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Table 3.1: Communication stages for the XOR network coding and the conventional
schemes.

Conventional reference
scheme

XOR network coding
scheme

Phase I: U1 and U2 simultaneously send their signals,
s1 and s2, to the satellite while they are overheard
by E1 and E2, respectively.

Phase II: The satellite passes the received signal to
the GW for processing. At the GW, the users’ signals
are separately decoded.

Phase III: The intended
signal for U1, decoded
s2, is re-encoded at the
GW and the correspond-
ing feed weights are de-
signed. Then, the feed
weights multiplied by the
data signal are sent to the
satellite.

Phase III: The GW ap-
plies XOR operation on
the decoded streams from
s1 and s2 to create a
merged stream of bits and
the feed weights are de-
signed. Then, the feed
weights multiplied by the
data signal are sent to the
satellite.Phase IV: The satellite

passes the re-encoded sig-
nal through the corre-
sponding beam to U1

while E1 is listening to it.

Phase V: The intended
signal for U2, decoded
s1, is re-encoded at the
GW and the correspond-
ing feed weights are de-
signed. Then, the feed
weights multiplied by the
data signal are sent back
to the satellite.

Phase IV: The satellite
broadcasts the merged
stream toward the users
through the correspond-
ing beams which is wire-
tapped by both E1 and
E2.

Phase VI: The satellite
passes the re-encoded sig-
nal through the corre-
sponding beam to U2

while E2 is listening to it.

stream

xGW = x1 ⊕ x2. (3.5)

Note that before applying the XOR network coding, the GW uses zero-padding to add

zeros to the shorter bit stream in order to make equal length bit streams out of the

two different bit streams sent by the users [219, 220]. In Phase III, xGW is encoded

into sGW with unit power, and then multiplied by the beamforming vector, w. Using

the ideal feeder link, each element, wisGW (t), of the produced vector, wsGW , at the

GW which both includes the feed weight, wi, and the data signal, sGW , is transmitted

from the GW to the satellite. Since the codebook used at the GW to encode xGW can
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be different in the XOR network coding scheme, the RL and FL transmission times

are generally different for the XOR network coding. This enables optimum RL and

FL time allocation for the XOR network coding. The received signal by satellite is

denoted as sS = HGW,SwsGW . The model sS = HGW,SwsGW encapsulates the process

of transmitting each element of the vector wsGW from the GW to the satellite. Since

the feeder link is considered to be ideal, HGW,S is a NS ×NS identity matrix. Finally,

in Phase IV, each feed weight designed at the GW, which includes the data signal, is

applied to the corresponding feed at the satellite. Hence, the beams are adjusted and

the signal sS is broadcast through the antennas. The received signals at two users are,

respectively,

yFLXOR

U1
= hTS,U1

sS + nU1 , (3.6)

yFLXOR

U2
= hTS,U2

sS + nU2 . (3.7)

Similarly, the received signals at the eavesdroppers in Phase IV are, respectively,

yFLXOR

E1
= hTS,E1

sS + nE1 , (3.8)

yFLXOR

E2
= hTS,E2

sS + nE2 . (3.9)

In the following, we shall define the sum secrecy rate. We first introduce the users’ rates

and eavesdroppers’ channel capacities.

3.2.1.2 Users’ RL rates

Consider t1 and t2 for the RL (Phase I) and FL (Phase IV) transmission time, re-

spectively. In Phase I, we can characterize the RL rates (RRLU1
, RRLU2

) by the following

equations [221, Chapter 5]:

RRLU1
≤ IRLU1

= t1 log

(
1 +

PU1

∥∥hU1,S

∥∥2

σ2S

)
(3.10)

RRLU2
≤ IRLU2

= t1 log

(
1 +

PU2

∥∥hU2,S

∥∥2

σ2S

)
, (3.11)

where I denotes channel capacity or the maximum supported rate and R is the maximum

achievable rate.
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3.2.1.3 Users’ FL rates

After receiving the FL signal, users decode sS . As each user knows its own transmitted

bits, it can use the XOR operation to retrieve the intended bits. Subsequently, using (3.6)

and (3.7), the FL rates can be expressed as

RFLXOR = min
{
IFLXOR

U1
, IFLXOR

U2

}
, (3.12)

IFLXOR

U1
= t2 log

(
1 +

|hTS,U1
w|2

σ2U1

)
, (3.13)

IFLXOR

U2
= t2 log

(
1 +

|hTS,U2
w|2

σ2U2

)
. (3.14)

Since the data for both users have gone through a bit-wise XOR operation at the GW

and a combined signal is broadcast, the GW has to adjust the combined signal’s data

rate to match both users’ channel capacities. This rate should be equal to the minimum

FL channel rate between the satellite and the users in Phase IV before sending sS to

the satellite.

3.2.1.4 Eavesdroppers’ channel capacities

Using (3.3) and (3.8), the channel capacity from U1 to E1, I
RL
E1

, and from satellite to

E1, I
FLXOR

E1
, can be expressed, respectively, as

IRLE1
= t1 log

(
1 +

PU1 |hU1,E1 |2
σ2E1

)
, (3.15)

IFLXOR

E1
= t2 log

(
1 +

|hTS,E1
w|2

σ2E1

)
. (3.16)

The channel capacities for E2 can be derived in a similar way.

3.2.1.5 Secrecy rate definition

First, we derive the secrecy rate for the RLs and FLs, and then the end-to-end secrecy

rate. In [13], the result of [5] is extended to fading channels with multiple-antenna

transmitter, receiver, and eavesdropper. Using the special case of the result in [13] for

single-antenna transmitter, multiple-antenna receiver, and single-antenna eavesdropper

along with employing (3.10) and (3.15), the secrecy rate for the RL of U1 is calculated
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as

SRRLU1
= IRLU1

− IRLE1
, (3.17)

where the notation “SR” means “secrecy rate”. To calculate the secrecy rate in the

FL, first, we derive the information that E1 can recover during the RL transmission in

Lemma 3.1.

Lemma 3.1. Independent of getting a positive or zero secrecy rate defined for the RL

of U1 in (3.17), E1 cannot recover any bits from U2 transmitted message using the FL

transmission.

Proof. To recover bits from U2, E1 has to apply XOR operation between the bits recov-

ered from U1 in the RL transmission and the bits derived from the satellite broadcast

in the FL transmission. Hence, the information detected by E1 in the FL depends on

the bits recovered from U1 in the RL transmission. The recovered bits from U1 in the

RL depend on the sign of the secrecy rate defined in (3.17). The sign of the RL secrecy

rate in (3.17) has the following possibilities:

1. If IRLU1
− IRLE1

> 0, then U1 can establish a perfectly secured connection so that the

eavesdropper cannot get any bits from U1 in the RL [13]. Hence, E1 does not have

the bits transmitted by U1 in the RL and it cannot recover any bits from U2 using

the FL transmission.

2. If IRLU1
− IRLE1

≤ 0, then the secrecy rate is zero. Therefore, U1 cannot establish a

secure connection in the RL. In this case, U1 remains silent during the correspond-

ing time slot. In this time slot, GW generates random bits instead of the bits from

U1 and applies XOR between them and the bits from U2. As a result, E1 cannot

recover any bits from U2 using the FL transmission.

Note that since the RL time, t1, is always positive and all the channels are known, the

sign of the expression IRLU1
− IRLE1

is known prior to the beamformer design.

A similar argument as in Lemma 3.1 can be applied to E2. Consequently, using

Lemma 3.1, the secrecy rate for the FL is given in Lemma 3.2.
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Lemma 3.2. Assume that there exists at least one RL with a positive secrecy rate.

Then, the secrecy rate in the FL is given as below:

SRFLXOR =





min
{
IFLXOR

U1
, IFLXOR

U2

}
SRRLU1

> 0,

SRRLU2
> 0,

IFLXOR

U1
SRRLU1

= 0,

SRRLU2
> 0,

IFLXOR

U2
SRRLU1

> 0,

SRRLU2
= 0.

(3.18)

Proof. Excluding the case that both RLs have zero secrecy rate, i.e., the total secrecy

rate is zero, the secrecy rate for the FL transmission for different signs of the secrecy

rate in the RL is given as follows:

1. If SRRLU1
> 0 and SRRLU2

> 0, then according to Lemma 3.1, E1 and E2 cannot wire-

tap any bits from U2 and U1, respectively, using the FL transmission. Therefore,

using (3.12), the secrecy rate in the FL is min
{
IFLXOR

U1
, IFLXOR

U2

}
.

2. If SRRLU1
> 0 and SRRLU2

= 0, then according to Lemma 3.1, E1 cannot wiretap

any bits from U2 using the FL transmission. Further, since the RL of U2 is not

secure, U2 does not transmit and E2 does not get any bits from U2. Hence, E2

cannot recover bits from U1 using the FL transmission. Since U1 is not expected

to receive any message because of SRRLU2
= 0, the FL secrecy rate is IFLXOR

U2
.

3. If SRRLU1
= 0 and SRRLU2

> 0, similar to the procedure as in Case 2, the secrecy

rate in the FL is IFLXOR

U1
.

According to the results in Cases 1, 2, and 3, the secrecy rate of the FL is derived as

in (3.18).

According to Lemma 3.2, when the XOR protocol is used, the FLs are totally secured.

Note that for the Cases 2 and 3, the GW creates random bits instead of the message

from the user with insecure link, i.e., zero secrecy rate in the RL. Then, the GW applies

XOR between the received message from the user which has a positive secrecy rate in

the RL and the randomly generated bits. This way, the eavesdropper still receives a

combined message when the secrecy rate is zero in one of the RLs.

To derive the end-to-end secrecy rate for U1, we invoke Theorem 1 in [222], which states

that, when decoding and re-encoding is performed by an intermediate node, the secrecy
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rate of each hop needs to be taken into account as a bottleneck to derive the end-to-end

secrecy rate. Since decoding and re-encoding is performed at the GW, the result of

Theorem 1 in [222] can be applied. Consequently, using the mentioned theorem and

the secrecy rate derived in (3.17) and the result of Lemma 3.2 in (3.18), the end-to-end

secrecy rate for U1 is calculated by

SRXORU1
= min

{
SRRLU1

, SRFLXOR

U1

}
. (3.19)

The end-to-end secrecy rate for U2 can be derived in a similar way. The sum end-to-end

secrecy rate is expressed as

SRXOR = SRXORU1
+ SRXORU2

. (3.20)

3.2.2 Conventional SATCOM

A conventional scheme without using network coding is described here as a performance

benchmark.

3.2.2.1 Signal model

As shown in Table 3.1, the Phases I and II are the same for the conventional and the

XOR network coding schemes, which result in the same signal model for both schemes.

In Phases III and V, the GW sends back each element of the processed s2 and s1 to

the satellite, respectively, using the ideal feeder link where s1 and s2 are NS × 1 vectors

containing both the feed weights and the users’ data signals. s1 and s2 are defined as

s1 = w1ŝ1 and s2 = w2ŝ2, where ŝ1 and ŝ2 are the decoded and re-encoded versions of

the data signals received from U1 and U2 at the GW with unit power, and w1 and w2

are beamforming vectors to be designed at the GW. Note that since different Gaussian

codebooks are used at the GW to re-encode the signals for U1 and U2, the generated

signals at the GW are different from those received from the users. Therefore, generated

signals at the GW are shown by ŝ1 and ŝ2.

The satellite applies each component of the vector s2, containing the feed weight multi-

plied by the data signal, to the corresponding feed. Then, the beam is adjusted and ŝ2

is sent toward U1 in Phase IV, and the received signals at U1 and E1 are, respectively,

yFLCon

U1
= hTS,U1

s2 + nU1 , (3.21)

yFLCon

E1
= hTS,E1

s2 + nE1 . (3.22)
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Similarly, at the end of Phase VI, the received signals at U2 and E2 are, respectively,

yFLCon

U2
= hTS,U2

s1 + nU2 , (3.23)

yFLCon

E2
= hTS,E2

s1 + nE2 . (3.24)

The beamformer weights in the conventional scheme are exclusively designed at the

GW for each user. Hence, when data is being transmitted for U1, the satellite’s main

lobe is focused toward U1. Since E2 is outside the beam directed toward U1 and the

beamformers are designed to maximize the signal strength toward U1, E2 receives the

signal from side lobes. As a result, the signal received by E2 is weak. Similar conditions

hold for E1 when transmitting to U2. To make the derivation tractable, we neglect these

weak signals received by E2 and E1 in Phases IV and VI, respectively. As a result, the

sum secrecy rate derived for the conventional scheme shall be an upper-bound.

3.2.2.2 Users’ rates

The RL rates for the conventional SATCOM are the same as the XOR network coding

scheme in (3.10) and (3.11). Using (3.21) and (3.23), the FL rates to U1 and U2 after

self-interference cancellation can be derived, respectively, as

IFLCon

U1
= t2 log2


1 +

∣∣∣hTS,U1
w2

∣∣∣
2

σ2U1


 , (3.25)

IFLCon

U2
= t3 log2


1 +

∣∣∣hTS,U2
w1

∣∣∣
2

σ2U2


 . (3.26)

In order to make the conventional method comparable to the bidirectional one, we

assume that the total available transmission time for both the network coding and the

conventional schemes are the same. In other words, the RL time for the users is t1 and

the FL for U1 and U2 are t2 and t3 = 1− t1 − t2, respectively.

3.2.2.3 Eavesdroppers’ channel capacities

The RL capacities for E1 and E2 in the conventional SATCOM are the same as the ones

derived for the XOR network coding scheme. Using (3.22) and (3.24), the FL capacity

from the satellite toward E1 and E2 to overhear the signals sent in Phases IV and VI,
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respectively, are

IFLCon

E1
= t2 log2


1 +

∣∣∣hTS,E1
w2

∣∣∣
2

σ2E1


 , (3.27)

IFLCon

E2
= t3 log2


1 +

∣∣∣hTS,E2
w1

∣∣∣
2

σ2E2


 . (3.28)

3.2.2.4 Secrecy rate definition

The RL secrecy rate for U1 and U2 are the same as the XOR network coding scheme

in Section 3.2.1.5. In the conventional scheme, the messages that E1 receives in the RL

and FL are different and can be decoded independently. Hence, the FL secrecy rate for

U1 can be defined using (3.25), (3.27) and the result from [13] as

SRFLCon

U1
= IFLCon

U1
− IFLCon

E1
. (3.29)

Utilizing (3.17), (3.29), and Theorem 1 in [222], the end-to-end secrecy rate for U1 is

derived as

SRConU1
= min

{
SRRLU1

, SRFLCon

U2

}
. (3.30)

The end-to-end secrecy rate for U2 can be defined in a similar way. Like in Section 3.2.1.5,

the sum secrecy rate is

SRCon = SRConU1
+ SRConU2

. (3.31)

3.3 Problem Formulation and the Proposed Solution

In this section, we study the problem of maximizing the sum secrecy rate by optimizing

the precoding vectors at the GW to shape the satellite beams along with the RL and

FL time allocation, given the maximum available power PS at the satellite. We consider

both the XOR network coding and the conventional schemes. For the XOR network

coding, we just solve the optimal beamformer design for the secrecy rate derived from

the first case of the FL secrecy rate in (3.18). The solutions for the optimal beamformer

design for the other two cases of (3.18) are similar to the first case of (3.18).



Chapter 3. Security in Bidirectional Multi-beam Satellites 46

3.3.1 Network coding for bidirectional SATCOM

Using the sum secrecy rate defined in (3.20), the optimization problem for the XOR

network coding scheme is defined as

max
w,t1,t2

min
{
IRLU1

− IRLE1
,min

{
IFLXOR

U1
, IFLXOR

U2

}}

+min
{
IRLU2

− IRLE2
,min

{
IFLXOR

U1
, IFLXOR

U2

}}

s.t. t1 + t2 = 1,

‖w‖2 ≤ PS . (3.32)

To transform (3.32) into a standard convex form, we apply the following procedures.

First, we assume that t1 and t2 are fixed and study the beamforming design. After

designing the optimal beamformer, the optimal time allocation is found by performing

1-D search of t1 over the range (0, 1). Second, after considering a fixed transmission

time for the RL and FL, the RL secrecy rate expressions in (3.32) are fixed and can be

dropped without loss of generality. Hence, (3.32) boils down into

max
w

min
{
IFLXOR

U1
, IFLXOR

U2

}

s.t. ‖w‖2 ≤ PS . (3.33)

Next, we introduce the auxiliary variable u to remove the “min” operators. Then, (3.33)

yields

max
w,u>0

u

s.t. ‖w‖2 ≤ PS ,

σ2U1

(
2

u
t2 − 1

)
≤
∣∣hTS,U1

w
∣∣2,

σ2U2

(
2

u
t2 − 1

)
≤
∣∣hTS,U2

w
∣∣2. (3.34)

The last two constraints in (3.34) are not convex. By introducing W = wwH , we

rewrite (3.34) as

max
W�0,u>0

u

s.t. tr (W) ≤ PS ,

σ2U1

(
2

u
t2 − 1

)
≤ tr (WA) ,

σ2U2

(
2

u
t2 − 1

)
≤ tr (WB) , (3.35)
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where A = h∗
S,U1

hTS,U1
and B = h∗

S,U2
hTS,U2

. The rank constraint, rank (W) = 1,

in (3.35) is dropped. The optimal beamforming weight in (3.35) is designed for the FL

transmission. However, since the RL secrecy rates, which can be bottlenecks for the

total end-to-end secrecy rate, are not considered in (3.35), extra unnecessary power at

the satellite may be utilized. To fix this, one last constraint is added to (3.35) to get

max
W�0,u>0

u

s.t. tr (W) ≤ PS ,

σ2U1

(
2

u
t2 − 1

)
≤ tr (WA) ,

σ2U2

(
2

u
t2 − 1

)
≤ tr (WB) ,

u ≤ max
{
IRLU1

− IRLE1
, IRLU2

− IRLE2

}
. (3.36)

Problem (3.36) is recognized as a SDP problem, thus convex and can be efficiently

solved. According to Theorem 2.2 in [223], when there are three constraints on the

matrix variable of a SDP problem such as (3.36), existence of a rank-1 optimal solution

for NS > 2 is guaranteed. Hence, if the solution to (3.36) happens not to be rank-

one, we can use Theorem 2.2 in [223] to recover the rank-one optimal solution out of a

non-rank-1 solution. According to [224], the complexity of problem (3.36) is

O


(3 +N2

S

)
(
N2
S

(
N2
S + 1

)

2

)3

 . (3.37)

Solving (3.36) is accompanied along with a 1-D exhaustive search over the time variable

t. We assume that the time variable is divided into m bins between 0 and 1. The overall

computational complexity for designing the beamformer for the XOR network coding

scheme is m times the complexity mentioned in (3.37). This is typically affordable since

the optimization is performed at the GW on the ground.

3.3.2 Conventional SATCOM

According to the secrecy rate defined in (3.31), the optimization problem for the con-

ventional scheme is

max
w1,w2,t1,t2

min
{
IRLU1

− IRLE1
, IFLCon

U2
− IFLCon

E2

}

+min
{
IRLU2

− IRLE2
, IFLCon

U1
− IFLCon

E1

}

s.t. ‖w1‖2 + ‖w2‖2 ≤ PS . (3.38)
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Assume that the power split between the beamforming vectors w1 and w2 is βPS and

(1− β)PS where β is a given parameter with 0 ≤ β ≤ 1. Using the parameter β, the

beamforming vectors w1 and w2 in the power constraint of (3.38) can be separated.

Hence, (3.38) can be rewritten as

max
w1,w2,t1,t2

min
{
IRLU1

− IRLE1
, IFLCon

U2
− IFLCon

E2

}

+min
{
IRLU2

− IRLE2
, IFLCon

U1
− IFLCon

E1

}

s.t. ‖w1‖2 ≤ βPS ,

‖w2‖2 ≤ (1− β)PS . (3.39)

The problem (3.39) can be expanded as

max
w1,w2,t1,t2

min

{
SRRLU1

, t2 log

(
σ2E2

σ2U2

σ2U2
+ |hTS,U2

w1|2
σ2E2

+ |hTS,E2
w1|2

)}

+min

{
SRRLU2

, t3 log

(
σ2E1

σ2U1

σ2U1
+ |hTS,U1

w2|2
σ2E1

+ |hTS,E1
w2|2

)}

s.t. ‖w1‖2 ≤ βPS ,

‖w2‖2 ≤ (1− β)PS . (3.40)

Before further simplifying (3.40), we first mention the following theorem.

Theorem 3.3. If the achievable secrecy rate is strictly greater than zero, the power

constraints in (3.40) are active at the optimal point w⋆
1 and w⋆

2, i.e., ‖w1‖2 = βPS and

‖w2‖2 = (1− β)PS.

