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Abstract—The current approach for text binarization pro-
poses a clustering algorithm as a preprocessing stage to
an energy-based segmentation method. It uses a clustering
algorithm to obtain a coarse estimate of the background (BG)
and foreground (FG) pixels. These estimates are used as a prior
for the source and sink points of a graph cut implementation,
which is used to efficiently find the minimum energy solution of
an objective function to separate the BG and FG. The binary
image thus obtained is used to refine the edge map that guides
the graph cut algorithm. A final binary image is obtained by
once again performing the graph cut guided by the refined
edges on a Laplacian of the image.

Keywords-Image Processing; Classification; Machine Learn-
ing; Graph-theoretic methods.

I. INTRODUCTION

Binarized images record each pixel as BG or FG by

preserving most of the visual information in the image. A

high-quality binarization significantly simplifies and aids

in further computation to be performed on the image. The

challenges commonly faced in this area are related to uneven

illumination of the image; bleed through; fading or paling

of the ink in some areas; smudges, stains and blots covering

the text; text on textured BG and handwritten documents

with heavy-feeble pen strokes for cursive or calligraphic

effects to name a few make the task of binarization very

subjective. In particular most cited achievements in this

field include the work of Otsu [1], Niblack[2], and Sauvola

et. al.[3] try to tackle these issues, however no universal

solution exists.

Recent work by Howe [4] attempts to employ the use

of four simple steps to solve majority of the above stated

issues. Firstly, the Laplacian of the image is taken to

measure the divergence of the intensity gradient, achieving

illumination invariance. Secondly, the cues obtained from

the Laplacian operator are aggregated across the entire

image to determine plausible source and sink estimates.

Thirdly, the results of Canny edge detection guides the

the binarization procedure to favour discontinuities in

binarization only when they coincide with detected edges.

Finally the global fitness function is solved with graph

cut (maximum flow) methods, with the source-sink cues

provided to efficiently compute the optimal binarization.

The second and third steps can be repeated once again with

refined edge estimates to better the binarization output. This

algorithm was placed near the top on both the DIBCO-09

and H-DIBCO-11 assessments. The current work shows

that the results can be further improved through better

source-sinks cues and edge estimates that are essential for

the performance of the algorithm.

Clustering methods have been used in the past as a

means to have preliminary estimates about the data in semi-

supervised and machine learning algorithms. In particular

we find two of the clustering algorithms namely Ordering

points to identify the clustering structure (OPTICS) [5]

and Mean Shift Clustering (MSC) [6] of interest here. The

former has proven useful in clustering high dimensional

data [5] and recursive use of the later was proved to

be helpful in image binarization [7]. The current work

develops a theoretical framework which enables use of the

two algorithms interchangeably. An attempt has been made

to device a clustering approach drawing upon the benefit

of structure and simple threshold limits that OPTICS has

to offer combined with the speed and ease of computation

from MSC. The output from the clustering algorithm is

used in the source-sink estimates and to refine the edge

map essential for Howe’s algorithm.

II. BINARIZATION PROCEDURE

A. Motivation

The Howe’s binarization algorithm can be split into two

stages the first stage gives a binarized image by performing

a graph cut on a divergence map of the input image

guided through edges from a Canny edge detector with

high threshold (thi) as depicted in the oval outline of

Fig.01. This binarized image is used in the second stage



Figure 1. Comparison of first stage between the Howe’s (oval outline)
and current approach (trapezoidal outline).