Proof. The proof is given in Appendix A.

Using Theorem 3.3, we can show that the constraints in (3.40) are active which enables

us to write (3.40) as

max
w1,w2,t1,t2

min

{
IRLU1

− IRLE1
, t2 log

(
σ2E2

σ2U2

wH
1 U2w1

wH
1 E2w1

)}

+min

{
IRLU2

− IRLE2
, t3 log

(
σ2E1

σ2U1

wH
2 U1w2

wH
2 E1w2

)}

s.t. ‖w1‖2 = βPS ,

‖w2‖2 = (1− β)PS , (3.41)

whereU1 ,
σ2
U1

(1−β)PS
I+h∗

S,U1
hTS,U1

,U2 ,
σ2
U2
βPS

I+h∗
S,U2

hTS,U2
,E1 ,

σ2
E1

(1−β)PS
I+h∗

S,E1
hTS,E1

,E2 ,
σ2
E2
βPS

I + h∗
S,E2

hTS,E2
. The benefit of (3.41) is that given β, w1 and w2 can be optimized
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separately. To be specific, the optimal w1 and w2 corresponds to the eigenvectors asso-

ciated with the maximum eigenvalues of matrices C = L−1
1 U1L

−H
1 and D = L−1

2 U2L
−H
2

where E1 = L1L
H
1 and E2 = L2L

H
2 , respectively. As a result, (3.41) can be simplified

into

max
0<t1<1
0<t2<1

min

{
IRLU1

− IRLE1
, t2 log

(
σ2E2

σ2U2

λmax (C)

)}

+min

{
IRLU2

− IRLE2
, t3 log

(
σ2E1

σ2U1

λmax (D)

)}
. (3.42)

Note that the constraints of (3.41) are dropped in (3.42) due to the homogeneity of the

objective function. To solve (3.42), we introduce auxiliary variables as u1 and u2 to

remove the “min” operators as

max
t1,t2,u1,u2

u1 + u2

s.t. u1 ≤ t1c, (3.43a)

u1 ≤ t2 log

(
σ2E2

σ2U2

λmax (C)

)
, (3.43b)

u2 ≤ t1d, (3.43c)

u2 ≤ t3 log

(
σ2E1

σ2U1

λmax (D)

)
, (3.43d)

u1, u2 ≥ 0, (3.43e)

0 < t1 < 1, 0 < t2 < 1, (3.43f)

where

c , log
1 +

PU1
‖hU1,S

‖2

σ2
S(

1 +
PU1 |hU1,E1 |2

σ2
E1

) , d , log
1 +

PU2
‖hU2,S

‖2

σ2
S(

1 +
PU2 |hU2,E2 |2

σ2
E2

) , (3.44)

and t3 = 1− t1 − t2. Clearly, it is a linear programming problem and can be optimally

solved. After that, we use 1-D search to find the optimal power allocation parameter

β⋆.

3.4 Simulation Results

In this section, we present numerical results to evaluate the secrecy rate of the XOR

network coding based SATCOM protocol and compare it with the conventional scheme.

We consider both i) equal RL and FL time allocation (ETA), and ii) optimized time
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allocation between the RL and the FL (OTA). We use labels “XOR-ETA” and “XOR-

OTA” to denote equal time allocation and optimal time allocation policies, respectively.

In our simulations, B denotes the carrier bandwidth, 41.67 kHz, for both RL and FL

transmissions. Since there is a main direct link from the satellite to the users as well as

some diffuse components, the channel from the satellite to the users can be modeled as

Rician [225]. The K-factor for the FL is determined by the multipath average scattered

power and random log-normal variable using the values provided by [225]. Due to the

“scintillation” effect [226], we have multipath in the RL. Moreover, there exists a direct

link like the FL case. Therefore, the RL can be considered to follow Rician distribution

with a higher K-factor which is assumed to be 15 dB. The rest of the link parameters

are summarized in Table 3.2 [227]. The satellite’s FL transmission power in Table 3.2

shows the carrier power used in the following transmissions: 1) the broadcast in Phase

IV of the XOR scheme or, 2) the transmissions in Phases IV and V of the conventional

reference scheme. If the satellite’s FL transmission power is not a variable in a simulation

scenario, its value provided by Table 3.2 is used.

The ground channels between the users and the eavesdroppers are assumed to follow a

Rayleigh distribution with the pathloss calculated by

L = 10 log

[(
4π

λ

)2

dγ

]
, (3.45)

where γ is the pathloss exponent which we assume to be γ = 3.7. The maximum Doppler

shift is calculated using the following relation as

fDmax =
v

λ
=
vfc
c
, (3.46)

where v is the user’s speed, fc is the maximum frequency used and c is the light speed.

Since the carrier bandwidth is 41.67 kHz, we assume that the RL operating bandwidth is

1616−1616.04167 MHz for U1, 1616.04367−1616.08534 MHz for U2 and the FL operating

bandwidth is 1616− 1616.04167 MHz which is common between the users. Each user is

supposed to move in a random direction with a 10 m/s speed. If not explicitly mentioned,

each eavesdropper’s distance to the user is randomly changed between 2 to 2.5 km.

We first show the average sum secrecy rate in Fig. 3.2 when the number of feeds used

on the satellite varies from 3 to 10. As we can see, the XOR network coding scheme

can achieve over 54% higher average sum secrecy rate than the conventional one. It can

be observed that optimizing the RL and FL communication times improves the average

sum secrecy rate for both schemes considerably, especially for the conventional scheme

in higher number of feeds. The effect of time allocation is further illustrated in
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Table 3.2: Link budget and parameters

Parameter Value

Satellite orbit type LEO

Operating band (1∼2 GHz) L-band

RL and FL frequency band, MHz 1616-1626.5

Beams on the Earth 48

Number of antenna arrays 318

Frequency reuse factor (FRF) 12

Number of carriers per beam 20

Carrier bandwidth, Bc, kHz 41.67

Guard bandwidth, kHz 2

Satellite’s antenna gain per beam, dBi 24.3

Total power at the satellite, dBW 31.46

Satellite noise temperature, K 290

Terminal noise temperature, K 321

Satellite’s FL transmission power, dBW 7.65

Mobile device radiation power, dBW 0

Mobile device antenna gain, dBi 3.5

Return and forward link pathloss, dB 151

Doppler shift due to satellite velocity, Hz 270

Envelope mean of the direct wave, ms 0.787

The variance of the direct wave, σ2s 0.0671

The power of the diffuse component 0.0456

Feeds of the satellite, N
S
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Figure 3.2: Average sum secrecy rate versus different number of feeds on the satellite
for the XOR network coding and conventional schemes.
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Figure 3.3: Average sum secrecy rate versus the RL time allocation t1 in the XOR
network coding scheme.
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Figure 3.4: Average sum secrecy rate versus different RL, t1, and FL, t2 and t3 =
1− t1 − t2, time allocation in the conventional scheme.

Figs. 3.3 and 3.4 for the XOR network coding and the conventional schemes, respectively.

It is observed in Fig. 3.3 that for different number of feeds, the average sum secrecy rate

first increases, and then then decreases with the RL time allocation t1. Here, more

time is allocated to the RL transmission which means that the FL transmission rate is

a bottleneck for the end-to-end rate. The time split between the RL and FL depends

on the number of feeds at the satellite. As the number of feeds increases, the time

devoted to the FL transmission increases. This shows that the FL acts as a bottleneck

for the end-to-end communications. The change in the RL and FL time allocation

makes the channel secrecy rates closer to each other so that the overall average secrecy
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Figure 3.5: Average sum secrecy rate versus the satellite’s forward link transmission
power.
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Figure 3.6: Average sum secrecy rate versus RL time allocation for different satellite’s
forward link transmission powers.

rate increases. The optimal time allocation for one RL slot and two FL slots in the

conventional scheme can be seen in Fig. 3.4.

The effect of the satellite’s FL transmission power on the average secrecy rate is investi-

gated in Figs. 3.5 and 3.6. In Fig. 3.5, we see that the average secrecy rate for the equal

time allocation approach in both schemes starts to saturate as the available power for the

FL transmission increases. This can be explained by the fact that as the available power

increases, the RL becomes a bottleneck for the end-to-end secrecy rate and hinders the

overall improvement. On the other hand, while performing optimal time allocation over

RL and FL, the average secrecy rate keeps growing for both the conventional and the
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Figure 3.7: Average sum secrecy rate versus the distance between the user and the
eavesdropper for XOR network coding and conventional schemes while equal and opti-

mal time allocation are employed.
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Figure 3.8: Average sum secrecy rate versus different RL and FL time allocation in
XOR network coding scheme for different distances between the user and eavesdropper.

XOR network coding schemes. It is seen in Fig. 3.6 that by increasing the power at the

satellite, more time is allocated to the RL transmission in order to balance the RL and

FL secrecy rates and sustaining the secrecy rate growth. However, after increasing the

satellite’s power beyond a specific point, the effect of the optimal time allocation fades

out, and the average secrecy rate in the optimal time allocation scheme also saturates

due to RL being a bottleneck. This fact can be observed in Fig. 3.6. As the power of the

FL transmission increases, less time is exchanged between the RL and FL transmission

and the average secrecy rate saturates. The effect of the distance between each user

and the corresponding eavesdropper is investigated in Figs. 3.7 and 3.8. As is seen in
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Fig. 3.7, the average secrecy rate for equal time allocation in both schemes saturates as

the distance between the user and eavesdropper increases. This is because increasing

the distance to the eavesdropper improves the secrecy rate in the RL, leaving the FL

as a performance bottleneck. When the time allocation is optimized, the average se-

crecy rate shows notable gain in both schemes. However, after a specific distance, the

secrecy rate for the optimal power allocation also saturates. Increasing the distance to

the eavesdropper increases the secrecy rate for the RL, but this increment is going to

be quite small at some point and consequently vanishes. Consequently, as the distance

increases, less time exchange is required between the RL and FL transmission. This fact

can be seen in Fig. 3.8. Due to this limit in the RL secrecy rate, the secrecy rate can be

improved using optimal time allocation up to a limited distance. Furthermore, as it is

observed in Fig. 3.7, the average sum secrecy rate of the XOR network coding saturates

in a much longer distance compared to the conventional scheme. Interestingly, when the

user and the eavesdropper are close, the conventional scheme using the optimal time al-

location outperforms the XOR network coding scheme using equal time allocation. This

originates from the fact that there are more degrees of freedom in terms of optimal time

allocation in the conventional scheme compared to the XOR network coding scheme.

Hence, when it comes to picking up a secure protocol, distance plays an important role.

The results in Fig. 3.8 illustrate that as the distance between the user and the eaves-

dropper decreases, more time is allocated to the RL transmission of the XOR network

coding scheme in order to balance the secrecy rates in RL and FL. It is observed that

as the distance to the eavesdropper increases, less change is required in the RL and FL

times. This is due to the fact that as the distance increases, the improvement rate in

the secrecy rate of the RL is reduced and less regulation is required in the transmission

times.

3.5 Conclusion

In this chapter, we studied the sum secrecy rate of SATCOM network where XOR

network coding is used for bidirectional information transmission. We designed the

satellite’s antenna beamforming weights at the GW and transmit them to the satellite

via an ideal feeder link. The beamforming weights as well as the RL and FL time

allocations were designed to maximize the sum secrecy rate of the users. We also designed

the beamformer as well as the optimal time allocation for RL and FL to maximize the

sum secrecy rate for the one way conventional SATCOM scheme. Simulations showed

that the sum secrecy rate of the network coded SATCOM is considerably more than the

conventional SATCOM in most of the scenarios, especially when the legitimate users and
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the eavesdroppers are not close. We observed that increasing the satellite’s transmission

power will saturate the sum secrecy rate for equal RL and FL time allocation, whereas

it increases the sum secrecy rate of the optimal time allocation.



Chapter 4

Power Control in Wiretap

Interference Channels

Interference in wireless networks degrades the signal quality at the terminals. However,

it can potentially enhance the secrecy rate. This chapter investigates the secrecy rate

in a two-user interference network where one of the users, namely user 1, requires to

establish a confidential connection. User 1 wants to prevent an unintended user of the

network to decode its transmission. User 1 has to transmit such that its secrecy rate

is maximized while the quality of service at the destination of the other user, user 2, is

satisfied, and both user’s power limits are taken into account. We consider two scenarios:

1) user 2 changes its power in favor of user 1, an altruistic scenario, 2) user 2 is selfish

and only aims to maintain the minimum quality of service at its destination, an egoistic

scenario. It is shown that there is a threshold for user 2’s transmission power that only

below or above which, depending on the channel qualities, user 1 can achieve a positive

secrecy rate. Closed-form solutions are obtained in order to perform joint optimal power

control. Further, a new metric called secrecy energy efficiency is introduced. We show

that in general, the secrecy energy efficiency of user 1 in an interference channel scenario

is higher than that of an interference-free channel. The contributions of this chapter are

published in [21].

4.1 Introduction

Broadcasting information over the same frequency band in wireless networks leads to

interference among users. Even in the systems where the spatial dimension is used to

concentrate the signal towards the intended destination, the destination may receive in-

terfering signals from other transmitters operating in the same frequency band. Also, due

57
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to the expansion and deployment of wireless services, the spectrum is getting scarce [15].

As one possible solution, devices can share the same spectrum which results in interfer-

ence and degradation of the signal quality. For instance, IEEE standards such as WiFi,

Zigbee and Bluetooth share the same frequency band named the industrial, scientific

and medical (ISM) band and they may interference with each other [16]. Furthermore,

the wireless medium leaves the information vulnerable to unintended users who can po-

tentially decode the message which was meant for other users. Throughout this chapter,

the words “wiretapper”, or “eavesdropper” refer to the unintended users. While there

are higher layer cryptography techniques to secure the data, it is yet possible that a

malicious agent breaks into the encryption and gets access to the data [3]. By intel-

ligently tuning the system parameters using physical layer security techniques, we can

prevent the wiretappers from getting access to the information and this way, and further

improve the system security along other techniques. Consequently, a specific rate can

be perfectly secured for the users to transmit their data, so that the wiretapper is not

able to decode the message. There are efficient coding schemes which can achieve this

rate. However, this area is still in its infancy, and the research effort at the moment is

inclined in implementing practical codes [6].

Potentially, the interference can improve the secrecy rate by introducing extra interfer-

ence at the eavesdropper. The possibility of secure transmission in a multi-user interfer-

ence channel using interference alignment and secrecy pre-coding is investigated in [98].

The authors of [94] investigate the secrecy rate in a two-user interference channel with

an external eavesdropper. They show structured transmission results in a better secrecy

rate compared to randomly generated Gaussian codebooks. The authors of [95] study

the secrecy capacity region for a two-user interference channel in the presence of an

external eavesdropper. The users jointly design randomized codebooks and inject noise

along with data transmission to improve the secrecy rate. The authors of [96] consider

a user who gets helping interference in order to increase its confidentiality against an

eavesdropper. The achievable secrecy rate for both discrete memoryless and Gaussian

channels is derived. A two-user interference network with an unintended user is consid-

ered in [97]. Depending on the channel conditions, bounds on the transmission power of

the interfering user is derived such that a positive secrecy rate is sustained for the other

user.

As an example of the interference channel, the effect of interference on the secrecy

rate is also investigated in cognitive radio systems. In cognitive radios, secondary user

transmits in the primary user’s operating frequency band when it is not in use. Stochastic

geometry is used in [106] to analyze physical layer secrecy in a multiple node cognitive

radio network where an eavesdropper is present. The secrecy outage probability and the

secrecy rate of the primary user is derived while secondary user produces interference.
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The authors of [108] maximize the secrecy rate for a multiple-antenna secondary user

in the presence of an external eavesdropper while considering the quality of service

(QoS) at the primary receiver. Similar problems to maximize the secrecy rate through

beamforming design in cognitive radio are studied in [110–112].

4.1.1 Contributions and main results

In this work, we investigate the secrecy rate in a two-user wireless interference network.

Apart from the two users, one of the idle users (unintended user) in this network is

a potential eavesdropper. Both nodes transmit in a way so that the secrecy rate is

maximized for the first user (user 1), and the second user (user 2) maintains the QoS

at its intended destination. Only user 1 needs to establish a secure connection and to

keep its data secure. For example, in a network with ISM band users, user 1 and user

2 can be WiFi and ZigBee transmitters. The ZigBee can be used to send measurement

data, which is one of its applications, so its data may not be necessarily important to

the potential eavesdropper who is interested in WiFi messages.

The effect of interference from user 2 on the secrecy rate of user 1 is studied in two

scenarios, namely altruistic and egoistic scenarios. In the altruistic scenario, we jointly

optimize the transmission powers of both users in order to maximize the secrecy rate

of user 1, while maintaining the QoS at user 2’s destination equal or above a specific

threshold. The incentives for user 2 to cooperate are twofold: 1) when positive secrecy

rate cannot be granted for user 1, it can enjoy an interference-free transmission, 2) user

1 adjusts its transmission power to maintain the QoS of user 2’s destination equal or

above the threshold. In the egoistic scenario, the users’ powers are still jointly opti-

mized. However, user 2 is selfish and only tries to maintain the minimum QoS at the

corresponding destination. The contributions of our work are as follows. It is shown that

by appropriate control of user 1’s power, we can make sure that the eavesdropper cannot

decode the signal of user 2, and thus cannot employ successive interference cancellation

(SIC). Also, it is shown that the transmitted power from user 2 has a crucial role in

achieving a positive secrecy rate for user 1. According to the channel conditions, we

define the proper power transmission for user 2 to maintain a positive secrecy rate for

user 1. We develop closed-form expressions to implement joint optimal power control

for both users in both altruistic and egoistic scenarios. Finally, a new metric called

“secrecy energy efficiency” is defined, which is the secrecy rate over the consumed power

ratio. Using the new metric, it is shown that the interference channel can outperform

the single-user channel for specific values of QoS requirements.
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4.1.2 Related Work

Inner and outer bounds for the secrecy capacity regions in a two-user interference chan-

nel with destinations as eavesdroppers are investigated in [73]. They showed that the

secrecy capacity can be enhanced when one user transmits signal with artificial noise.

Later, [73] was extended to the case when both users transmit artificial noise along with

data in [76]. As a result, they achieve a larger secrecy rate region when one or both

destinations are considered as eavesdropper. In [71], an outer bound for secrecy capac-

ity region is calculated for a two-user one-sided interference channel. Outer bounds on

sum rate of a two-user Gaussian interference channel are studied in [77] where message

confidentiality is important for users. Secrecy capacity region for a two-user MIMO

Gaussian interference channel is investigated in [78] where each receiver is a potential

eavesdropper. A two-user symmetric linear deterministic interference channel is investi-

gated in [99]. The achievable secrecy rate is investigated when interference cancelation,

cooperation, time sharing, and transmission of random bits are used. It is shown that

sharing random bits achieves a better secrecy rate compared to sharing data bits. A

two-user MISO interference channel is considered in [85] where beamforming is per-

formed to maintain fair secrecy rate. The work in [177] analyzes a two-user interference

channel with one-sided noisy feedback. Rate-equivocation region is derived when the

second user’s message needs to be kept secret. The secrecy rate constrained to secrecy

rate outage probability and power is maximized by designing robust beamformer in [66]

where a transceiver pair and multiple eavesdroppers constitute a network.

A multiple-user interference channel where only one user as a potential eavesdropper

receives interference is considered in [81]. The sum secrecy rate is derived using nested

lattice codes. The authors in [100] consider a wireless network comprised of users,

eavesdroppers and interfering nodes. It is shown that interference can improve secrecy

rate. A communication network comprised of multiple-antenna base stations and single-

antenna users is considered in [86]. The total transmit power is minimized while the

signal-to-interference plus noise ratio and equivocation rate for each user is satisfied.

In [72], a two-user network with one-sided-interference where each destination is a po-

tential eavesdropper for the other one is studied. Using game theory, it is concluded

that depending on the objective of each pair, the equilibrium can include or exclude the

self-jamming strategy. The authors of [84] analyze a two-user MISO Gaussian interfer-

ence channel where each destination is a potential eavesdropper. Game theory is used to

tackle the scenario where each user tries to maximize the difference between its secrecy

rate and the secrecy rate of the other user. Beamformers under full and limited channel

information are designed at each transmitter to achieve this goal.
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A transceiver pair is studied in [101] where they try to increase the secrecy rate using an

external interferer when a passive eavesdropper is present. The authors of [102] consider

a user and an eavesdropper where known interference which only degrades the decoding

ability at the eavesdropper is used to enhance the secrecy capacity. The secrecy capacity

and secrecy outage capacity when closest interfering node and multiple interfering nodes

are separately employed to prevent eavesdropping is studied in [103]. It is demonstrated

that multiple interferes method is superior to the closet interfering method. The exact

secure degrees of freedom for different types of Gaussian wiretap channels are discussed

in [104] where cooperative jamming from helpers is used.

The equivocation-rate for a cognitive interference network is considered in [107] where

the primary receiver is a potential eavesdropper and should not decode the secondary

message. A MISO transceiver along with multiple single-antenna eavesdroppers are

considered in [48]. The relationship of the mentioned network with interference cognitive

radio network is used to design the transmit covariance matrix. In [109], the secondary

user causes interferes to both primary destination and eavesdropper. Primary user tries

to maintain its secrecy rate while the secondary aims to increase its rate. The achievable

pair rate for both users is derived.

4.2 System model

4.2.1 Signal Model

We consider a wireless interference network consisting of two users denoted by U1 and

U2, two destinations denoted by D1 and D2, and one user as the eavesdropper denoted

by E. E is assumed to be passive during U1 and U2 transmission and active outside

the mentioned period. All nodes employ one antenna for data communication. We

denote by x1 and x2, the messages which are sent over the same frequency band from

U1 and U2 to D1 and D2, respectively. Sharing the same frequency band by the users

leads to cross-interference. While the users send data, their signals are wiretapped by

the eavesdropper, E. The network setup is depicted in Fig. 4.1. Here, we consider a

scenario where E is only interested in the data sent by one of the users, namely U1. As

a result, x2 is considered as an interfering signal at both D1 and E.

There are two ways in order to carry out the joint power allocation: 1) users send

their channel information to a fusion center. At the fusion center, the optimal power

values are calculated and sent back to the users separately, 2) one of the users sends

its channel information to the other user who calculates the optimal power values and

sends the optimal power value to the corresponding user. It can be seen that the first
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approach consumes more time and number of transmissions compared to the second

one. Since U1 is interested in sustaining a positive secrecy rate, it is fair if this user

pays the computational cost. Hence, we assume that U2 sends the channels data to U1

and then U1 calculates the optimal power values and sends back the related optimal

power value to U2. To perform channel estimation in the network, one approach is that

the destinations, including the unintended user, send pilots and the transmitters are

then able to estimate the required CSIs. After estimating the channels, U2 forwards the

required CSIs to U1. U1 is then responsible to perform the power control and inform U2

of the optimal power that it can transmit. Note that in practice, it is often optimistic to

have such a model, as the eavesdroppers are often totally passive. But here, we assume

that the eavesdropper is momentarily active, and thus its channel can be estimated and

remains unchanged for the optimal power control usage. One practical example of such a

scenario is when the eavesdropper is a known user in a network such that U1’s messages

should be kept confidential from it.

The received signals at D1 and D2 are as follows

yD1 =
√
P1hU1,D1x1 +

√
P2hU2,D1x2 + nD1 , (4.1)

yD2 =
√
P2hU2,D2x2 +

√
P1hU1,D2x1 + nD2 , (4.2)

where P1 and P2 are the power of the transmitted signals by U1 and U2, and hUi,Dj

is the channel gain from each user to the corresponding destination for i = 1, 2 and

j = 1, 2. The transmission signal from the i-th user, and the additive white Gaussian

noise at the i-th destination are shown by
√
Pixi and nDi

for i = 1, 2, respectively.

The random variables xi and nDi
are independent and identically distributed (i.i.d.)

with xi ∼ CN (0, 1) and nDi
∼ CN (0, σ2n), respectively, where CN denotes the complex

normal random variable. In practice, some signals follow Gaussian distribution such

as the amplitude of sample distributions of OFDM signal [228]. Using a Gaussian

distributed signal may not always be optimal, however, our focus is on maximizing the

secrecy rate by designing joint optimal power allocation in a specific system model. The

wiretapped signal at E is

yE =
√
P1hU1,Ex1 +

√
P2hU2,Ex2 + nE , (4.3)

where hUi,E is the channel coefficient from the i-th user to the eavesdropper for i =

1, 2, and nE is the additive white Gaussian noise at the eavesdropper with the same

distribution as nDi
. The additive white Gaussian noise at different receivers are assumed

to be mutually independent.
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Figure 4.1: Two-user wireless interference network.

4.2.2 Secrecy rate of U1

In order to calculate the secrecy rate of U1, we need to first find the rate of U1 without

considering the secrecy, and then the rate in which the eavesdropper wiretaps U1. In this

chapter, we assume that U1 and U2 do not employ SIC. Therefore, using (4.1) and (4.2),

the rates for each user to the corresponding destination can be calculated as

IU1−D1 = log2

(
1 +

P1|hU1,D1 |2

P2|hU2,D1 |2 + σ2n

)
, (4.4)

IU2−D2 = log2

(
1 +

P2|hU2,D2 |2

P1|hU1,D2 |2 + σ2n

)
. (4.5)

The eavesdropper simultaneously receives signals from U1 and U2 which are transmitting

in the same frequency band. Hence, the channel from users towards the eavesdropper can

be modeled by a multiple-access channel. Assume that the transmission powers of U1 and

U2 in a specific time slot are P1 and P2. Then, considering that users employ Gaussian

codebooks and the eavesdropper tends to achieve the maximum wiretapping rate from

U1, the rate pairs achieved at the eavesdropper are shown in Fig. 4.2 [229] which lie on

the line from point “A” to point “D”. To wiretap U1 with the maximum achievable

rate, the eavesdropper can employ the SIC method [221]. Using SIC, the eavesdropper

first decodes the signal from U2 while considering U1’s signal as interference. Then,

considering the fact that the signal from U2 is decoded and known, eavesdropper deducts

U2’s signal from the received signal and gets an interference-free signal from U1. In

this approach, the rate pairs on the line “CD” are achieved at the eavesdropper if the

transmission rate of U2, defined by R2, is lower than the decode-able rate defined at

point “G”. To prevent the eavesdropper from achieving the maximal wiretapping rate,

U2’s transmission rate needs to be higher than the decode-able rate at point “G”. Since
users do not coordinate in order to implement time-sharing or rate-splitting, U1’s signal

cannot be decoded with the rates which are on the line “DE”, and thus it needs to
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Figure 4.2: Maximum achievable rate pairs of a two-user multiple-access fading chan-
nel.

decode U1 considering U2 as the interference with a rate equal to the rate at point “E”.
Therefore, to disable the eavesdropper from performing SIC (i.e., achieving rate at point

“D”), the following condition needs to hold:

R2 =log2

(
1 +

P2|hU2,D2 |2

P1|hU1,D2 |2 + σ2n

)

> log2

(
1 +

P2|hU2,E |2

P1|hU1,E |2 + σ2n

)
. (4.6)

In (4.6), the left-hand side is the actual transmission rate of U2 which is equal to the

decode-able rate at its destination, D2 . If condition (4.6) is satisfied, the eavesdropper

has to decode U1’s signal by considering U2’s signal as interference. Interestingly, satis-

fying condition (4.2) just needs U1 to adjust its transmission power and is independent

from P2. The condition on P1 to satisfy (4.6) is derived as:

P1 >
A′′

B′′ if A′′ > 0, B′′ > 0, (4.7g)

P1 > 0 if A′′ < 0, B′′ > 0, (4.7h)

P1 <
A′′

B′′ if A′′ < 0, B′′ < 0, (4.7i)

P1 < 0 (not feasible) if A′′ > 0, B′′ < 0, (4.7j)

where A′′ = σ2n

(
|hU2,E |2 − |hU2,D2 |2

)
and B′′ = |hU2,D2 |2|hU1,E |2 − |hU1,D2 |2|hU2,E |2.

As we can see, the channel conditions define whether U1 can block the eavesdropper

by adjusting its power. For the Cases 4.7g, 4.7h, and 4.7i, the instantaneous wiretap

rate from U1 toward E is obtained by IU1−E = log2

(
1 +

P1|hU1,E|2
P2|hU2,E|2+σ2

n

)
, and thus the
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secrecy rate of U1 in this case is as follows

CSU1
=IU1−D1 − IU1−E = log2

(
1 +

P1|hU1,D1 |2

P2|hU2,D1 |2 + σ2n

)

− log2

(
1 +

P1|hU1,E |2

P2|hU2,E |2 + σ2n

)
. (4.8)

For Case 4.7j, no power from U1 is capable of preventing the eavesdropper from apply-

ing the SIC technique and deriving an interference-free version of U1’s signal and thus

IU1−E = log2

(
1 +

P1|hU1,E|2
σ2
n

)
. This results in the following secrecy rate

CSU1
=IU1−D1 − IU1−E = log2

(
1 +

P1|hU1,D1 |2

P2|hU2,D1 |2 + σ2n

)

− log2

(
1 +

P1|hU1,E |2
σ2n

)
. (4.9)

In the next two sections, we formulate and solve the underlying problems so as to find

the optimal P1 and P2.

4.3 Problem Formulation: Altruistic Scenario

In this section, we maximize the secrecy rate of U1 subject to the peak power limits of

the users as well as the quality of service (QoS) at D2. If one of the cases 4.7g, 4.7h,

or 4.7i holds, using (4.8), the following secrecy rate optimization is solved:

max
P1,P2

CSU1

s. t. P1 ≤ Pmax1 , P1

(4.7g)

≷
(4.7i)

ω, P2 ≤ Pmax2 , IU2−D2 ≥ β, (4.10)

where β is the minimum required data rate for U2 and ω = A′′

B′′ . In Case 4.7h, any P1

ensures that the eavesdropper cannot employ SIC. Therefore, no additional constraint

over P1 is necessary. For Case 4.7j, using (4.9), the following secrecy rate optimization

problem should be solved

max
P1,P2

CSU2

s. t. P1 ≤ Pmax1 , P2 ≤ Pmax2 , IU2−D2 ≥ β. (4.11)
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We first solve (4.10) and then (4.11). By inserting (4.8) into (4.10), we obtain

max
P1,P2

log2



1 +

P1|hU1,D1 |2
P2|hU2,D1 |2+σ2

n

1 +
P1|hU1,E|2

P2|hU2,E|2+σ2
n




s. t. P1 ≤ Pmax1 , P1

(4.7g)

≷
(4.7i)

ω, P2 ≤ Pmax2 ,

P2|hU2,D2 |2

P1|hU1,D2 |2 + σ2n
≥ γ, (4.12)

where γ is 2β − 1. Since log is a monotonic increasing function of its argument, we can

just maximize the argument and thus we rewrite (4.12) as

max
P1,P2

1 +
P1|hU1,D1 |2

P2|hU2,D1 |2+σ2
n

1 +
P1|hU1,E|2

P2|hU2,E|2+σ2
n

s. t. P1 ≤ Pmax1 , P1

(4.7g)

≷
(4.7i)

ω, P2 ≤ Pmax2 ,

P2|hU2,D2 |2

P1|hU1,D2 |2 + σ2n
≥ γ. (4.13)

Considering that the objective function is neither convex, nor concave, solving prob-

lem (4.13) is difficult. As a result, we shall adopt a two-step approach in order to

solve (4.13). First, we consider P2 to be fixed and derive the optimal value for P1, and

then we replace the obtained P1 in (4.13) and solve the optimization problem for P2.

4.3.1 Optimizing P1 for a Given P2

For this case, (4.13) is reduced to

max
P1

1 +
P1|hU1,D1 |2

P2|hU2,D1 |2+σ2
n

1 +
P1|hU1,E|2

P2|hU2,E|2+σ2
n

s. t. P1 ≤ Pmax1 , P1

(4.7g)

≷
(4.7i)

ω, P1 ≤
P2|hU2,D2 |2 − γσ2n

γ|hU1,D2 |2
. (4.14)

In order to solve (4.14), first, we find the range of P2 for which the objective function

in (4.14) is always positive, i.e., a positive secrecy rate can be achieved. In the following

theorem, we outline the related bounds on P2 where the positive secrecy rate is obtained.
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Theorem 4.1. Assume an interference network similar to the one mentioned in Fig. 4.1

along with the assumptions on power limits and the QoS. In order to achieve a positive

secrecy rate, P2 should satisfy the following bounds:

P2 >
A

B
if A > 0, B > 0, (4.15k)

P2 > 0 if A < 0, B > 0, (4.15l)

P2 <
A

B
if A < 0, B < 0, (4.15m)

where A = σ2n

(
|hU1,E |2 − |hU1,D1 |2

)
and B = |hU1,D1 |2|hU2,E |2 − |hU2,D1 |2|hU1,E |2. Fur-

ther, for A > 0, B < 0, irrespective of the value of P2, no positive secrecy rate can be

obtained for U1.

Proof. The proof is given in Appendix B.

One immediate conclusion of Theorem 4.1 is given by the following corollary which can

be considered as the most important result of this chapter.

Corollary 4.2. In a wiretap interference channel as in Fig. 4.1, where the goal is to

obtain a positive secrecy rate for U1, the possibility of achieving a positive secrecy rate

is independent from the value of P1, and depends on the value of P2 and the conditions

of the channels.

Now that we have defined the required conditions for P2 to achieve a positive secrecy

rate, we investigate the optimal value of P1, denoted by P ⋆1 for a given P2. If we take the

derivative of the objective function in (4.14) with respect to P1, we see that the conditions

on P2 to have a monotonically increasing, referred to as Case 1, or decreasing, referred

to as Case 2, are the same as the conditions to have a positive or negative secrecy rate,

respectively. These conditions are summarized as follows

P2(1) >
A

B
, P2(2) <

A

B
if A > 0, B > 0,

P2(1) = ∅, P2(2) > 0 if A > 0, B < 0,

P2(1) > 0, P2(2) = ∅ if A < 0, B > 0,

P2(1) <
A

B
, P2(2) >

A

B
if A < 0, B < 0, (4.16)

where P2(1) refers to the required power in Case 1, P2(2) refers to the required power

in Case 2 and ∅ denotes the empty set. According to Theorem 4.1, and the conditions

in (4.16), the global optimal values for P1 in Cases 1 and 2 are defined as
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1. If the objective function in (4.10) is monotonically increasing, then

P ⋆1 = min

{
χ,
P2|hU2,D2 |2 − γσ2n

γ|hU1,D2 |2

}
. (4.17)

where χ = Pmax1 for Cases 4.7g and 4.7h, χ = min {Pmax1 , ω} for Case 4.7i.

2. If the objective function in (4.10) is monotonically decreasing, then P ⋆1 = 0. This

could also be concluded from the fact that when a positive secrecy rate cannot be

granted, U1 should be turned off.

4.3.2 Optimizing P2 for a Given P1

We insert the P ⋆1 obtained in Subsection 4.3.1 into (4.14), and try to obtain the optimal

value for P2. First, we decompose the optimal answer of P1 in (4.17) into two different

answers as follows

P ⋆1 =





χ P2 ≥
γ
(
χ|hU1,D2 |2+σ2

n

)

|hU2,D2 |2
,

P2|hU2,D2 |2−γσ2
n

γ|hU1,D2 |2
P2 <

γ
(
χ|hU1,D2 |2+σ2

n

)

|hU2,D2 |2
.

(4.18)

Using Theorem 4.1 and according to the two resulting cases in (5.24), we can break (4.13)

into two problems in order to optimize P2, respectively, as follows

max
P2

1 +
Pmax1 |hU1,D1 |2
P2|hU2,D1 |2+σ2

n

1 +
Pmax1 |hU1,E|2
P2|hU2,E|2+σ2

n

s. t. P2 ≤ Pmax2 , P2 ≥
γ
(
χ|hU1,D2 |2 + σ2n

)

|hU2,D2 |2
= λ1,

P2

(4.15k)

≷
(4.15m)

σ2n

(
|hU1,E |2 − |hU1,D1 |2

)

|hU1,D1 |2|hU2,E |2 − |hU2,D1 |2|hU1,E |2
= ϕ1, (4.19)
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and

max
P2

1 +

(
P2|hU2,D2 |2−γσ2

n

)
|hU1,D1 |2

γ|hU1,D2 |2
(
P2|hU2,D1 |2+σ2

n

)

1 +

(
P2|hU2,D2 |2−γσ2

n

)
|hU1,E|2

γ|hU1,D2 |2
(
P2|hU2,E|2+σ2

n

)

s. t. P2 ≤ Pmax2 , P2 <
γ
(
χ|hU1,D2 |2 + σ2n

)

|hU2,D2 |2
= λ1,

P2 ≥
γσ2n

|hU2,D2 |2
= λ2,

P2

(4.15k)

≷
(4.15m)

σ2n

(
|hU1,E |2 − |hU1,D1 |2

)

|hU1,D1 |2|hU2,E |2 − |hU2,D1 |2|hU1,E |2
= ϕ1, (4.20)

for A
(4.15k)

≷
(4.15m)

0 and B
(4.15k)

≷
(4.15m)

0. For the case A < 0 and B > 0 which is represented

by (4.15l), the last constraint in (4.19) and (4.20) is removed from the problem since

with any positive value for P2, U1 can have a positive secrecy rate. Also for A > 0 and

B < 0, the secrecy rate is simply zero since P1 = 0. Furthermore, the numerator and

denumerator in (4.20) have the possibility to become less than unit and this leads to a

negative rate. The constraint in (4.20) which is placed one to the last, ensures that the

data and wiretap rates do not go below zero.

We discuss the feasibility conditions of (4.19) and (4.20) to derive the feasibility domain,

p2, in Proposition 4.3.

Proposition 4.3. The feasibility domain for the problems (4.19) and (4.20) denoted by

p2 is defined as follows

1. Problem (4.19): For case (4.15k), we should have max {λ1, supϕ1} ≤ Pmax2 which

leads to p2 = [max {λ1, supϕ1} , Pmax2 ]. For case (4.15m), we should have min {inf ϕ1, Pmax2} ≥
λ1 which leads to p2 = [λ1,min {inf ϕ1, Pmax2}].

2. Problem (4.20): For case (4.15k), we should have max {supϕ1, λ2} ≤ min {inf λ1, Pmax2}
which leads to [max {supϕ1, λ2} ,min {inf λ1, Pmax2}]. For case (4.15m), we should

have min {inf ϕ1, inf λ1, Pmax2} ≥ λ2 which leads to p2 = [min {inf ϕ1, inf λ1, Pmax2} , λ2].

Proof. The proof is straightforward, thus was omitted.

If both (4.19) and (4.20) are feasible at the same time, we select the P ⋆2 and the corre-

sponding secrecy rate from the problem which results in a higher secrecy rate. Here, we

provide a generic closed-form solution depending on the channels’ conditions in Theo-

rems 4.4 and 4.5 for (4.19) and (4.20), respectively.
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Theorem 4.4. Assume a = Pmax1 |hU1,D1 |2, b = |hU2,D1 |2, c = Pmax1 |hU1,E |2, d =

|hU2,E |2, C = b − d, D = b
(
c+ σ2n

)
− d

(
a+ σ2n

)
, E = −BPmax1 = bc− ad, F =

cdσ2n − a
(
b
(
c+ σ2n

)
− cd

)
, G =

APmax1
σ2
n

= c − a, α = min (inf ϕ1, Pmax2), and β =

max {λ1, supϕ1}. Also, suppose that (4.19) is feasible. Then, (4.19) is solved as follows:

1. If CD < 0

(a) If A < 0 and E > 0

P ⋆2 = α (4.21)

(b) If E < 0

P ⋆2 =




β A > 0

λ1 A < 0
(4.22)

2. If CD > 0

(a) If A < 0, E > 0 and F < 0

P ⋆2 = arg
P2

max
P2∈{λ1,α}

Cs (4.23)

(b) If E < 0 and F > 0

P ⋆2 =





P2C P2C ∈ p2

arg
P2

max
P2∈{β,Pmax2}

Cs A > 0, P2C /∈ p2

arg
P2

max
P2∈{λ1,Pmax2}

Cs A < 0, P2C /∈ p2

(4.24)

(c) If E > 0, F > 0 and G < 0

P ⋆2 =





arg
P2

max
P2∈{P2C ,λ1,α}

Cs P2C ∈ p2

arg
P2

max
P2∈{λ1,α}

Cs P2C /∈ p2

(4.25)

(d) If E < 0, F < 0 and G > 0

P ⋆2 =





arg
P2

max
P2∈{P2C ,β,Pmax2}

Cs P2C ∈ p2

arg
P2

max
P2∈{β,Pmax2}

Cs P2C /∈ p2

(4.26)
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(e) If E < 0, F < 0 and G < 0

P ⋆2 = λ1 (4.27)

where Cs is the objective function in (4.19), P2C = −2bdGσ2
n−

√
∆

2bdE , and ∆ = 4abcdCDσ2n.

Proof. The proof is given in Appendix C.