Figure 2. Advantages of Howe’s algorithm over clustering. (a),(d),(g)
are parts from the original image, (b),(e),(h) are from Howe’s output and
(c),(f),(i) are from clustering output.

to refine the edges from a Canny edge detector with lower

threshold (tlo) by keeping the edges in the FG and neglecting

those in BG, followed by performing a graph cut on the

divergence map with these refined edges. The advantage

of this procedure is better delineation of edges as depicted

in Fig.02 (a)-(c); separation of BG edges that over lap in

FG as depicted in Fig.02 (d)-(f); and conservation of heavy

and faint stokes in FG Fig.02 (g)-(i). On the other hand

when only the topological clustering to be described in the

following section, if used it performs a coarse separation

of BG and FG with a threshold on cluster size (tsz). The

advantage of this procedure is better BG estimation Fig.03

(a)-(c), (d)-(f); and better FG estimation (g)-(i), (j)-(l). We

would like to preserve the best of these two approaches

in the current algorithm, where the first stage in Howe’s

algorithm (oval outline of Fig.01) is replaced by the cluster

approach (trapezoidal outline of Fig.01) keeping the second

stage intact. The theoretical framework for the clustering

algorithms is explained in the next section, however insight

behind the clustering algorithm is explained in subsection

on clustering algorithm.

Figure 3. Advantages of clustering over Howe’s approach. (a),(d),(g), (j)
are parts from the original image, (b),(e),(h),(k) are from Howe’s output
and (c),(f),(i),(l) are from clustering output.

B. Clustering Method

1) Theoretical Framework: For the clustering algorithm

we choose the following three feature for each pixel i)
intensity value for each pixel (I), ii) gradient in x direction

(dIx) and iii) the gradient in y direction (dIy). Each pixel

can then be represented as a point in a three dimensional

space by the ordered triplet (I, dIx, dIy) we define this as

the binarization space denoted by B. It can be noted that

the region B is bounded within the region

S =











0 ≤ I ≤ 255,

−255 ≤ dIx ≤ 255,

−255 ≤ dIy ≤ 255.

(1)

We explicitly define the following definitions borrowed

from the works of Ankerst.et.al [5] in OPTICS as

some definition will be slightly altered for mathematical

convenience.

Def : Given an ε > 0 the set of all points that are

within the Euclidean distance of ε from a a point Q is

defined as ε-neighbourhood of a point Q denoted as Nε(Q).

Def : The key idea of density-based clustering is to find set

of points exceeding a certain number within a given region.

More formally, given a Nε(Q) we are interested in all

Nε(Q) ≥ Mn

where Mn is the threshold on the number of points, such a

point Q is called the core object (CO).

Def : Given a core object Q, point P is directly density-

reachable (DDR) from point Q wrt. (ε,Mn) in a set of

points D if P ∈ Nε(Q).



Figure 4. Figure adapted from [5] explaining density reachability and
connectivity.

Def : A point P is density-reachable (DR) from an point

Q wrt. (ε,Mn) in the set of points D if there is a chain of

points Q = P1, . . . , Pn = P ; Pi ∈ D s.t Pi+1 is DDR

from Pi.

Def : An point P is density-connected (DC) from an

point Q wrt. (ε,Mn) in the set of points D if ∃ O ∈ D

s.t P,Q are DR from O.

Def : Let D be a set of points. A cluster wrt. (ε,Mn)
denoted by Cl(ε,Mn) in D is a non-empty subset of D

satisfying the following conditions:

i) Maximality: ∀P,Q ∈ D: if P ∈ Cl(ε,Mn) and Q is

DR from P wrt. (ε,Mn), then also Q ∈ Cl(ε,Mn).
ii) Connectivity: ∀P,Q ∈ Cl(ε,Mn): P is DC to Q wrt.

(ε,Mn) ∈ D .

Def : Every point not contained in any cluster is noise wrt.

(ε,Mn).

Though the following argument is in general valid for

any set of point we restrict ourselves to B. Given a set

of points D in the binarization space B we make the

following observations.

i. D is a bounded set, as D ⊂ B ⊂ S and S is bounded.

ii. We define E = {d(Pi, Pj) : Pi, Pj ∈
D where d(Pi, Pj) is Euclidean-distance between Pi, Pj},

E is bounded as the the underlying set D is bounded.

Let εm, εM denote the infimum and supremum of E

respectively and we take some fixed ε0 s.t ε0 < εm and

denote E = E ∪ {ε0}.

iii. Similarly the set D is a finite set of points we denote

MN = card(D), where card(A) denotes the cardinality of

the set A and denote M = {1, 2, 3, . . . ,MN}.