Theorem 4.5. Assume e = |hU1,D1 |2, f = |hU2,D2 |2, g = |hU1,D2 |2, h = |hU2,D1 |2, i =
|hU1,E |2, j = |hU2,E |2, H = h−j, δ = min (inf λ1, Pmax2), κ = min {inf λ1, inf ϕ1, Pmax2},
µ = max {supϕ1, λ2}, I = −fi+ ghγ − (hi+ gj) γ + e (f + jγ),

J = −gh2iγ (f + jγ) + e
(
f2i (−h+ j) + fgj2γ + ghj2γ2

)
,

K = −gi (f + jγ) + e (fg + ghγ − hiγ + ijγ),

L = −ghi (f + jγ) + e (fhi+ fgj − fij + ghjγ).

Also, suppose that (4.20) is feasible. Then, (4.20) can be solved as follows

1. If HI < 0

(a) If J > 0

P ⋆2 =





δ A > 0, B > 0

δ A < 0, B > 0

κ A < 0, B < 0

(4.28)

(b) If J < 0

P ⋆2 =





µ A > 0, B > 0

λ2 A < 0, B > 0

λ2 A < 0, B < 0

(4.29)

2. If HI > 0

(a) If J > 0 and K < 0

P ⋆2 =





arg
P2

max
P2∈{µ,δ}

Cs A > 0, B > 0

arg
P2

max
P2∈{λ2,δ}

Cs A < 0, B > 0

arg
P2

max
P2∈{λ2,κ}

Cs A < 0, B < 0

(4.30)
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(b) If J < 0 and K > 0

P ⋆2 =





P2C P2C ∈ p2

arg
P2

max
P2∈{µ,δ}

Cs A > 0, B > 0, P2C /∈ p2

arg
P2

max
P2∈{λ2,δ}

Cs A < 0, B > 0, P2C /∈ p2

arg
P2

max
P2∈{λ2,κ}

Cs A < 0, B < 0, P2C /∈ p2

(4.31)

(c) If J > 0, K > 0 and L < 0 or J < 0, K < 0 and L > 0

P ⋆2 =





arg
P2

max
P2∈{P2C ,µ,δ}

Cs A > 0, B > 0, P2C ∈ p2

arg
P2

max
P2∈{P2C ,λ2,δ}

Cs A < 0, B > 0, P2C ∈ p2

arg
P2

max
P2∈{P2C ,λ2,κ}

Cs A < 0, B < 0, P2C ∈ p2

arg
P2

max
P2∈{µ,δ}

Cs A > 0, B > 0, P2C /∈ p2

arg
P2

max
P2∈{λ2,δ}

Cs A < 0, B > 0, P2C /∈ p2

arg
P2

max
P2∈{λ2,κ}

Cs A < 0, B < 0, P2C /∈ p2

(4.32)

(d) If J > 0, K > 0 and L > 0

P ⋆2 =





δ A > 0, B > 0

δ A < 0, B > 0

κ A < 0, B < 0

(4.33)

(e) If J < 0, K < 0 and L < 0

P ⋆2 =





µ A > 0, B > 0

λ2 A < 0, B > 0

λ2 A < 0, B < 0

(4.34)

where Cs is the objective function in (4.20) and P2C = −2σ2
nγL−

√
∆

2J , and ∆ = 4egiHI
(
σ2n
)4
γ (f + hγ) (f + jγ).

Proof. The proof can be obtained in the similar way to that of Theorem 4.4.

For problem (4.11), the optimal solution of P1 is as (4.17) when χ = Pmax1 . The closed-

form solution for the P2 is given in the following theorem.
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Theorem 4.6. Assume a = |hU1,D1 |2, b = |hU2,D2 |2, c = |hU1,D2 |2, d = |hU2,D1 |2,
e = |hU1,E |2, A = b(a − e)σ + d(−eγσ + cγσ), B = 2bde(aγσ − cγσ), C = −bceγσ2 +

a(bcγσ2 + dγσ(−eγσ + cγσ)), ψ =
σ2
n

(
|hU1,D1 |2−|hU1,E|2

)

|hU1,E|2|hU2,D1 |2
, λ1 =

γ
(
Pmax1 |hU1,D2 |2+σ2

n

)

|hU2,D2 |2
,

λ2 =
γσ2

n

|hU2,D2 |2
, and ς = min (Pmax2 , inf ψ, inf λ1). Then, optimal P2 is given as follows:

1. If A < 0

P ⋆2 = λ2 (4.35)

2. If A > 0

(a) If C > 0 or B > 0 and C < 0

P ⋆2 =





P2C P2C ∈ p2

arg
P2

max
P2∈{λ2,ψ}

Cs P2C /∈ p2
(4.36)

(b) If B < 0 and C < 0

P ⋆2 = arg
P2

max
P2∈{λ2,ψ}

Cs (4.37)

where Cs is the secrecy rate, P2C = −B−
√
∆

2D , ∆ = 4Aabcdeγ(dγσ + bσ), D = −bde(ab+
cdγ), and p2 is the feasibility domain of the problem.

Proof. The proof is similar to that of Theorem 4.4, thus was omitted.

4.4 Problem Formulation: Egoistic Scenario

In this section, we develop closed-form solutions for the case when U2 is selfish from the

view point of U1’s secrecy rate, and adjusts its transmission power just to meet its QoS,

i.e., SINR=γ. Later, we compare this case with respect to the altruistic scenario. If one

of the Cases 4.7g, 4.7h, or 4.7i holds and U2 is selfish, (4.14) can be written as

max
P1,P2

1 +
P1|hU1,D1 |2

P2|hU2,D1 |2+σ2
n

1 +
P1|hU1,E|2

P2|hU2,E|2+σ2
n

s. t. P1 ≤ Pmax1 , P1

(4.7g)

≷
(4.7i)

ω, P2 ≤ Pmax2 ,
P2|hU2,D2 |2

P1|hU1,D2 |2 + σ2n
= γ. (4.38)
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In Case 4.7h, any P1 ensures that the eavesdropper cannot employ SIC, so no additional

constraint over P1 is necessary. For Case 4.7j, the problem is solved as follows

max
P1,P2

1 +
P1|hU1,D1 |2

P2|hU2,D1 |2+σ2
n

1 +
P1|hU1,E|2

σ2
n

s. t. P1 ≤ Pmax1 , P2 ≤ Pmax2 ,
P2|hU2,D2 |2

P1|hU1,D2 |2 + σ2n
= γ. (4.39)

We first solve (4.38) and then (4.39). Using the last constraint in (4.38), we can directly

derive the solution for P2 as P2 = γ

(
P1|hU1,D2 |2+σ2

n

)

|hU2,D2 |2
and replace it with the corresponding

value. Consequently, we can rewrite (4.38) as

max
P1

1 +
P1|hU1,D1 |2

γ

(

P1|hU1,D2 |2+σ2
n

)

|hU2,D2 |2
|hU2,D1 |2+σ2

n

1 +
P1|hU1,E|2

γ

(

P1|hU1,D2 |2+σ2
n

)

|hU2,D2 |2
|hU2,E|2+σ2

n

s. t. P1 ≤ Pmax1 , P1

(4.7g)

≷
(4.7i)

ω, P1 ≤
Pmax2 |hU2,D2 |2 − γσ2n

γ|hU1,D2 |2
. (4.40)

Since the minimum value for the secrecy rate is zero, the objective function in (4.40)

should be greater or equal to one. Proposition 4.7 gives the required condition on P1

in order to have a positive secrecy rate. According to the channel conditions, these

constraints should be added to (4.40).

Proposition 4.7. In order for the objective function in (4.40) to result in a non-negative

secrecy rate, P1 should have the following bounds:

P1 >
A′

B′ if A′ > 0, B′ > 0, (4.41n)

P1 > 0 if A′ < 0, B′ > 0, (4.41o)

P1 <
A′

B′ if A′ < 0, B′ < 0, (4.41p)

where A′ = ((1 + c) d− b (1 + e))σ2n, B
′ = a (be− cd). Also, for the case A′ > 0 and

B′ < 0, irrespective of the value for P2, no positive secrecy rate is possible for U1. The

values for b, c, d and e are defined in Theorem 4.8.

Proof. The proof is similar to that of Theorem 4.1, thus was omitted.
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According to Proposition 4.7, we can rewrite (4.40) as

max
P1

1 +
P1|hU1,D1 |2

γ

(

P1|hU1,D2 |2+σ2
n

)

|hU2,D2 |2
|hU2,D1 |2+σ2

n

1 +
P1|hU1,E|2

γ

(

P1|hU1,D2 |2+σ2
n

)

|hU2,D2 |2
|hU2,E|2+σ2

n

s. t. P1 ≤ Pmax1 , P1

(4.7g)

≷
(4.7i)

ω, P1

(4.41n)

R
(4.41p)

A′

B′ = ϕ3,

P1 ≤
Pmax2 |hU2,D2 |2 − γσ2n

γ|hU1,D2 |2
= λ3. (4.42)

Assuming that (4.42) is feasible, we give a closed-form solution for (4.42) in Theorem 4.8.

Theorem 4.8. Assuming a = |hU1,D2 |2, b = |hU1,D1 |2, c = γ
|hU2,D1 |2
|hU2,D2 |2

, d = |hU1,E |2,

e = γ
|hU2,E|2
|hU2,D2 |2

, Q = c − e, R = −(1 + c)d + a(c − e) + b(1 + e), S = −ac2d (1 + e) +

b
(
e (d+ ae) + c

(
−d+ ae2

))
, T = −A′

σ2
n

= −(1 + c)d + b(1 + e), U = B′

a
= be − cd, η =

min {Pmax1 , λ3}, η′ = min {η, ω}, θ = min {Pmax1 , λ3, ϕ3}, and θ′ = min {θ, ω} (4.40)

can be solved as follows

1. If QR < 0

(a) If S > 0, A′′ > 0, B′′ > 0, (or A′′ < 0, B′′ > 0)

P ⋆1 =





η Q > 0, R < 0

θ B′ < 0, Q < 0, R > 0

η B′ > 0, Q < 0, R > 0

(4.43)

(b) If S > 0, A′′ < 0, B′′ < 0

P ⋆1 =





η′ Q > 0, R < 0

θ′ B′ < 0, Q < 0, R > 0

η′ B′ > 0, Q < 0, R > 0

(4.44)

(c) If S < 0, A′′ > 0, B′′ > 0

P ⋆1 =




max {ϕ3, ω} B′ > 0, Q > 0, R < 0

ω Q < 0, R > 0
(4.45)
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(d) If S < 0, A′′ < 0, B′′ < 0 (or A′′ < 0, B′′ > 0)

P ⋆1 =




ϕ3 B′ > 0, Q > 0, R < 0

0 Q < 0, R > 0
(4.46)

2. If QR > 0

(a) If S > 0, T < 0 and B′ > 0

P ⋆1 =





arg
P1

max
P1∈{max{ϕ3,ω},η}

Cs A′′ > 0, B′′ > 0

arg
P1

max
P1∈{ϕ3,η′}

Cs A′′ < 0, B′′ < 0

arg
P1

max
P1∈{ϕ3,η}

Cs A′′ < 0, B′′ > 0

(4.47)

(b) If S < 0, T > 0, A′′ > 0, B′′ > 0

P ⋆1 =





P1C P1C ∈ p1

arg
P1

max
P1∈{ω,η}

Cs P1C /∈ p1, B
′ > 0

arg
P1

max
P1∈{ω,θ}

Cs P1C /∈ p1, B
′ < 0

(4.48)

(c) If S < 0 and T > 0, A′′ < 0, B′′ < 0

P ⋆1 =





P1C P1C ∈ p1

arg
P1

max
P1∈{0,η′}

Cs P1C /∈ p1, B
′ > 0

arg
P1

max
P1∈{0,θ′}

Cs P1C /∈ p1, B
′ < 0

(4.49)

(d) If S < 0 and T > 0, A′′ < 0, B′′ > 0

P ⋆1 =





P1C P1C ∈ p1

arg
P1

max
P1∈{0,η}

Cs P1C /∈ p1, B
′ > 0

arg
P1

max
P1∈{0,θ}

Cs P1C /∈ p1, B
′ < 0

(4.50)

(e) If S > 0, T > 0, U < 0 and A′′ > 0, B′′ > 0

P ⋆1 =





arg
P1

max
P1∈{P1C ,ω,θ}

Cs P1C ∈ p1

arg
P1

max
P1∈{ω,θ}

Cs P1C /∈ p1

(4.51)
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(f) If S > 0, T > 0, U < 0 and A′′ < 0, B′′ < 0

P ⋆1 =





arg
P1

max
P1∈{P1C ,0,θ′}

Cs P1C ∈ p1

arg
P1

max
P1∈{0,θ′}

Cs P1C /∈ p1

(4.52)

(g) If S > 0, T > 0, U < 0 and A′′ < 0, B′′ > 0

P ⋆1 =





arg
P1

max
P1∈{P1C ,0,θ}

Cs P1C ∈ p1

arg
P1

max
P1∈{0,θ}

Cs P1C /∈ p1

(4.53)

(h) If S < 0, T < 0, U > 0, A′′ > 0, B′′ > 0 (or A′′ < 0, B′′ > 0)

P ⋆1 =





arg
P1

max
P1∈{P1C ,max{ϕ3,ω},η}

Cs P1C ∈ p1

arg
P1

max
P1∈{max{ϕ3,ω},η}

Cs P1C /∈ p1

(4.54)

(i) If S < 0, T < 0, U > 0 and A′′ < 0, B′′ < 0

P ⋆1 =





arg
P1

max
P1∈{P1C ,ϕ3,η′}

Cs P1C ∈ p1

arg
P1

max
P1∈{ϕ3,η′}

Cs P1C /∈ p1

(4.55)

(j) If S > 0, T > 0 and U > 0

P ⋆1 =





η A′′ > 0, B′′ > 0

η A′′ < 0, B′′ > 0

η′ A′′ < 0, B′′ < 0

(4.56)

where P1C = −2a(1+c)(1+e)Uσ2
n−

√
∆

2aS and ∆ = 4abdQR
(
σ2n
)4

(1 + c) (1 + e).

Proof. The proof can be obtained in the similar way to that of Theorem 4.4.

For problem (4.39), the closed-form solution for P1 is given in the following theorem.

Theorem 4.9. Assume f = |hU1,D1 |2, g = |hU1,D2 |2, h = |hU2,D1 |2, i = |hU2,D2 |2,
j = |hU1,E |2, E = ad+ bcγ − e(d+ cγ), F = ad− e(d+ cγ), and τ = min (Pmax2 , inf ρ).

Then, optimal P1 is as follows:
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1. If E < 0

P ⋆2 = 0 (4.57)

2. If E > 0

(a) If F > 0

P ⋆2 =





P2C P2C ∈ p2

arg
P2

max
P2∈{0,τ}

Cs P2C /∈ p2
(4.58)

(b) If F < 0

P ⋆2 = arg
P2

max
P2∈{0,τ}

Cs (4.59)

where P2C = −G−
√
∆

2H , ∆ = 4Eabcdeγ(d+cγ)σ2, G = −2bceγ(d+cγ)σ, H = −bceγ(ad+

bcγ), ρ =
σ2
n

(
|hU1,D1 |2−|hU1,E|2

)
|hU2,D2 |2

γ|hU1,E|2|hU2,D1 |2|hU1,D2 |2
− σ2

n

|hU1,D2 |2
, and p2 is the feasibility domain of

the problem.

Proof. The proof can be obtained in the similar way to that of Theorem 4.4.

4.5 Secrecy Energy Efficiency

Before going to Section VI, we define a metric in order to investigate the energy effi-

ciency of the considered scenario. We define the secrecy energy efficiency, ηSEE , as the

maximum secrecy rate obtained from the objective of (9), namely Ψ, to the optimal

consumed power of U1, P
⋆
1 , ratio as ηSEE =

max
P1

Ψ

P ⋆
1

.

Similarly, in the case we have only one transceiver pair and an eavesdropper with no

interfering user, the secrecy energy efficiency metric, ηSEE , can be defined as ηSEEsu =
log

((
σ2
n+P

⋆|hU,D|2
)/(

σ2
n+P

⋆|hU,E|2
))

P ⋆ , where P is the transmission power, and P ⋆ is the

optimal transmission power obtained from the optimization problem in the nominator.

When the condition |hU,D|2 > |hU,E |2 holds, the optimum consumed power in the single-

user case is Pmax. In contrast, as we shall see in Section VI, the optimal power consumed

by U1 in the interference channel is considerably lower than Pmax. Hence, as shall be

shown in Section VI, in a wide range of powers, the interference network outperforms

the single-user network in terms of secrecy energy efficiency.
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4.6 Numerical Results

In this section, we present different scenarios as numerical examples to further clarify the

derived results. As a benchmark, we consider a single-user scenario where only one user is

present in the environment and there is no second user to produce interference [5]. Then,

we compare this benchmark with our system model. Here, we refer to the altruistic and

egoistic scenarios as interference channel modes. In all simulation scenarios, we assume

that the noise power is equal to one, i.e., σ2n = 1. All the channel coefficients are

modeled as i.i.d. complex normal random variables with real and imaginary parts being

as N (0, 1). The channel coefficients are normalized to have a unit variance as CN (0, 1).

For the first scenario, we consider the effect of the users’ power limits, Pmax1 and Pmax2 ,

on the average secrecy rate as shown in Fig. 4.3 for SINR = 1 at U2’s destination. By

observing the results in Fig. 4.3, we can draw the following conclusions for both altruistic

and egoistic scenarios:

1. Average secrecy rate of U1 increases as Pmax1 or Pmax2 increases.

2. Increasing Pmax1 is more effective on improving the average secrecy rate rather

than increasing Pmax2 . The reason is that increasing U2’s power creates more

interference to both U1 and E.

3. The average secrecy rate of U1 is lower in the egoistic scenario since U2 does not

change its transmitted power in favor of U1, and only adjusts it according to the

required QoS at D2. Also, by comparing Fig. 4.4 and Fig. 4.5, it can be seen

that U2 consumes less power in the egoistic scenario. When the Cases (4.15k)

and (4.15l) of Theorem 4.1 are true, U2 can improve the secrecy rate by providing

more power in the altruistic scenario.

The average optimal powers consumed by U1 and U2 are shown in Fig. 4.4 for the

altruistic scenario. Following points are implied by Fig. 4.4 as:

1. In contrast to the single-user case where the maximum power consumption is

optimum when the data link is stronger than the wiretap link, average optimal

powers expended by users in the interference channel modes are considerably less

than the available quantity. So, the optimum power control in the interference

channel leads to enormous power saving.

2. As Pmax1 increases, U2 consumes more power. A higher power transmission from

U1 produces more interference on D2. This makes U2 to choose higher transmission

power in order to maintain the QoS at D2.
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Figure 4.3: Average secrecy rate versus the users’ maximum available powers in
altruistic and egoistic scenarios.

3. As Pmax2 increases, U1 utilizes more power. A higher available power for U2 enables

it to compensate a higher interference from U1, so U1 transmits with a higher power

to increase the secrecy rate.

4. Depending on the maximum available power to the users, the optimal consumed

power by one user can be higher or lower than the power consumed by the other

user.

Consumed powers by U1 and U2 for the egoistic scenario are illustrated in Fig. 4.5. As

we can see, the power consumption pattern is similar to the altruistic scenario as in

Fig. 4.4. By comparing Fig. 4.5 with Fig. 4.4, it is noticed that the power consumed by

the users in the altruistic scenario is higher than the egoistic scenario.

Average excess SINR provided by U2 at D2 in the altruistic scenario is shown in Fig. 4.6

for different values of the required QoS, γth. Following messages are conveyed by Fig. 4.6

as:

1. By increasing Pmax1 for a fixed Pmax2 , the excess SINR provided at D2 drops due

to increased interference from U1’s transmission.

2. Increasing Pmax2 for a fixed Pmax1 leads to a higher excess SINR at D2.

The average secrecy rate comparison among the single-user benchmark and the inter-

ference channel modes is presented in Fig. 4.7 with respect to the maximum available

power of U1. Following conclusions can be made according to Fig. 4.7:

1. Increasing Pmax2 also enhances the average secrecy rate but much less compared

to increasing the Pmax1 , because U2 induces interference on both D1 and E.
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Figure 4.4: Average optimal power consumed by the users versus their maximum
available powers in altruistic scenario.
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Figure 4.5: Average optimal power consumed by the users versus their maximum
available powers in the egoistic scenario.

2. The secrecy rate in the egoistic scenario is always lower than the one in the altru-

istic scenario. In the egoistic scenario, U2 consumes power to only fulfil the QoS

at D2. As a result, U2 does not increase its transmission power to produce inter-

ference on E when the Cases (4.15k) and (4.15l) of Theorem 4.1 hold. However, in

the altruistic scenario, U2 can change its transmission power in favor of U1 when

it becomes necessary.

A similar comparison as in Fig. 4.7 is displayed in Fig. 4.8 with respect to the maximum

available power of U2. The Statements 1 and 2 of Fig. 4.7 also hold for Fig. 4.8. As we

see in Fig. 4.8, increasing Pmax2 also increases the average secrecy rate. By increasing

Pmax2 , U2 gets a higher ability to suppress the interference coming from U1 as well

as causing more interference on E when the Cases (4.15k) and (4.15l) of Theorem 4.1

hold. As a result, U1 can transmit with a higher power and enhance the secrecy rate.
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Figure 4.6: Average excess QoS provided at D2 versus users’ maximum available
powers in the altruistic scenario.
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Figure 4.7: Average secrecy rate versus U1’s maximum available power.

As we can see from Fig. 4.7 and Fig. 4.8, the average secrecy rate in the interference

channel modes is lower than its value in the single-user case. However, we should note

that the power consumed in the interference channel modes is considerably lower than

the single-user case. To make a fair comparison, we use the “secrecy energy efficiency”

metric defined in Section 4.5 to compare the secrecy rates of the interference channel

modes and the single-user benchmark. This metric is derived for different values of γth

in Fig. 4.9. According to graphs in Fig. 4.9, we can make the following conclusions:

1. The secrecy energy efficiency is higher for the interference channel modes in a

considerable range of γth and Pmax1 . If we consider a specific available power for

U1, the acquired secrecy rate in the interference channel modes becomes higher

than the one achieved in the single-user case.
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Figure 4.8: Average secrecy rate versus U2’s maximum available power.
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Figure 4.9: Average secrecy energy efficiency versus U1’s maximum available power.

2. As the maximum available power to U1 increases, the secrecy energy efficiency falls

faster for the cases with lower γth.

4.7 Conclusion

We considered a two-user interference wireless channel in this chapter where the first

user, namely user 1, wants to sustain a positive secrecy rate while communicating with

its destination. The second user of the network, namely user 2, requires to preserve

a specific QoS at its destination. Both users create interference for their destinations

and another unintended user of the network, i.e., the eavesdropper, which is interested

in wiretapping user 2. We showed that by appropriate power control of user 1, the

eavesdropper cannot perform SIC. We studied the effect of interference from user 2

on the secrecy rate of user 1. Specifically, depending on the channel conditions, we
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derived the conditions on user 2’s transmission power in which positive secrecy rate can

be provided. In addition, we jointly derived closed-form expressions for optimal power

transmission of user 1 and 2 to maximize the secrecy rate of user 1 and preserving the

QoS at the destination of user 2. We solve the joint power control problem for both

altruistic and egoistic scenarios. In the altruistic scenario, user 2 changes its power

to over satisfy the QoS at its destination if it improves the secrecy rate. However, it

preserves the minimum QoS at its destination in the egoistic scenario. The simulations

showed that decreasing the QoS at the destination of user 2 improves the secrecy rate

and the secrecy rate gets closer to the single-user case.

Moreover, the ratio of the secrecy rate over the optimal consumed power by user 1

was introduced as a new metric called “secrecy energy efficiency”, in order to take

into account both the secrecy rate and the consumed power. This was mainly done to

have a fair comparison with the benchmark scheme which is the single-user channel. It

was shown that in comparison with the single-user case, the secrecy energy efficiency

is considerably higher in the interference channel for a wide range of QoS at user 2’s

destination.



Chapter 5

Secrecy Energy Efficiency in

MISO and SISO Communication

Networks

Energy-efficiency, high data rates and secure communications are essential requirements

of the future wireless networks. In this chapter, optimizing the secrecy energy efficiency

is considered. The optimal beamformer is designed for a MISO system with and without

considering the minimum required secrecy rate. Further, the optimal power control in

a SISO system is carried out using an efficient iterative method, and this is followed by

analyzing the trade-off between the secrecy energy efficiency and the secrecy rate for

both MISO and SISO systems. The contribution of this chapter is published in [25].

5.1 Introduction

Due to the presence of several wireless devices in a specific environment, the trans-

mitted information may be exposed to unintended receivers. Using cryptography in

higher layers, a secure transmission can be initiated. Nevertheless, it is probable that

an unintended device, which maybe also be a part of the legitimate network, breaks

the encryption [3]. Fortunately, physical layer security techniques can further improve

the security by perfectly securing a transmission rate using the “secrecy rate” concept

introduced in [5]. While security is a concern, power consumption is also another impor-

tant issue in wireless communications since some wireless devices rely on limited battery

power.

85
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There are a wealth of research works in the literature which investigate the energy effi-

ciency in wireless networks such as [230, 231] and the references therein. Recently, some

research has been done to jointly optimize the secrecy rate and the power consumption.

Sum secrecy rate and power are jointly optimized in [113] to attain a minimum quality

of service (QoS). In [114], switched beamforming is used to maximize the secrecy out-

age probability over the consumed power ratio. Powers consumption for a fixed secrecy

rate is minimized in [117] for an amplify-and-forward (AF) relay network. The secrecy

outage probability over the consumed power is maximized subject to power limit for a

large scale AF relay network in [118]. The optimal beamformer for a wiretap channel

with multiple-antenna nodes is designed in [115] to maximize secrecy rate over power

ratio.

Here, we consider a multiple-input single-output (MISO) and a single-input single-output

(SISO) scenario while a single-antenna unintended receiver, which is part of the network,

is listening. The secrecy rate over the power ratio, named “secrecy energy efficiency”

and denoted by ζ, is maximized with and without considering the minimum required

secrecy spectral efficiency, denoted by η0, at the destination. For comparison, we derive

the optimal beamformer when zero-forcing (ZF) technique is used to null the signal

at the eavesdropper with considering the minimum required secrecy spectral efficiency.

Note that the ZF can only be used for the MISO scenario. Furthermore, the trade-off

between ζ and secrecy spectral efficiency, denoted by η, is studied.

The following issues distinct our work from the most related research. In [115], first-

order Taylor series expansion and Hadamard inequality are used to approximate the

optimal beamfromer for a MIMO system. However, the exact beamformer for the MISO

system is derived in this chapter. Furthermore, the innermost layer of algorithm in [115]

is based on the singular value decomposition, and is not applicable to SISO and MISO

systems. In this chapter, apart from the MISO system exact beamformer design, exact

optimal power allocation for the SISO system is also derived.

5.2 Signal and System Model

Consider a wireless communication network comprised of a transmitter denoted by T , a

receiver denoted by R, and an unintended user denoted by E. Note that to obtain the

secrecy rate, the legitimate user needs to be aware of the instantaneous channel to the

eavesdropper. This knowledge for the most general case with a passive eavesdropper is

not practical. In this work, the unintended user is assumed to be part of the network.

Therefore, the transmitter T is able to receive the training sequence from E, in order to
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estimate its channel. The signal model and the secrecy rates are derived in the following

parts.

5.2.1 MISO System

Here, we assume that the transmitter employs multiple antennas. The received signals

at R and E are then as follows

yR = hTT,Rwx+ nR, (5.1)

yE = hTT,Ewx+ nE , (5.2)

where x is the transmitted message, w is a vector containing beamforming gains, hT,R

and hT,E are the transmitter’s channel gains toward the receiver and eavesdropper,

respectively. The additive white Gaussian noise at the receiver and eavesdropper are

shown by nR and nE , respectively. The random variables x, nR, and nE are complex cir-

cularly symmetric (c.c.s.) and independent and identically Gaussian distributed (i.i.d.)

with x ∼ CN (0, 1), nR ∼ CN (0, σ2nR
), and nE ∼ CN (0, σ2nE

), respectively, where CN
denotes the complex normal random variable. The noise powers, σ2nR

and σ2nE
, are equal

to KTiB where K is the boltzman constant, Ti is the temperature at the corresponding

receiver with i ∈ {R,E}, and B is the transmission bandwidth. Using (5.1) and (5.2)

and the result in [13], the secrecy spectral efficiency (or rate in bps/Hz) denoted by η is

obtained by

ηMISO =

[
log

(
1 + a

1 + b

)]+
, (5.3)

where a =
|hT

T,Rw|2
σ2
nR

, b =
|hT

T,Ew|2
σ2
nE

, and [x]+ denotes max (x, 0). In this chapter, all the

logarithms are in base two. Further, the operator [·]+ is dropped throughout the chapter

for the sake of simplicity.

5.2.2 SISO System

When one antenna is employed at the transmitter, using the result in [232], the secrecy

spectral efficiency, η, is calculated as

ηSISO =

[
log

(
1 + a′

1 + b′

)]+
, (5.4)
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where a′ =
P |hT,R|2
σ2
nR

, b′ =
P |hT,E|2
σ2
nE

, P is the transmission power by T , and hT,R and

hT,E are the channel gains to the receiver and eavesdropper, respectively. The statistical

characteristics of the message signal and the noise are the same as those in Section 5.2.1.

5.3 Problem Formulation: MISO System

In this section, we maximize ζ in a MISO system by obtaining the optimal beamformer

for the cases with and without QoS constraint at the receiver.

5.3.1 With QoS at the Receiver

The metric ζ is defined as η multiplied by bandwidth over the total consumed power

ratio as

ζ =
Bη

‖w‖2 + Pc
, (5.5)

where Pc is the circuit power consumption. We define our problem so as to maximize

the secrecy energy efficiency subject to the peak power and QoS constraints as follows

max
w

ζ s.t. ‖w‖2 ≤ Pmax, η > η0. (5.6)

To design the optimal beamformer, we rewrite (5.6) as

max
w

B

log

(
σ2
nE

σ2
nR

σ2
nR

+wHh∗

T,RhT
T,Rw

σ2
nE

+wHh∗

T,E
hT
T,E

w

)

‖w‖2 + Pc

s.t. ‖w‖2 ≤ Pmax, w
HCw ≥ 2η0 − 1, (5.7)

where C =
h∗

T,RhT
T,R

σ2
nR

− h∗

T,EhT
T,E

σ2
nE

2η0 . Using an auxiliary variable as t = ‖w‖2, (5.7) is

reformulated as follows

max
w,0<t≤Pmax

B

log

(
σ2
nE

σ2
nR

wHAw

wHBw

)

t+ Pc

s.t. ‖w‖2 = t, wHCw ≥ 2η0 − 1, (5.8)

where A =
σ2
nR

t
I+ h∗

T,Rh
T

T,R and B =
σ2
nE

t
I+ h∗

T,Eh
T

T,E. The constraint ‖w‖2 ≤ Pmax

is omitted since the upper limit of the search on variable shall be Pmax, which satisfies

this constraint. To make the last constraint convex, (5.8) is transformed to a semidefinite
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programming (SDP) optimization problem.

max
W,0<t≤Pmax

B

log

(
σ2
nE

σ2
nR

tr(WA)
tr(WB)

)

t+ Pc

s.t. tr (W) = t, tr (WC) ≥ 2η0 − 1, W � 0, (5.9)

where rank(W) = 1 constraint is dropped to have a set of convex constraints. Similar

to [233], matrix V and scalar s are defined such that V = sW and tr (sWB) = 1.

Accordingly, (5.9) is transformed into

max
V,0<t≤Pmax,s

B

t+ Pc
log

(
σ2nE

σ2nR

tr (VA)

)

s.t. tr (V) = st, tr (VC) ≥ s (2η0 − 1) ,

tr (VB) = 1,V � 0, s ≥ 0. (5.10)

Finally, by considering the auxiliary variable t to be fixed and dropping the log due to

the monotonicity of logarithm function, (5.10) can be solved using SDP along with a

one-dimensional search over the variable t where t ∈ (0, Pmax]. Since the matrices A, B,

and C in (5.10) are Hermitian positive semidefinite, Theorem 2.3 in [223] can used to

derive an equivalent rank-one solution if the solution to (5.10) satisfies rank(W) ≥ 3.

In order to perform a comparison, we also design the optimal beamforming vector to

maximize the secrecy energy efficiency when zero-forcing (ZF) strategy is used to null

the received signal at the eavesdropper. Using (5.7), the ZF beamformer design problem

can be defined as follows

max
w

B

log

(
σ2
nR

+wHh∗

T,RhT
T,Rw

σ2
nR

)

‖w‖2 + Pc

s.t. ‖w‖2 ≤ Pmax, w
HCw ≥ 2η0 − 1, hTT,Ew = 0. (5.11)

Using t = wHw, we get

max
w

B

t+ Pc

(
log
(
wHAw

)
− log σ2nR

)

s.t. ‖w‖2 = t, wHCw ≥ 2η0 − 1, hTT,Ew = 0, (5.12)

which can be simplified into

max
w

wHAw

s.t. ‖w‖2 = t, wHCw ≥ 2η0 − 1, hTT,Ew = 0. (5.13)
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To make the third constraint convex, similar to (5.8), (5.13) can be transformed into a

SDP optimization problem as

max
W

tr (WA)

s.t. tr (W) = t, tr (WC) ≥ 2η0 − 1,

tr (WD) = 0,W � 0, (5.14)

where D = h∗
T,Eh

T
T,E and the rank-one constraint on W is dropped to make the problem

convex. Since the matrices A, C, and D in (5.14) are Hermitian positive semidefinite,

Theorem 2.3 in [223] can used to derive an equivalent rank-one solution if the solution

to (5.14) satisfies rank(W) ≥ 3.

If the solution to (5.14) is not rank-one, Theorem 2.3 in [223] can be employed to derive

an equivalent rank-one solution. Problem (5.14) can be solved using SDP along with a

one-dimensional search over the variable t where t ∈ (0, Pmax].

5.3.2 Without QoS at the Receiver

Using (5.8), the optimal beamformer design problem without considering the QoS is

reduced to

max
w,0<t≤Pmax

B

log

(
σ2
nE

σ2
nR

wHAw

wHBw

)

t+ Pc
s.t. ‖w‖2 = t. (5.15)

For a fixed t, (5.15) can be written as

max
w

B

t+ Pc

σ2nE

σ2nR

wHAw

wHBw
, (5.16)

where t ∈ (0, Pmax]. Due to the homogeneity of (5.15), the constraints on the bam-

forming vector can be satisfied and thus dropped. The optimal value and the optimal

beamforming vector in (5.16) are easily derived using Rayleigh-Ritz [234] when (5.16) is

in its standardized form as

max
v

B

t+ Pc

σ2nE

σ2nR

vHDv

vHv
, (5.17)

where v = CHw, D = C−1AC−H, and matrix C is the Cholesky decomposition of

matrix B as B = CCH . The optimal beamforming vector is derived as w⋆ = C−Hv⋆

where v⋆ is the eigenvector corresponding to λmax

(
C−1AC−H

)
. Finally, the optimal ζ
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is obtained in closed-form by

ζ⋆ = B

log

(
σ2
nE

σ2
nR

λmax

(
C−1AC−H

))

t+ Pc
. (5.18)

Employing a one-dimensional search over t ∈ (0, Pmax] and using (5.18), the optimal

value of (5.17) is found.

5.4 Problem Formulation: SISO System

In the SISO case, the beamformer design is reduced to scalar power control. Similar

to (5.6), the optimization problem for SISO system is defined as

max
P

B

log

(
σ2
nE

σ2
nR

σ2
nR

+P |hT,R|2
σ2
nE

+P |hT,E|2
)

Pc + P
s.t. Pmin ≤ P ≤ Pmax, (5.19)

where Pmin = 2η0−1
α

is obtained from the minimum QoS constraint, and it is assumed

that α =
|hT,R|2
σ2
nR

− |hT,E|2
σ2
nE

2η0 > 0. The numerator in the objective of (5.19) is concave

since the argument of the logarithm is concave for P ≥ 0 and
|hT,R|2
σ2
nR

>
|hT,E|2
σ2
nE

, which

are granted in our problem, and the denumerator is affine. Hence, (5.19) is categorized

as a family member of fractional programming problems known as “concave fractional

program” where a local optimum is a global one [235]. Here, we solve (5.19) using an

iterative (parametric) algorithm named Dinkelbach [236]. For the sake of simplicity, we

mention the values related to |hT,R|2 and |hT,E |2 by a and b, respectively. According

to [236], after dropping the constant B, (5.19) is written as

F (q) = max
P∈S

log

(
σ2nE

σ2nR

σ2nR
+ Pa

σ2nE
+ Pb

)
− q (Pc + P ) , (5.20)

q =
f (P )

g (P )
, (5.21)

where f(P ) and g(P ) are the numerator and denumerator of (5.19), respectively. Also,

S shows the feasible domain of P . To calculate the optimal P for (5.20), denoted by

P ⋆, the derivative of F (q) with respect to P is calculated as follows

∂F

∂P
=− abqβP 2 + Pqβ

(
−aσ2nE

− bσ2nR

)

+ aσ2nE
− qβσ2nR

σ2nE
− bσ2nR

, (5.22)
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Algorithm 1 Iterative approach to solve (5.19)

1: Initialize n = 0;
2: Pick any Pn ∈ S;
3: Derive qn using (5.21);
4: Derive P ⋆n using (5.24) and calculate F (qn) using (5.20);
5: if F (qn) ≥ δ then
6: n = n+ 1;
7: Go to 3;
8: end if

which is a quadratic equation with a closed-form solution as

P1,2 =
q
(
aσ2nE

+ bσ2nR

)
±
√
∆

−2abq
, β = Ln2,

∆ = q2
(
aσ2nE

+ bσ2nR

)2
+ 4abq

(
aσ2nE

− qσ2nR
σ2nE

− bσ2nR

)
. (5.23)

Since P1 in (5.23) is always negative, P ⋆ is derived as

P ⋆ =





P2 P2 ∈ S,

arg
P

max
P∈{Pmin,Pmax}

F (q) P2 /∈ S,
(5.24)

where P2 =
q(aσ2

nE
+bσ2

nR
)−

√
∆

−2abq . The procedure to solve (5.19) using Dinkelbach method

is summarized in Algorithm 1. Using the closed-form solution of (5.20) given in (5.24),

the following recursive relation is used to merge Steps 3 and 4 of Algorithm 1 as

Pn+1 =

f(Pn)
g(Pn)

(
aσ2nE

+ bσ2nR

)
−√

∆n

−2abf(Pn)
g(Pn)

. (5.25)

It is proven in [236] that Algorithm 1 converges. In addition, since a local optimum for

a concave fractional program is the global optimum, and (5.19) falls into this category,

the solution found using Algorithm 1 is a global optimum.

5.5 Trade-off between ζ and η

In this section, we study the trade-off between secrecy energy efficiency and secrecy

spectral efficiency (i.e. ζ and η) for MISO and SISO systems.
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5.5.1 MISO System

To find the trade-off between ζ and η, we solve the optimal beamforming design problem

to maximize ζ and η separately for a specific power constraint, P . As a result, the pair

(ζ, η) is available for different values of P . For ζ, the optimization problem is as follows

max
w

B

log2

(
σ2
nE

σ2
nR

σ2
nR

+wHh∗

T,RhT
T,Rw

σ2
nE

+wHh∗

T,E
hT
T,E

w

)

P + Pc
s.t. ‖w‖2 = P. (5.26)

Using the constraint in (5.26), we conclude that wHw

P
= 1 which helps us homoge-

nize (5.26) as

max
w

B

log2

(
σ2
nE

σ2
nR

wHAw

wHBw

)

P + Pc
s.t. ‖w‖2 = P, (5.27)

where, A =
σ2
nR

P
I + h∗

T,Rh
T
T,R and B =

σ2
nE

P
I + h∗

T,Eh
T
T,E . Similar to (5.15), the log

and the power constraint can be dropped. Similar to the solution to (5.17), the optimal

beamforming vector shall be w⋆ = C−Hv⋆ where v⋆ is the eigenvector corresponding to

λmax

(
C−1AC−H

)
. The final closed-form solution for ζ⋆ is

ζ⋆ = B

log

(
σ2
nE

σ2
nR

λmax

(
C−1AC−H

))

P + Pc
. (5.28)

The optimal beamforming vector for η⋆ shall be the same as for ζ⋆ and the optimal value

of η can be derived similar to the one for ζ. Hence, the pair (ζ⋆, η⋆) is available.

5.5.2 SISO System

By deriving P with respect to η using (5.4) as P =
σ2
nR

σ2
nE

(2η−1)

σ2
nE

a−σ2
nR

b2η
, the relation between

ζ and η is calculated using (5.5) as follows

ζ =
Bη
(
σ2nE

a− σ2nR
b2η
)

σ2nR
σ2nE

(2η − 1) + Pc
(
σ2nE

a− σ2nR
b2η
) . (5.29)

By solving dζ
dη

= 0 using numerical methods, η corresponding to the optimal ζ can be

derived.
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Figure 5.2: Average ζ versus η0 for different N and Pc.