Given points P,Q,R ∈ D , are core objects wrt. some

ε ∈ E and Mn ∈ M , let ClA(ε,Mn) denote the cluster

relation with respect to the core object A ∈ D .

i. ClA(ε,Mn) is not reflexive, i.e. P may not form a core

object for all (ε,Mn) combinations.

ii. ClA(ε,Mn) is symmetric, i.e. P ∈ ClQ(ε,Mn) ⇒ Q ∈
ClP (ε,Mn),Mn ≥ 2.

iii. ClA(ε,Mn) is transitive, i.e. P ∈ ClQ(ε,Mn), Q ∈
ClR(ε,Mn) ⇒ P ∈ ClR(ε,Mn),Mn ≥ 3.

However if we consider the noise wrt. (ε,Mn) as the

cluster Clφ(ε,Mn) and define every point ∈ Clφ(ε,Mn)
as a core object then the relation ClA(ε,Mn) becomes an

equivalence relation.

2) Theorem: Given a set D and ε ∈ E and Mn ∈ M ,

D forms a topology under the following collections

a) CCl =
⋃

λ∈Λ

ClA(ε,Mn); the resulting topology denoted

by τCl

b) CN =
⋃

λ∈Λ

Nε(A); the resulting topology denoted by

τN , where
⋃

λ∈Λ

denotes the arbitrary union of all these sets.

Proof:

We take the Neighbourhoods definition of topological

spaces, we need to verify the following axioms for each

of the two cases. Unless otherwise stated, εi ∈ E and

Mj ∈ M , ∀ i, j ∈ N, where N is the set of natural numbers.

a. For the CCl collection

• Each point belongs to every one of its neighbourhoods.

ClA(ε,Mn) are essentially maximal Nε(A) subject

to the condition that they contain at least Mn points

(neighbours) so P ∈ ClA(ε,Mn) for which the

maximal and Mn-neighbours count is satisfied.

• Every superset of a neighbourhood of a point P in D

is again a neighbourhood of P.

We see that the equivalence classes wrt.

(ε1,Mn), (ε2,Mm) say [ClA(ε1,Mn)] and

[ClB(ε2,Mm)] respectively define a partition on

D , say [ClA(ε1,Mn)] ⊆ [ClB(ε2,Mm)] and

P ∈ [ClA(ε1,Mn)] ⇒ P ∈ [ClB(ε2,Mm)] as any

partition of a set is mutually exclusive and exhaustive.

• The intersection of two neighbourhoods of P is a

neighbourhood of P.

We need to consider two cases here,

Case 1:

The point P forms clusters with

ClQ(ε1,Mn), ClR(ε2,Mm) then as ClA(ε,Mn)
is an equivalence relation these clusters belong to



equivalence classes [ClQ(ε1,Mn)] and [ClR(ε2,Mm)]
respectively.

Both these equivalence classes wrt. (ε1,Mn) and

(ε2,Mm) define their respective partitions and every

point belonging to both these clusters such as P will

belong to [ClQ(ε1,Mn)] and [ClR(ε2,Mm)].

Hence one such class must be contained

in another by the maximality property of

clusters, say ClQ(ε1,Mn) ⊂ ClR(ε2,Mm) ⇒
ClQ(ε1,Mn) ∩ ClR(ε2,Mm) = ClQ(ε1,Mn) which

is a neighbourhood of P .

Case 2:

The point P forms a cluster with

ClQ(ε1,Mn) and noise wrt. ClR(ε2,Mm).

Then P ∈ ClQ(ε1,Mn) and P ∈ Clφ(ε2,Mm)
and ClQ(ε1,Mn) ∩ Clφ(ε2,Mm) = ClQ(ε1,Mn) \
ClR(ε2,Mm) ⊆ Clφ(ε2,Mm) (by definition of

Clφ(ε2,Mm)).

Hence is a neighbourhood of P .