5.6 Simulation Results

In this section, we present numerical examples to investigate the secrecy energy effi-

ciency and its trade-off with the secrecy spectral efficiency. The simulations’ parameters

are as follows. Distance from the transmitter to receiver and eavesdropper, d, is con-

sidered to be 2 km, Quasi-static block fading channel model as CN (0, 1), path loss is

128.1 + 37.6 log10 d dB [237], bandwidth is 20 MHz, Pc = 5, Pmax = 50, receiver noise

temperature is 298 K, tolerance error for Dinkelbach algorithm is δ = 10−3, and N is

the number of antennas. If the secrecy rate is negative, it is considered to be zero.

For the figures presenting the average graphs, enough amount of channels are generated

and the average of the resultant metrics are considered. In the first simulation sce-

nario, the secrecy energy efficiency and secrecy spectral efficiency trade-off is studied.

Optimal ζ versus the minimum required η graphs as well as the graphs related to the
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Figure 5.3: ζ and η relation for different antennas.

trade-off between ζ and η are presented in Fig. 5.1 using a single channel realization.

Two different regions are defined in Fig. 5.1 using a border line. The border line defines

the optimal operating point in terms of ζ. In the left-hand side region, increasing η

also increases ζ. Hence, to get a higher ζ, the secrecy rate can be increased, which is

desirable. However, the mechanism between ζ and η changes in the right-hand side of

Fig. 5.1. After the optimal point of ζ, increasing η demands more power which is higher

than the optimal power value for ζ. Therefore, as η increases, ζ falls below the optimal

value which is opposite to the procedure in the left-hand side, and the trade-off is clear.

Also, it is observed that ZF results in a lower secrecy energy efficiency. Nevertheless,

as the minimum required secrecy rate increases, the performance of the ZF approaches

the primary scheme, i.e., optimal beamformer design. For the second scenario, average

ζ versus the minimum required η is investigated for different numbers of antennas, and

circuit powers. The related graphs are depicted in Fig. 5.2. As it is shown, increasing

the number of antennas results in increasing the optimal value of ζ and makes it stable

for a longer range of η0. Further, we can see that decreasing Pc leads to higher secrecy

energy efficiency, and this is more significant for higher number of antennas. Similar to

the result in Fig. 5.1, ZF scheme shows a sub-optimal performance. ZF’s performance

gets closer to the optimal scheme as the circuit power, Pc, increases. Interestingly, for

fewer number of antennas, the gap between the performance of the ZF and the optimal

scheme even gets larger. This is due to less degrees of freedom for the ZF beamformer

design as the number of antennas decreases. To investigate the trade-off between ζ and

η, the average (ζ, η) pair for different number of antennas is presented in Fig. 5.3. It is

observed that the optimal ζ grows as number of antennas are increased.
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5.7 Conclusion

In this chapter, we studied the secrecy energy efficiency and its trade-off with the se-

crecy spectral efficiency in MISO and SISO wiretap channels. We designed the optimal

beamformer to maximize the secrecy energy efficiency with and without considering the

minimum required secrecy spectral efficiency at the receiver side. In addition, we de-

signed the beamformer to maximize the secrecy energy efficiency when the transmitter

applies zero forcing to null out the information signal in the direction of the eavesdrop-

per. The simulation results showed that the secrecy energy efficiency of the optimal

beamformer and the ZF beamformer designs gets closer as the minimum required se-

crecy spectral efficiency increases. In addition, we observed that the difference between

the secrecy energy efficiency of the optimal and ZF design decreases as the number of

transmission antennas increases. This is due to the fact that the ZF design by nature

limits the degrees of freedom in the beamformer design, while increasing the number of

antennas gives more degrees of freedom to the ZF design. Particularly, the numerical

results revealed that there is a specific point for the secrecy spectral efficiency where

the secrecy energy efficiency gets to its maximum point. Above this point, the secrecy

energy efficiency starts to fall below the optimal point. In addition, the simulations

showed that increasing the transmitter antennas improves the secrecy energy efficiency

considerably. Furthermore, increasing the transmitter antennas keeps the secrecy energy

efficiency in its maximum level for a longer range of minimum required secrecy spectral

efficiency.



Chapter 6

Secure Directional Modulation

via Symbol-Level Precoding

Wireless transmission provides wide coverage, yet it exposes information. As an information-

theoretic paradigm, secrecy rate derives bounds for secure transmission when the channel

to the eavesdropper is known, however, it restricts us in practice and proper codings

need to be developed to achieve these bounds. Here, we employ the concept of direc-

tional modulation and follow a signal processing approach to enhance the security of a

multi-user MIMO communication system in the presence of a multi-antenna eavesdrop-

per. Enhancing the security in this chapter means increasing the symbol error rate at

the eavesdropper. Unlike the information-theoretic secrecy rate paradigm, we assume

that the legitimate transmitter is not aware of its channel to the eavesdropper, which is

a more realistic assumption. We show that when the eavesdropper has lower antennas

than the users, regardless of the received signal SNR, it cannot recover any useful in-

formation, in addition, it has to go through extra noise enhancing processes to estimate

the symbols when it has more antennas than the users. Using the channel knowledge

and the intended symbols for the users, we design security enhancing symbol-level pre-

coders for different transmitter and eavesdropper antenna configurations. We transform

each design problem to a linearly constrained quadratic program and propose two algo-

rithms, namely iterative algorithm and non-negative least squares, at each scenario for

a computationally-efficient optimization design. Simulation results verify the analysis

and show that the designed precoders outperform the benchmark scheme in terms of

both power efficiency and security enhancement. The contribution of this chapter are

published in [27, 28].

97
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6.1 Introduction

6.1.1 Motivation

Wireless communications allows information flow through broadcasting; however, it may

expose the information to unintended receivers, with eavesdroppers amongst them. To

derive a bound for secure transmission, Wyner proposed the secrecy rate concept in his

seminal paper [5] for discrete memoryless channels. The secrecy rate defines the bound

for secure transmission and proper coding is being developed to achieve this bound [8].

However, the secrecy rate can restrict the communication system in some aspects. Pri-

marily, the secrecy rate requires perfect or statistical knowledge of the eavesdropper’s

channel state information (CSI) [20–22, 179, 206], however, it may not be possible to

acquire the perfect or statistical CSI of a passive eavesdropper in practice. In addition,

in the secrecy rate approach, the transmission rate has to be lower than the achievable

rate, which may conflict with the increasing rate demands in wireless communications.

Furthermore, the transmit signal usually is required to follow a Gaussian distribution

which is not the case in current digital communication systems.

Recently, there has been growing research interest on directional modulation technology

and its security enhancing ability. As a pioneer, [17] implements a directional modulation

transmitter using parasitic antenna. This system creates the desired amplitude and

phase in a specific direction by varying the length of the reflector antennas for each

symbol while scrambling the symbols in other directions. The authors of [18] suggest

using a phased array at the transmitter and employ the genetic algorithm to derive the

phase values of a phased array in order to create symbols in a specific direction. The

directional modulation concept is later extended to directionally modulate symbols to

more than one destination. In [158], the singular value decomposition (SVD) is used to

directionally modulate symbols in a two user system. The authors of [159] derive the

array weights to create two orthogonal far field patterns to directionally modulate two

symbols to two different locations and [160] uses least-norm to derive the array weights

and directionally modulate symbols towards multiple destinations in a multi-user multi-

input multi-output (MIMO) system. The authors in [27] design the array weights of a

directional modulation transmitter in a single-user MIMO system to minimize the power

consumption while keeping the signal-to-noise ratio (SNR) of each received signal above a

specific level. The directional modulation literature focuses on practical implementation

and the security enhancing characteristics of this technology. On top of the works

in the directional modulation literature where antennas excitation weight change on

a symbol basis, the symbol-level precoding to create constructive interference between

the transmitted symbols has been developed in [180–183] by focusing on the digital
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processing of the signal before being fed to the antenna array. The main difference

between directional modulation and the digital symbol-level precoding for constructive

interference is that the former focuses on applying array weights in the analog domain

such that the received signals on the receiving antennas have the desired amplitude and

phase, whereas the latter uses symbol-level precoding for digital signal design at the

transmitter to create constructive interference at the receiver. Furthermore, directional

modulation was originally motivated by physical layer security, whereas symbol-level

precoding by energy efficiency.

6.1.2 Contributions

In this chapter, we design the optimal precoder for a directional modulation transmitter

to enhance the security in a quasi-static fading MIMO channel where a multi-antenna

eavesdropper is present. Here, enhancing the security means increasing the SER at

the eavesdropper. In directional modulation, users’ channels and symbols meant for the

users are used to design the precoder. The precoder is designed to induce the symbols on

the receiver antennas rather than generating the symbols at the transmitter and sending

them, which is the case in the conventional transmit precoding [23, 24]. In other words,

in the directional modulation, the modulation happens in the radio frequency (RF)

level while the arrays’ emitted signals pass through the wireless channel. This way,

we simultaneously communicate multiple interference-free symbols to multiple users.

Also, the precoder is designed such that the receivers antennas can directly recover the

symbols without CSI and equalization. Therefore, assuming the eavesdropper has a

different channel compared to the users, it receives scrambled symbols. In fact, the

channels between the transmitter and users act as secret keys [26] in the directional

modulation. Furthermore, since the precoder depends on the symbols, the eavesdropper

cannot calculate it. In contrast to the information theoretic secrecy rate paradigm, the

directional modulation enhances the security by considering more practical assumptions.

Particularly, directional modulation does not require the eavesdropper’s CSI to enhance

the security, furthermore, it does not reduce the transmission rate and signals are allowed

to follow a non-Gaussian distribution. In light of the above, our contributions in this

chapter can be summarized as follows:

1. The optimal symbol-level precoder is designed for a security enhancing directional

modulation transmitter in a MIMO fading channel to communicate with arbitrary

number of users and symbol streams. In addition, we derive the necessary condition

for the existence of the precoder. The directional modulation literature mostly

includes LoS analysis with one or limited number of users, and multi-user works

do not perform security enhancing optimization.
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2. It is shown that when the eavesdropper has less antennas than the transmitter,

regardless of the SNR level, it cannot extract useful information from the received

signal and when it has more antennas than the transmitter, it has to estimate the

symbols by extra processes which enhance the noise. We minimize the transmission

power for the former case and maximize the SER at the eavesdropper for the latter

case to prevent successful decoding at the eavesdropper. This is done while keeping

the SNR of users’ received signals above a predefined threshold and thus the users’

rate demands are satisfied. The directional modulation literature do not analyze

the abilities of a multi-antenna eavesdropper and rely on the fact that it receives

scrambled symbols

3. It is shown that in the conventional precoding, the eavesdropper needs to have

more antennas than the receiver to estimate the symbols since the eavesdropper

can calculate the precoder. In our design, the eavesdropper has to have more

antennas than the transmitter since the precoder depends on both the channels

and symbols. The transmitter, e.g., a base station, probably has more antennas

than the receiver, hence, it is more likely to preserve the security in directional

modulation, specially in a massive MIMO system.

4. The power and SNR minimization precoder design problems are simplified into a

linearly-constrained quadratic programming problem. For faster design, we intro-

duce new auxiliary variable to transform the constraint into equality and propose

two different algorithms to solve the design problems. In the first algorithm, we

use a penalty method to get an unconstrained problem and solve it by proposing

using an iterative algorithm. Also, we prove that the algorithm converges to the

optimal point. In the second one, we use the constraint to get a non-negative least

squares design problem. For the latter, there are already fast techniques to solve

the problem.

6.1.3 Additional Related Works to Directional Modulation

Array switching at the symbol rate is used in [161, 162] to induce the desired symbols.

In connection with [17], [164] studies the far field area coverage of a parasitic antenna

and shows that it is a convex region. The technique of [18] is implemented in [165] using

a four element microstrip patch array where symbols are directionally modulated for

Q-PSK modulation. The authors of [166] propose an iterative nonlinear optimization

approach to design the array weights which minimizes the distance between the desired

and the directly modulated symbols in a specific direction. The Fourier transform is

used in [170, 171] to create the optimal constellation pattern for Q-PSK directional
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Figure 6.1: Generic architecture of a directional modulation transmitter, including
the optimal security enhancing antenna weight generator using the proposed algorithms.
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Figure 6.2: RF signal generation using actively driven elements, including high fre-
quency power amplifiers and phase shifters.

modulation. In [158, 172–174] directional modulation is employed along with noise

injection. The authors of [172, 173] utilize an orthogonal vector approach to derive the

array weights in order to directly modulate the data and inject the artificial noise in

the direction of the eavesdropper. The work of [172] is extended to retroactive arrays1

in [174] for a multi-path environment. An algorithm including exhaustive search is used

in [175] to adjust two-bit phase shifters for directly modulating information.
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6.2 Signal and System Model

We consider a communication network with a multi-antenna transmitter denoted by

T , R multi-antenna users denoted by Ur for r = 1, ..., R where the r-th user has Nr

antennas, and a multi-antenna eavesdropper2 denoted by E with Ne antennas, as shown

in Fig. 6.1. In addition, all the communication channels are considered to be quasi-

static block fading. We present two possible architectures for the RF signal generator

block of Fig. 6.1 in Figures. 6.2 and 6.3. In Fig. 6.2, power amplifiers and phase shifters

are used in each RF chain to adjust the gain and the phase of the transmitted signal

from each antenna. In Fig. 6.3, we adapt the technique of [17] to adjust the phase

using parasitic antennas in each RF chain. A parasitic antenna is comprised of a dipole

antenna and multiple reflector antennas. Near field interactions between the dipole and

reflector antennas creates the desired amplitude and phase in the far filed, which can be

adjusted by switching the proper MOSFETs. When using parasitic, the channel from

each parasitic antenna to the far field needs to be LoS, and we need to acquire the CSI of

the fading channel from the far field of each parasitic antenna to the receiving antennas.

For simplicity, we only consider the amplitude and phase of the received signals and

drop ej2πft, which is the carrier frequency part.

After applying the optimal coefficients to array elements, the received signals by Ur and

E are

yUr
= HUrw + nUr

, ∀ r (6.1)

yE = HEw + nE , ∀ r (6.2)

1A retroactive antenna can retransmit a reference signal back along the path which it was incident
despite the presence of spatial and/or temporal variations in the propagation path.

2The same system model and solution holds for multiple colluding single-antenna eavesdroppers.
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where the random variables nUr
and nE denote the additive white Gaussian noise at

Ur and E, respectively. The Gaussian random variables nUr
and nE are indepen-

dent and identically distributed (i.i.d.) with nUr
∼ CN (0, σ2nUr

INr×Nr), and nE ∼
CN (0, σ2nE

INe×Ne), respectively, where CN denotes a complex and circularly symmetric

random variable. The signal yUr
is an Nr×1 vector denoting the received signals by Ur,

yE is an Ne×1 vector denoting the received signals by E, HUr = [h1r , ...,hnr , ...,hNr ]
T is

an Nr×Nt matrix denoting the channel from T to Ur, hnr is an Nt×1 vector containing

the channel coefficients from the transmitter antennas to the n-th antenna of the r-th

user, the channel for all users is HU = [HU1 , ...,HUr , ...,HUR
]T , HE is an Ne×Nt matrix

denoting the channel from T to E, and w is the transmit vector. In directional modu-

lation, the elements of HUrw =
[√
γs1r , ...,

√
γsnr , ...,

√
γsNr

]T
are the induced M -PSK

symbols on the antennas of the r-th user where snr is the induced M -PSK symbol on the

n-th antenna of the r-th user with instantaneous unit energy, i.e., |snr |2 = 1 and γ is the

SNR of the induced symbol. To detect the received symbols, Ur can apply conventional

detectors on each antenna.

To consider the worst case, throughout the chapter, we assume that T knows only HU

while E knows both HU and HE . In the following, we analyze the conditions under

which we can enhance the system security.

6.3 Security analysis of directional modulation

In this section, we discuss the conditions under which the directional modulation can

provide security benefits. We assume that E’s channel is independent from those of

the users, and to consider the worst case, we assume that HE is full rank. Hence, the

element numbers of HEw, i.e., received signals on E’s antennas, are different from those

of HUrw, i.e., received signals on receiver antennas, for r = 1, ..., R. Since w depends

on the symbols and E cannot calculate it, E has to remove HE to estimate w, and

then multiply the estimated w by HU to estimate the symbols. For Ne < Nt, E cannot

estimate HUw, however, when Ne ≥ Nt, E can estimate w as follows

ŵ =
(
HH
EHE

)−1
HH
EyE = w +

(
HH
EHE

)−1
HH
EnE , (6.3)

where ŵ is the estimated w at E. Next, E can multiply ŵ by HU to estimate the signals

at receiver antennas, HUŵ, as

HUŵ = HUw +HU

(
HH
EHE

)−1
HH
EnE . (6.4)
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Through (6.3) to (6.4), E virtually puts itself in the location of the users, since we

assume that E knows the users’ channels HU , to estimate the received signal by them.

This way, E gets access to the secret key, which is observing the signals from users’ point

of view, however, the required process increases the noise at E.

Remark 6.1. Using a large scale array transmitter, it is more probable to satisfy the

condition Ne < Nt. Hence, the directional modulation technique seems to be a good

candidate to enhance the security when the transmitter is equipped with a large scale

array. �

Remark 6.2. Assuming that the legitimate channel is reciprocal, the users can transmit

pilots to T so it can estimate HU . This way, we avoid the additional downlink channel

estimation and the users do not have to send feedback bits to T , hence, E cannot

estimate HU . Assuming that E knows the channel from T to itself, i.e., HE , it can

estimate w for Ne ≥ Nt as in (6.3), but it cannot perform (6.4) to estimate the received

signals on the receiver antennas. �

In the next section, optimal symbol-level precoders for the directional modulation are

designed to enhance the security.

6.4 Optimal Precoder Design for Directional Modulation

In this section, we define the underlaying problems to design the security enhancing

symbol-level precoder for the directional modulation when Ne < Nt and Ne ≥ Nt,

respectively.

6.4.1 The Case of Strong Transmitter (Ne < Nt)

Since Ne < Nt, according to Section 6.3, E cannot estimate w and extract useful in-

formation from yE . In wireless transmission, adaptive coding and modulation (ACM)

is used to enhance the link performance and the channel capacity. In ACM, the trans-

mission power, coding rate, and the modulation order is set according to the channel

signal to noise ratio (SNR) [238]. Based on this, we preserve the SNR of the induced

symbol on the receiver antenna above or equal to a specific level to successfully decode

it. Here, we only focus on the SNR of an uncoded signal since considering SNR of a

coded transmission based on ACM is beyond the scope of this chapter.

To have a convex design problem and avoid an NP-hard problem [239], we separately

consider amplitudes of the in-phase and quadrature-phase parts of the induced M -PSK
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symbol, snr , on the receiver antenna instead of the power of snr . Since the real and

imaginary valued parts of snr may differ in amplitude, and the angle of snr is fixed, we

need to increase the real and imaginary valued parts of snr in the same proportion, not

the same amount. If we show the real and imaginary valued parts of snr as Re (sk,r)

and Im (sk,r), the required in-phase and quadrature-phase thresholds are defined as

√
γRe (snr) ,

√
γIm (snr) . (6.5)

Since |snr |2 = 1, we can see that γ = γRe2 (snr) + γIm2 (snr).

We design the directional modulation precoder to minimize the total transmit power such

that 1) the signals received by the n-th antenna of the r-th user result in a phase equal

to that of snr , and 2) the signals received by the n-th antenna of the r-th user create

in-phase and quadrature-phase signal levels satisfying the thresholds defined in (6.5).

Accordingly, the precoder design problem is defined as

min
w

‖w‖2

s.t. arg
(
hTnr

w
)
= arg (snr) , (6.6a)

Re
(
hTnr

w
)
≥ √

γRe (snr) , (6.6b)

Im
(
hTnr

w
)
≥ √

γIm (snr) , (6.6c)

for r = 1, ..., R and n = 1, ..., N . Due to (6.6a), Re
(
hTnr

w
)
and Im

(
hTnr

w
)
have the

same sign as Re (snr) and Im (snr), respectively. If both sides of (6.6b) or (6.6c) are

negative, the signal level constraints may not be satisfied. Since (6.6a) holds at the

optimal point, Re
(
hTnr

w
)
and Im

(
hTnr

w
)
have the same sign as Re (snr) and Im (snr),

therefore, we can multiply both sides of the signal level constraints in (6.6b) and (6.6c)

by Re(snr) and Im(snr), respectively, to get

min
w

‖w‖2

s.t. arg
(
hTnr

w
)
= arg (snr) , (6.7a)

Re (snr)Re
(
hTnr

w
)
≥ √

γRe2 (snr) , (6.7b)

Im (snr) Im
(
hTnr

w
)
≥ √

γIm2 (snr) . (6.7c)

We can rewrite the phase constraint in (6.7a) as

Re
(
hTnr

w
)
αnr − Im

(
hTnr

w
)
= 0, ∀n, ∀ r, (6.8)

where αnr = tan (snr). Since tan(·) repeats after a π radian period, symbols with

different phases can have the same tan value, e.g., tan
(
π
4

)
= tan

(
3π
4

)
. Therefore,
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replacing (6.7a) with (6.8) creates ambiguity. To avoid this, we can add the constraints

Re (snr)Re
(
hTnr

w
)
≥ 0,

Im (snr) Im
(
hTnr

w
)
≥ 0, (6.9)

to the design problem (6.7) to avoid ambiguity. Interestingly, constraints (6.9) are

already present in (6.7b) and (6.7c). Note that (6.8) and (6.9) together are equivalent

to (6.6a), so the required condition to go from (6.6) to (6.7) still hold. Putting together

the constraints (6.8), (6.7b), and (6.7c) for all the users, (6.7) is written into the following

compact form

min
w

‖w‖2

s.t. ARe (HUw)− Im (HUw) = 0, (6.10a)

Re (S)Re (HUw) ≥ √
γ sr, (6.10b)

Im (S) Im (HUw) ≥ √
γ si, (6.10c)

where S = diag (s), s is an NU × 1 vector containing all the intended M -PSK symbols

for the users with NU =
∑R

r=1Nr, sr = Re (s)◦Re (s), si = Im (s)◦Im (s), A = diag (α),

α = [α11 , ..., αnr , ..., αNR
]T .

To remove the real and imaginary valued parts from (6.10), we can use HU = Re (HU )+

iIm (HU ) and w = Re (w) + iIm (w) presentations to separate the real and imaginary

valued components of HUw as

HUw =Re (HU )Re (w)− Im (HU ) Im (w)

+ i [Re (HU ) Im (w) + Im (HU )Re (w)] , (6.11)

which leads into the following expressions

Re (HUw) = HU1w̃, Im (HUw) = HU2w̃, (6.12)

where w̃ =
[
Re
(
wT
)
, Im

(
wT
)]T

,HU1 = [Re (HU ) ,−Im (HU)], andHU2 = [Im (HU) ,Re (HU)].

Also, it is easy to see that ‖w̃‖2 = ‖w‖2.
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Using the equivalents of Re (HUw) and Im (HUw) derived in (6.12), (6.10) transforms

into

min
w̃

‖w̃‖2

s.t. (AHU1 −HU2) w̃ = 0, (6.13a)

Re (S)HU1w̃ ≥ √
γ sr, (6.13b)

Im (S)HU2w̃ ≥ √
γ si. (6.13c)

Proposition 6.3. A necessary condition for the existence of the optimal precoder for the

directional modulation is Nt >
r
′

2 where r
′

is the rank of AHU1 −HU2. If AHU1 −HU2

is full rank, the necessary condition becomes Nt >
NU

2 , which means that the number of

transmit antennas needs to be more than half of the total number of receiver antennas.

Proof. Constraint (6.13a), shows that w̃ should lie in the null space of the matrix

AHU1 −HU2 . If the SVD of AHU1 −HU2 is shown by UΣVH , the orthonormal ba-

sis for the null space of AHU1 −HU2 are the last 2Nt − r
′

columns of the matrix V

with r
′

being the rank of AHU1 −HU2 [240]. If AHU1 −HU2 is full rank, we have

r
′

= NU . For (6.13) to be feasible, the mentioned null space should exist, meaning that

2Nt − r
′

> 0.

Provided that the necessary condition of Proposition 6.3 is met, a sufficient condition can

be proposed from a geometrical point of view; namely that the feasible set of (6.15) is

not empty. This holds if and only if the intersection of the linear spaces in the constraint

set constitutes a non-empty set.

According to Proposition 6.3, the null space of AHU1 −HU2 spans w̃ as w̃ = Eλ where

E =
[
vr′+1, ...,v2Nt

]
, λ =

[
λ1, ..., λ2Nt−r′

]
. (6.14)

By replacing w̃ with Eλ, (6.13) boils down into

min
λ

‖λ‖2

s.t. Re (S)HU1Eλ ≥ √
γ sr,

Im (S)HU2Eλ ≥ √
γ si, (6.15)
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which can be written into the following compact form3

min
λ

‖λ‖2

s.t. Bλ ≥ √
γsT , (6.16)

where

B =

[
Re (S)HU1E

Im (S)HU2E

]
, sT =

[
sTr , s

T
i

]T
. (6.17)

Problem (6.16) is a convex linearly constrained quadratic programming problem and

can be solved efficiently using standard convex optimization techniques. The design

problem (6.18) needs to be solved once for each set of the symbol, sT . Using optimization

packages such as CVX to solve (6.16) can be time consuming, hence, we propose two

other approaches to solve (6.16).

6.4.1.1 Iterative solution

In this part, we propose an iterative approach to solve (6.16). To do so, first, we define

an auxiliary real valued vector denoted by u to change the inequality constraint of (6.16)

into equality as

min
λ,u

‖λ‖2

s.t. Bλ =
√
γsT + u, u ≥ 0. (6.18)

Using the penalty method [224], we can write (6.16) as an unconstrained optimization

problem

min
λ,u≥0

‖λ‖2 + η‖Bλ− (
√
γsT + u)‖2, (6.19)

which is equivalent to (6.16) when η → ∞. We can solve (6.19) using an iterative

approach by first optimizing u and considering λ to be fixed, and then optimizing u and

considering λ to be fixed. In the following, we mention these two optimization problems

and their closed-form solutions.

When optimizing over u and keeping λ fixed, the optimization problem is

min
u≥0

‖u− (Bλ−√
γsT )‖2. (6.20)

3The design problem (6.16) can be extended to M-QAM modulation [182] by changing the constraint
into equality which is beyond the scope of this thesis.
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The closed-form solution of (6.20) is given in Lemma 6.4.

Lemma 6.4. The closed-form solution of (6.20) is u⋆ =
(
Bλ−√

γsT
)
+
.

Proof. To solve (6.20), we need to minimize the distance between the vectors u and
(
Bλ−√

γsT
)
. Since λ is fixed, the elements of

(
Bλ−√

γsT
)
are known. If an element

of Bλ−√
γsT is nonnegative, we pick up the same value for the corresponding element

of u. If an element of Bλ−√
γsT is negative, we pick up zero for the corresponding

element of u since u ≥ 0. This is equivalent to picking up u as

u⋆ = (Bλ−√
γsT )+. (6.21)

When optimizing over λ and keeping u fixed, the optimization problem is

min
λ

‖λ‖2 + η‖Bλ− (
√
γsT + u)‖2. (6.22)

The closed-form solution of (6.22) is given in Lemma 6.5.

Lemma 6.5. The closed-form solution of (6.22) is λ
⋆ =

(
I

η
+BTB

)−1
BT (a+ u).

Proof. First, we expand (6.22) as

f (λ) =‖λ‖2 + η‖Bλ− (γsT + u)‖2

=λ
T
(
I+ ηBTB

)
λ− 2ηλT

(
BTγsT +BTu

)

+ η(
√
γsT + u)T (

√
γsT + u) . (6.23)

Taking the derivative of f (λ) with respect to λ yields

λ
⋆ =

(
I

η
+BTB

)−1

BT (a+ u) . (6.24)

Since BTB is positive semidefinite, addition of I

η
to BTB for η 6= ∞ leads into diagonal

loading of BTB, which makes I

η
+BTB invertible.

Using the closed-form solutions mentioned in Lemmas 6.4 and 6.5, we propose Algo-

rithm 2 to solve (6.19), where the matrix inversion in (6.24) needs to be calculated once

per symbol transmission.

Lemma 6.6. Algorithm 2 monotonically converges to the optimal point.
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Algorithm 2 Iterative approach to solve (6.19)

1: Pick up λn ∈ IR2Nt and η ∈ (0,∞];
2: Substitute λn in (6.21) to get un;
3: Substitute un in (6.24) to get λn+1;
4: if ‖λn − λn+1‖ ≥ ǫ then
5: n = n+ 1;
6: Go to 1;
7: end if

Proof. Let’s denote the objective function in (6.19) by f (λ,u). Assume λ0 and u0

are initial values of f (λ,u). Using λ0 in Algorithm 2 gives us u⋆ and λ
⋆ from (6.21)

and (6.24), respectively, which results in

f (λ⋆,u⋆) ≤ f (λ0,u
⋆) ≤ f (λ0,u0) . (6.25)

Since fixing λ, (6.20), or u, (6.22), leads into a convex function, each iteration in Algo-

rithm 2 monotonically gets closer to the optimal point. This along with the fact that

f (λ,u) is lower bounded at zero, guarantees the convergence of Algorithm 2 to the

optimal point.

6.4.1.2 Non-negative least squares

We can derive λ using the constraint of (6.18) as

λ = B† (
√
γsT + u) . (6.26)

Replacing the λ derived in (6.26) back into the objective of (6.18) yields

min
u

∥∥∥B†u+
√
γB†sT

∥∥∥
2

s.t. u ≥ 0, (6.27)

which is a non-negative least squares optimization problem. Since B† and
√
γB†sT are

real valued, we can use the method of [241] or its fast version [242] to solve (6.27). Multi-

ple loops exist in algorithm used to solve non-negative least squares problem which their

iterations depend on the problem parameters, hence, the complexity of the algorithm

may not be derived analytically [241]. However, we present numerical results in Sec-

tion 6.5 to evaluate the computational time of this algorithm. Similar to Section 6.4.1.1,

B† needs to be calculated once per symbol transmission.
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6.4.2 The Case of Strong Eavesdropper (Ne ≥ Nt)

In this case, as (6.4) shows, E can estimate the signals on receiver antennas, however,

this process enhances the noise at E. This capability of E comes from the fact that it

has more antennas than T and owns global CSI knowledge, which puts E in a superior

position compared to T from hardware and CSI knowledge point of view. Nevertheless,

there is still one possible way to enhance the security. Ignoring the noise, the estimated

symbols by E are equal to those induced on receiver antennas, therefore, we can design

the precoder such that the SNR of the induced snr becomes equal to the required level

for successful decoding, which is defined by ACM. However, due to enhanced noise at

E, the SNR level at E is lower than that of the users, which may prevent successful

decoding of the M -PSK symbol at E. Based on this, we can minimize the sum power of

the received signals at the users, ‖HUw‖2, which is the same as the sum power of the

estimated signals at E. Since the power of the received signal on each receiving antenna

is constrained, minimizing the sum power leads into minimizing the power of the signal

on each receiving antenna. This results in a sort of “security fairness” among the users.

Accordingly, the precoder design problem can be defined as

min
w

‖HUw‖2

s.t. arg
(
hTnr

w
)
= arg (snr) , (6.28a)

Re (snr)Re
(
hTnr

w
)
≥ √

γRe2 (snr) , (6.28b)

Im (snr) Im
(
hTnr

w
)
≥ √

γIm2 (snr) , (6.28c)

for r = 1, ..., R and n = 1, ..., N . Following a similar procedure as in Section 6.4.1, (6.28)

can be transformed to

min
w

‖HUw‖2

s.t. ARe (HUw)− Im (HUw) = 0,

Re (S)Re (HUw) ≥ √
γ sr,

Im (S) Im (HUw) ≥ √
γ si. (6.29)

Using (6.11) to (6.12), we expand ‖HUw‖2 as

‖HUw‖2 = w̃THT
U1
HU1w̃ + w̃THT

U2
HU2w̃

= w̃T
(
HT
U1
HU1 +HT

U2
HU2

)
w̃, (6.30)
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which along with (6.12) helps us to convert (6.29) into

min
w̃

w̃T
(
HT
U1
HU1 +HT

U2
HU2

)
w̃

s.t. (AHU1 −HU2) w̃ = 0,

Re (S)HU1w̃ ≥ √
γ sr,

Im (S)HU2w̃ ≥ √
γ si. (6.31)

For (6.31) to be feasible, w̃ has to be in the null space of AHU1 −HU2 . Hence, we can

write w̃ as a linear combination of the null space basis of AHU1 −HU2 which yields

w̃ = Eλ, where E and λ are as in (6.14). This way, (6.31) boils down to4

min
λ

λ
TET

(
HT
U1
HU1 +HT

U2
HU2

)
Eλ

s.t. Bλ ≥ √
γsT , (6.32)

where B and sT are as in (6.17). Similar as in Section 6.4.1, in the following, we propose

and iterative algorithm and non-negative least squares formulation to solve (6.32).

6.4.2.1 Iterative solution

By introducing the new variable u, we can rewrite (6.32) as

min
λ,u

λ
TET

(
HT
U1
HU1 +HT

U2
HU2

)
Eλ

s.t. Bλ =
√
γsT + u. (6.33)

We can adapt Algorithm 2 to solve (6.32) by replacing the solution to λ
⋆ as

λ
⋆ =

(
ET
(
HT
U1
HU1 +HT

U2
HU2

)
E

η
+BTB

)−1

BT (a+ u) , (6.34)

which is derived using a similar procedure as in Section 6.4.1.1. Similar as in (6.24), the

matrix inversion in (6.34) needs to be calculated only once per symbol transmission.

6.4.2.2 Non-negative least squares

Assuming that HU1 and HU2 are non-singular, the matrix ET
(
HT
U1
HU1 +HT

U2
HU2

)
E is

positive definite, hence, its Cholesky decomposition ET
(
HT
U1
HU1 +HT

U2
HU2

)
E = LLT

4The design problem (6.32) can be extended to M-QAM modulation by changing the constraint into
equality which is beyond the scope of this thesis.
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exists and can be used in order to rewrite (6.33) as

min
λ,u

∥∥LTλ
∥∥2

s.t. Bλ =
√
γsT + u. (6.35)

We can derive λ using the constraint of (6.35) as λ = B† (√γsT + u
)
and replace it

back into the objective of (6.35) to get

min
u

∥∥∥LTB†u+ LTB†√γsT
∥∥∥
2

s.t. u ≥ 0, (6.36)

which is a non-negative least squares optimization problem. Since LTB† and LTB†√γsT
are real valued, we can use [241, 242] to solve (6.36) in an efficient way.

6.5 Simulation Results

In this part, we present different simulation scenarios to analyze the security and the

performance of the directional modulation scheme for different precoding designs, and

compare them with a benchmark scheme. In all simulations, channels are considered to

be quasi static block Rayleigh which are generated using i.i.d. complex Gaussian random

variables with distribution∼ CN (0, 1) and remain fixed during the interval that the M -

PSK symbols are being induced at the receiver. Also, the noise is generated using i.i.d.

complex Gaussian random variables with distribution∼ CN (0, σ2), and the modulation

order used in all of the scenarios is uncoded 8-PSK modulation. Here, we simulate each

precoder for both strong transmitter, Ne < Nt, and strong eavesdropper, Ne ≥ Nt, cases.

This way, we show the benefit of the power minimizer precoder in the strong transmitter

case and the signal level minimizer precoder in the strong eavesdropper case. We use

the acronym “min” instead of minimization in the legend of the figures. We consider

the ZF at the transmitter [23] as the benchmark scheme since both our design and the

benchmark scheme use CSI knowledge at the transmitter to design the precoder.

In the benchmark scheme, ZF precoder is applied at the transmitter to remove the

interference among the symbol streams. The received signals at users and E in the

benchmark scheme are

yU = HUWsβ + n
U
, (6.37)

yE = HEWsβ + n
E
, (6.38)
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where W = HH
U

(
HUH

H
U

)−1
is the precoding vector, s contains the symbols, and β

is the amplification factor for the symbols which acts similar as
√
γ in the directional

modulation scheme. For a fair comparison, we pick up the same values for
√
γ and β in

the simulations.

When using the benchmark, E has two ways to estimate the symbols. In the first way,

given that Ne ≥ Nt, E can follow a similar approach as in Section 6.3 to estimate W as

follows

Ŵ =
[
HH
EHE

]−1
HH
EyE

= W +
[
HH
EHE

]−1
HH
EnE , (6.39)

then, it can estimate the symbols by calculating HUŴ. In the second way, E can use

the knowledge of HU to calculate W and directly estimate sβ as

ŝβ =
[
(HEW)HHEW

]−1
(HEW)HyE

= sβ +
[
(HEW)HHEW

]−1
(HEW)HnE (6.40)

where ŝβ is the estimated sβ at E. SinceHEW isNe×NU ,
[
(HEW)HHEW

]−1
(HEW)HHEW =

I for Ne ≥ NU . Hence, in the benchmark scheme, E can derive the precoder and es-

timate the symbols when Ne ≥ NU . On the other hand, since our designed precoder

depends on both the channels and symbols, E cannot derive the precoder and estimate

the symbols when Ne ≥ NU . Broadly speaking, the base station has usually more anten-

nas than the users, hence, satisfying the condition Ne < Nt is more likely than Ne < NU ,

specially with a large scale array. Therefore, it is more probable to preserve the security

in our design compared to the benchmark scheme. Furthermore, by comparing (6.4)

and (6.40), we see that E has to multiply Ŵ by HU in our design whereas E does need

to do this in the benchmark scheme.

In the first scenario, the effect of number of transmitter antennas, Nt, on transmitter’s

consumed power and the SER at users and E is investigated for power and signal level

minimization precoders in (6.6) and (6.28), and the benchmark scheme. The average

consumed power, ‖w‖2, with respect to Nt is shown in Fig. 6.4 for NU = 8, 10. As

Nt increases, the power consumption of our design with power minimization precoder

converges to that of other two schemes. The power consumed by power minimization

precoder has the largest difference with other two schemes, almost 6 dB, for Nt = NU .

The signal level minimization precoder has almost the same power consumption as the

benchmark scheme. When the difference between Nt and NU increases, all three schemes

consume considerably less power.
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Figure 6.4: Average consumed power with respect to Nt for our designed precoders
and the benchmark scheme when γ = 15.56 dB and β2 = 15.56 dB.

The average total SER at users and the average SER at E with respect to Nt are

presented in Fig. 6.5. Our designed precoders, power and signal level minimization, cause

considerably more SER at E compared to the benchmark scheme for a long range of Nt.

Furthermore, as Ne increases, there are cases, e.g., Nt = 16, that the error caused at E

by the benchmark scheme decreases while the error caused by our designed precoders

remains almost fixed. As Fig. 6.6 shows, our design with signal level minimization

precoder and the benchmark scheme keep users’ SER constant since they preserve a

constant SNR for the received signals on receiver antennas. As mentioned earlier, when

the SNR of the received signal is fixed, E may not successfully decode the symbols since

it suffers from enhanced noise and in contrast to the users, its SNR is probably lower

than the required level. Since the directional modulation with signal level minimization

imposes more error on E and consumes the same power as the benchmark scheme, it is

the preferable choice for secure communication when Ne ≥ Nt. Comparing Figures. 6.4

and 6.5 shows when the difference between Nt and NU goes above a specific amount,

the power and signal level minimization precoders converge in both power consumption

and the SER at E and users.

The instantaneous power of the induced symbols to average noise power in shown in

Fig. 6.7 for power and signal level minimizer precoders when Ne ≥ Nt. As we see, even

with E being able to estimate the symbols, the SNR at E is lower than the users since E

has to perform extra process to estimate the symbols which increases the noise. On the

other hand, when using the power minimizer precoder, the SNR at E may go over the

threshold value while for the signal level minimizer precoder, the SNR at E is always
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Figure 6.5: Average total SER at the users and average SER at E with respect to Nt

for our designed precoders and the benchmark scheme when NU = 10, γ = 15.56 dB,
and β2 = 15.56 dB.
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Figure 6.6: Average ‖HUw‖ for our designed precoders and the benchmark scheme
when γ = 15.56 dB, and β2 = 15.56 dB.

kept at a fixed level below the required threshold, which imposes the maximum SER at

E.

In the second scenario, T ’s power consumption, total SER at the users, and SER at E

are plotted with respect to total receiving antennas, NU . Fig. 6.8 shows the average

consumed power with respect to NU . In contrast to Fig. 6.4, increasing NU decreases

the degrees of freedom and increases the power consumption. As NU approaches Nt,

the difference between the power consumed by the power minimization precoder and the

other two schemes increases.
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Figure 6.7: Instantaneous symbol power to average noise power for power and signal
level minimization precoders when Nt = 10, Nrt

= 10, Ne = 16 and γ = 15.56 dB.
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Figure 6.8: Average consumed power with respect to NU for our designed precoders
and the benchmark scheme when γ = 15.56 dB, and β2 = 15.56 dB.

We investigate the effect of NU on average total SER at the users and the average SER

at E for all the schemes in Fig. 6.9. As NU increases, the SNR provided by the power

minimization precoder goes more above the threshold. This reduces the average SER

at both users and E. On the other hand, regardless of difference between Nt and NU ,

our design with signal level minimization precoder always preserves the SER at E in

the maximum value. When Nt > NrK , our design imposes more SER at E compared to

the benchmark scheme since Ne ≥ NU is required for E to estimate the symbols in the

benchmark scheme. As NU approaches Nt, the SER imposed on E by the signal level

minimization precoder and the benchmark scheme get closer.



Chapter 6. Secure Directional Modulation via Symbol-Level Precoding 118

10 11 12 13 14 15 16

N
U

10-3

10-2

10-1

100

A
ve

ra
g

e 
to

ta
l s

ym
b

o
l e

rr
o

r 
ra

te

E, signal level min
E, power min
E, benchmark
User, signal level min
User, benchmark
User, power min

N
e
=16

N
e
=18

Figure 6.9: Average SER versus NU for our designed precoders and the benchmark
scheme when Nt = 16, γ = 15.56 dB, and β2 = 15.56 dB.
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Figure 6.10: Average consumed power with respect to required SNR for our designed
precoders and the benchmark scheme when NU = 19.

The next scenario inspects the effect of the required SNR for the received signals, γ, on

T ’s consumed power and the SER at users and E. The difference between the power

consumed by the power minimizer precoder and the other two schemes in low SNRs is

more than that of high SNRs. The average total SER at users and the average SER

at E with respect to γ is shown in Fig. 6.11. As SNR increases, the difference between

the SER imposed on E by our design and the benchmark scheme increases, where the

difference is the most for Ne = 20. The difference between the average total SER at

the users for power and signal level minimization precoders remains almost constant as

γ increases. The effect of low-density parity-check (LDPC) codes on the average total
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Figure 6.11: Average SER versus required SNR for our designed precoders and the
benchmark scheme when Nt = 20 and NU = 19.
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Figure 6.12: Average BER versus required SNR for our designed precoders and the
benchmark scheme when Nt = 6, NU = 6, and Ne = 7.

bit error rate (BER) at the users and the average BER at E is shown in Fig. 6.12. For a

long range of SNRs, the usage of the LDPC at the users decreases the BER more than

that of E.

In the last scenario, we investigate the computational time of the proposed solutions for

the optimal directional modulation precoder design. Fig. 6.13 shows the average con-

sumed time with respect to system dimensions when designing the optimal precoders

using CVX package, iterative algorithm, and the non-negative least squares formulation

of Section 6.4.1.2. Both iterative algorithm and non-negative least squares consume
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Figure 6.13: Average consumed time with respect to number of transmit and receive
antennas to design the power minimization precoder using CVX package, iterative
algorithm, and non-negative least squares formulation when γ = 15.56 dB and ǫ = 10−3.

considerably less time than CVX. Also, the average computation time of iterative al-

gorithm and non-negative least squares problem get closer as we move toward larger

system dimension.

6.6 Conclusions

We considered enhancing the security in a multi-user MIMO wireless network where a

multiple-antenna eavesdropper can potentially intercept the wireless transmission. We

used the directional modulation technique to follow a signal processing paradigm in

order to improve the security. The security is enhanced by increasing the SER at the

eavesdropper without using the eavesdropper’s CSI for M -PSK modulation, which is a

practical physical layer security scenario. In the directional modulation, the phase of

the received signal at the destination depends on both the channel and symbols; hence,

the receiver gets the phase of the intended M -PSK symbols while the eavesdropper gets

different phases. Our analysis showed that when the eavesdropper has less antennas than

the transmitter, the eavesdropper cannot get useful information from the received signal.

On the other hand, when the eavesdropper has more antennas than the transmitter, it

has to remove the effect of its own channel to estimate the precoding vector and then

multiply the estimated precoder by the users’ channel. This way, the eavesdropper

can estimate the received signal by the users; however, these operations enhance the

noise at the eavesdropper. This puts the users in a superior position compared to the

eavesdropper since the users can directly detect the symbols without requiring extra
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processes as in the eavesdropper. We proposed the power minimization for the case that

the eavesdropper has less antennas than the transmitter and the SNR minimization

precoder for the case than the eavesdropper has more antennas than the transmitter.

More specifically, the SNR minimization precoder keeps the SNR at the eavesdropper

below the required level for successful decoding. We developed an iterative algorithm and

non-negative least squares formulation as fast ways to calculate the precoders. Further

analysis on the security of the conventional precodes revealed that the eavesdropper can

estimate the users’ signals in this type of precoding when it has more antennas than

the users. On the other hand, the eavesdropper has to have more antennas than the

transmitter to estimate the symbols in the directional modulation precoding. Generally,

the transmitter has more antennas than the users; as a result, it is more likely to enhance

the security using the directional modulation precoding. This benefit comes from that

fact that the precoder in the directional modulation depends on both the symbols and

the channels, consequently, the eavesdropper cannot calculated it. On the other hand,

the conventional precoder depends only on the channel CSI and can be calculated by

the eavesdropper.

The simulation results showed when the eavesdropper has less antennas than the trans-

mitter, the SNR minimization precoder causes more SER at the eavesdropper at the

expense of more power consumption. As the difference between the antennas of the

transmitter and users increases, the power and SNR minimization precoders consume

almost the same power. Furthermore, the simulations verified that the SNR minimiza-

tion precoder keeps the SNR level at the eavesdropper below the required threshold for

successful decoding. The results showed that compared to the conventional precoder,

the directional modulation precoders cause more SER at the eavesdropper and consume

less power in most of the cases. This is due to the fact that our precoders depend on

both the CSI knowledge and the symbols while the conventional precoder only depends

on the CSI knowledge and the eavesdropper can calculate it.





Chapter 7

Conclusions and Future Work

7.1 Conclusion Summary

Physical layer security has shown to be a promising technique to strengthen the security

of wireless networks and can complement the higher level network security approaches

such as cryptography. The concept of keyless information-theoretic physical layer se-

curity proposed by Wyner [5] has undergone an enormous amount of research and has

been extended to different types of direct link and cooperative wireless communica-

tion networks. In addition, the researchers have employed signal processing approaches

to enhance the security. We reviewed the literature of both information-theoretic and

signal processing paradigms in Chapter 2. This thesis has focused on both information-

theoretic and signal processing approaches to improve the security of wireless commu-

nication networks.

We considered maximizing the sum secrecy rate in a satellite communications network

in Chapter 3. The studied SATCOM network employs network coding to initiate the

bidirectional data exchange. Network coding principle has been known to increase the

throughput of bidirectional SATCOM. We studied the use of XOR network coding to

improve the sum secrecy rate of bidirectional SATCOM. We showed through the anal-

ysis that if the RL has positive secrecy rate, the XOR network coding can help having

a perfectly secure FL transmission for the corresponding message. The beamforming

vector as well as the optimal time allocation between the RL and the FL were optimized

to improve the secrecy rate in the considered SATCOM network. We compared the sum

secrecy rate of the XOR network coding with the conventional scheme, which operates

without network coding, using realistic system parameters. Our results demonstrated

that the network coding based scheme outperforms the conventional scheme substan-

tially, especially when the legitimate users and the eavesdroppers are not close.

123
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Another focus of this thesis was studying the secrecy rate in wiretap interference channels

in Chapter 4 and investing the effect of interference on the secrecy rate. In this direction,

we studied the effect of interference on improving the secrecy rate in a two-user wireless

interference network where signals had a Gaussian distribution. We developed channel

dependent expressions for both altruistic and egoistic scenarios to define the proper

range of transmission power for the interfering user, namely user 2, in order to sustain

a positive secrecy rate for the other user, namely user 1. Closed-form solutions were

obtained in order to perform joint optimal power control for both users in the altruistic

and egoistic scenarios. It was shown that by decreasing the required QoS at user 2’s

destination, the secrecy rate in the interference channel improves and approaches to the

single-user case. Moreover, to fairly compare our scheme with the benchmark, the ratio

of the secrecy rate over the optimal consumed power by user 1 was introduced as a new

metric called “secrecy energy efficiency”, in order to take into account both the secrecy

rate and the consumed power. It was shown that in comparison with the single-user

case, the secrecy energy efficiency is considerably higher in the interference channel for

a wide range of QoS at user 2’s destination.

Since the energy efficiency is an important issue in wireless networks and is vital for

battery operated devices, we performed a joint study on secrecy rate and energy efficiency

in Chapter 5. In this chapter, we studied the secrecy energy efficiency and its trade-off

with the secrecy spectral efficiency in MISO and SISO wiretap channels. An optimal

beamformer was designed to maximize secrecy energy efficiency for the cases with and

without considering the minimum required secrecy spectral efficiency at the receiver

in a power limited system. We saw that as the minimum required secrecy spectral

efficiency increases, the performance of the optimal beamformer and the ZF beamformer,

the benchmark scheme, designs gets closer. Furthermore, as the number of antennas

decreases, the performance gap between the optimal and the ZF design increases. It

was observed that there is a specific amount of secrecy spectral efficiency below which

increasing secrecy spectral efficiency leads to higher secrecy energy efficiency, and above

which the opposite trend occurs. Depending on the power value corresponding to the

optimal secrecy energy efficiency, increasing secrecy spectral efficiency can increase or

decrease the secrecy energy efficiency. In addition, it was shown that adding more

antennas to the transmitter side increases secrecy energy efficiency considerably and

sustains the optimal secrecy energy efficiency for a longer range of minimum required

secrecy spectral efficiency.

Implementing the information-theoretic secrecy rate in real work communication net-

works has several challenges. One major drawback is that in order to design the system

parameters such as the optimal power or optimal beamformer, the perfect or partial

CSI of the eavesdropper is required. However, it may be impossible to get the CSI of
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an eavesdropper in practice, especially, when the eavesdropper is passive. In addition,

implementing the secrecy rate requires transmitting lower than the achievable rate and

the data need to follow a Gaussian distribution. To handle these challenges, we focused

on using the signal processing paradigm to enhance the security in the second part of

this thesis. In Chapter 6, we used the directional modulation technology and followed

a signal processing approach to enhance the security over multiuser MIMO channels

in the presence of a multi-antenna eavesdropper. When using directional modulation,

we showed that the eavesdropper cannot estimate the symbols if it has fewer antennas

than the transmitter. On the other hand, when it has more antennas than the trans-

mitter, additional processing is required before estimating the symbols which enhances

the noise, whereas the users can directly apply conventional detectors. In addition, we

derived the necessary condition for the feasibility of the optimal precoder for the direc-

tional modulation. We proposed an iterative algorithm and non-negative least squares

formulation to reduce the design time of the optimal precoders. The results showed that

in most of the cases our designed directional modulation precoders impose a considerable

amount of symbol errors on the eavesdropper compared to the conventional precoding.

This is due to the fact that our precoders depend on both the CSI knowledge and the

symbols while the conventional precoder only depends on the CSI knowledge and the

eavesdropper can calculate it. The simulations showed that regardless of the number of

antennas, the signal level minimization precoder keeps the SER at the eavesdropper on

the maximum value, and it consumes the same power as the power minimization pre-

coder when the difference between the number of transmit and receive antennas is above

a specific value. Simulations showed that LDPC coding for the signal level minimization

precoder improves the BER more at the users than the eavesdropper for a long range

of SNRs. In addition, the numerical examples showed that both the power and signal

level minimization precoders outperform the benchmark scheme in terms of the power

consumption and/or the imposed error at the eavesdropper.

7.2 Future Work

In the directional of the information-theoretic secrecy rate, the contribution of Chap-

ter 3 can be extended to the case where users and/or the eavesdroppers have multiple

antennas. Furthermore, friendly external jammers can be considered to improve the

secrecy rate when the satellite broadcasts the XORed content.

The research direction in enhancing the wireless security using signal processing paradigm

seems to be a promising direction. In particular, the eavesdropper CSI is not required

in this scheme. Furthermore, in contrast to the information-theoretic secrecy rate, the
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signal processing paradigm improves the security without reducing the achievable rate

and the data do not have to follow a Gaussian distribution. As an improvement, the

artificial noise can be incorporated into the directional modulation scheme to improve

the security when the transmitter has fewer number of antennas than the eavesdropper.



Appendix A

Proof of Theorem 3.3

Proof. In the objective function of problem (3.40), only the second argument of the

“min” operators, FL secrecy rates, include the beamforming vector. Hence, we focus on

these terms in our optimization. Using contradiction, we shall show that ‖w⋆
1‖2 = βPS

and ‖w⋆
2‖2 = (1− β)PS must hold for the optimal solutions w⋆

1 and w⋆
2. Assume that

w⋆
1 and w⋆

2 are the optimal solutions to (3.40) and satisfy ‖w1‖2 < βPS and ‖w2‖2 <
(1− β)PS , then there exist constants α1 > 1 and α2 > 1 that satisfy ‖ŵ⋆

1‖2 = βPS and

‖ŵ⋆
2‖2 = (1− β)PS where ŵ⋆

1 = α1w
⋆
1 and ŵ⋆

2 = α2w
⋆
2. Replacing w⋆

1 by ŵ⋆
1 and w⋆

2

by ŵ⋆
2 in the FL secrecy rates of the objective in (3.40), we get

f1 (α1) = t2 log

(
σ2E2

σ2U2

σ2U2
+ α2

1|hTS,U2
w⋆

1|2
σ2E2

+ α2
1|hTS,E2

w⋆
1|2

)
,

f2 (α2) = t3 log

(
σ2E1

σ2U1

σ2U1
+ α2

2|hTS,U1
w⋆

2|2
σ2E1

+ α2
2|hTS,E1

w⋆
2|2

)
. (A.1)

Also, we assume that in the RL and FL of each user the secrecy rate is nonzero which

translates into

σ2E2

(
σ2U2

+ |hTS,U2
w1|2

)
> σ2U2

(
σ2E2

+ |hTS,E2
w1|2

)
, ∃w1, (A.2)

σ2E1

(
σ2U1

+ |hTS,U1
w2|2

)
> σ2U1

(
σ2E1

+ |hTS,E1
w2|2

)
, ∃w2. (A.3)

According to the conditions in (A.2) and (A.3), we can see that f1(α) and f2(α) are

monotonically increasing functions in the parameters α1 and α2. This contradicts that

w⋆
1 and w⋆

2 are the optimal solutions. Since adjusting the RL and FLs transmission

time balances the RL and FL secrecy rates, the RL bottleneck does not limit the FL

secrecy rate increment. Hence, the power constraint should be active. This completes

the proof.
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Appendix B

Proof of Theorem 4.1

For the objective function in (4.12) to be positive, the following condition must hold

log2

(
1 +

P1|hU1,D1 |2

P2|hU2,D1 |2 + σ2n

)

− log2

(
1 +

P1|hU1,E |2

P2|hU2,E |2 + σ2n

)
> 0

⇒ P1|hU1,D1 |2

P2|hU2,D1 |2 + σ2n
>

P1|hU1,E |2

P2|hU2,E |2 + σ2n

⇒




P2 >

σ2
n

(
|hU1,E|2−|hU1,D1 |2

)

B
B > 0

P2 <
σ2
n

(
|hU1,E|2−|hU1,D1 |2

)

B
B < 0

(B.1)

where B = |hU1,D1 |2|hU2,E |2 − |hU2,D1 |2|hU1,E |2.
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Appendix C

Proof of Theorem 4.4

In order to find the optimal P2 for (4.19), we analyze the derivative of the objective

function in (4.19). The derivative is defined at the top of next page in (C.61) where

a = Pmax1 |hU1,D1 |2, b = |hU2,D1 |2, c = Pmax1 |hU1,E |2, and d = |hU2,E |2. According to the

sign of the derivative, the optimal P2 can be found. The denumerator in (C.61) is already

positive, so the sign of (C.61) directly depends on the sign of the numerator. The numer-

ator is a quadratic equation. According to the sign of the discriminant of the quadratic

equation [243, Section 5.1], denoted by ∆ = 4abcdσ2n (b− d)
[
−d
(
a+ σ2n

)
+ b

(
c+ σ2n

)]
,

the status of the roots can be defined. The sign of the discriminant can be defined as

1. If (b− d)
[
−d
(
a+ σ2n

)
+ b

(
c+ σ2n

)]
< 0, ∆ < 0.

2. If (b− d)
[
−d
(
a+ σ2n

)
+ b

(
c+ σ2n

)]
> 0, ∆ > 0.

Using the sign of ∆ as well as the sign of the P2’s coefficients in the quadratic equation

which we denote them from highest order to constant as a′, b′ and c′ in (C.61), the sign

of the derivative can be defined and consequently the optimal value for P2, P
⋆
2 , can be

found as follows:

1. If ∆ < 0, no root exists for the numerator in (C.61) leading to the following cases:

∂OF

∂P2
=
bd (bc− ad)P 2

2 + 2b (−a+ c) dσ2nP2 + σ2n
(
cdσ2n − a

(
−cd+ b

(
c+ σ2n

)))

(σ2n + bP2)
2(c+ σ2n + dP2)

2

(C.61)
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derivative.
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derivative.
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(e) Positive, negative, posi-
tive derivative.
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(f) Negative, positive, nega-
tive derivative.
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(g) Negative, positive, nega-
tive derivative.
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(h) Negative, positive, nega-
tive derivative.

Figure C.1: Different cases for the sign of the derivative in (C.61).

(a) a′ > 0, then the derivative is strictly positive, as shown in Fig. C.1a, and is

monotonically increasing, so the highest value in the feasible set is the P ⋆2 .

(b) a′ < 0, then the derivative is strictly negative, as shown in Fig. C.1b, and

is monotonically decreasing, so the lowest possible value in the feasible set is

the P ⋆2 .

2. If ∆ > 0, there exist two roots (two critical points for the objective function

in (4.19)) for the derivative leading to the following cases:

(a) Only one of the roots is positive. This happens when the product of the

roots [243, Section 5.1], c
′

a′
, is negative in the following cases:

i. a′ > 0 and c′ < 0, as shown in Fig. C.1c. In this case, the critical point

is a minimum, so one of the vertices of the feasible domain is the P ⋆2 .

ii. a′ < 0 and c′ > 0, as shown in Fig. C.1d. For this case, the critical point

is a maximum and if falls into the feasibility domain of P2, it is the P
⋆
2 .

Otherwise, one of the vertices of the feasible domain is the P ⋆2 .

(b) Both of the roots are positive. This happens when both the product, c
′

a′
, and

the sum [243, Section 5.1], − b′

a′
, of the roots are positive in two following

conditions:
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i. a′ > 0, c′ > 0 and b′ < 0, as shown in Fig. C.1e. For the first case, the

derivative is first positive, then negative and then positive, respectively,

meaning that the first root results in a maximum and the second root

results in a minimum. If the smaller root falls in the feasibility domain

of P2, then by comparing it with the vertices of the feasibility domain,

P ⋆2 is found. If the smaller root is not in the feasibility domain of P2, the

optimal value of P2 is at one of the vertices of the feasibility domain.

ii. a′ < 0, c′ < 0 and b′ > 0, as shown in Fig. C.1f. In this case, we

find out that the larger root is a maximum. If the larger root falls in

the feasibility domain of P2, then by comparing it to the vertices of the

feasibility domain of P2, we can find the P ⋆2 . If the larger root is not in

the feasibility domain of P2, we should find the optimal value of P2 in

the vertices of the feasibility domain.

(c) Both of the roots are negative. This happens when the product of the roots,
c′

a′
, is positive and the sum of the roots, − b′

a′
, is negative in two following

conditions:

i. a′ > 0, c′ > 0 and b′ > 0, as shown in Fig. C.1g. Since the transmission

power is always positive, the critical points cannot be the answer to P ⋆2 .

For the first case, the derivative is first positive, then negative and then

positive, respectively. As a result, the secrecy rate will be increasing after

P2 > 0. So, P ⋆2 is the maximum possible value of P2 inside the feasibility

set.

ii. a′ < 0, c′ < 0 and b′ < 0, as shown in Fig. C.1h. As in Case 2(c)i,

the critical points cannot be the answer to P ⋆2 . For the first case, the

derivative is first negative, then positive and then negative, respectively.

So, the secrecy rate is decreasing after P2 > 0. Hence, P ⋆2 is the minimum

possible value of P2 inside the feasibility set.

In deriving the above closed-form optimal solutions, we have considered all the possible

cases of discriminant sign, ∆, and the coefficients of the quadratic equation, a′, b′, and

c′. In each case, we have calculated all the critical points and if applicable, these critical

points are compared with the vertices of the domain to make sure that the derived power

value is globally optimum. Hence, the optimal solutions presented in Appendix ?? are

global optimum.
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