• Any neighbourhood N of P contains a neighbourhood

M of P such that N is a neighbourhood of each point

of M.

Let P ∈ ClA(ε,Mn) as per our construction of the

neighbourhoods P ∈ ClP (ε0, 1). And ClP (ε0, 1) ⊂
ClA(ε,Mn) which are both neighbourhoods of P and

this is true ∀P ∈ D .

Hence D is a topology with the collection CCl we denote

this topology by τCl.

b. For the CN collection

We make a few observations on the set E before we verify

the following axioms. E ⊂ R ( R is the set of all real

numbers), R being an ordered field we can arrange elements

in E in the sequence ε0, ε1(= εm), ε2, . . . , εM s.t εi <

εj , ∀ i < j.

• Each point belongs to every one of its neighbourhoods.

• Every superset of a neighbourhood of a point P in D

is again a neighbourhood of P.

By definition of the ε-neighbourhood of a point P the

above axioms are satisfied.

• The intersection of two neighbourhoods of P is a

neighbourhood of P.

• Any neighbourhood N of P contains a neighbourhood

Figure 5. Typical reachability-plots adapted from [5] for a data set with
hierarchical clusters of different sizes, densities and shapes. Each local
minima corresponds to a cluster as indicated in the plot.

M of P such that N is a neighbourhood of each point

of M.

As per our construction P ∈ Nε0(P ), hence the above

two axioms are true ∀P ∈ D .

Hence D is a topology with the collection CN we denote

this topology by τN .

�

3) Theorem: Given the topologies τCl and τN on D;

τCl ⊂ τN i.e. the topology τN is finer (stronger or larger)

than the topology τCl

Proof:

By definition ClA(ε,Mn) are essentially maximal Nε(A)
subject to the condition that card(Nε(A)) ≥ Mn neigh-

bours. Hence, CCl ⊂ CN ⇒ τCl ⊂ τN . �

C. Clustering Algorithm

We spend some time in this section on showing how

the discussion on OPTICS and MSC so far are related and

their interchangeable operability. The OPTICS framework

enables us to view any given collection of points as a

large cluster with sub-clusters of varying densities within

it. This approach is useful in the database classification

where the entire collections of data-points can be viewed

as a dendrogram with dense sub-clusters embedded within

a bigger diffused clusters. This approach classifies clus-

ters based on reachability-metric values [5], that can be

viewed as a function mapping each point in B to a real

number depending on proximity of the point to a core

object. The clusters are identified if the variation between

the reachability-metric values of two successive ordered

points exceed a certain threshold [5]. This mechanism of

identifying clusters from the local minima in the reachability

metric plot works for the binarization or image segmentation

cases, but can prove to be an over kill. The MSC on the

other hand employs radially symmetric kernels operating

on ε-neighbourhoods to detect dense sub-clusters within a

larger diffused cluster; however by iteratively reducing the

bandwidth of these kernels we can reconstruct the whole



Figure 6. Typical output image blocks where (a) is the original image (b)
is the output from OPTICS (c) is the output from MSC.

structure of the data-points. This fact can be verified by

observing that OPTICS operates on τCl and MSC operates

on τN . Since we have proved that τCl ⊂ τN an algorithm

such as MSC can capture all the classification aspects that

OPTICS has to offer and OPTICS can capture all the cluster

information with the difference in their operation being how

the noise gets separated; hence they are inter-changeable

for the classification of BG and FG. For coarse separation

of the BG from FG we threshold on the size of all the

dense clusters put together that were separated from the

larger diffused cluster, which is equivalent to detecting the

local minima following the peaks in the reachability metric

in OPTICS depicted in Fig.05. This enables us to deploy

MSC to detect clusters as predicted by OPTICS but at a

faster convergence rate. Fig.06 shows a typical 128x128

block of the output for OPTICS and MSC when run on

2009 H01.bmp test image.

Algorithm 1 Algorithm for Clustering guided binarization

[1] Bandwidth = BWlarge

[2] DataPoints = [ I, dIx, dIy ]

[3] Divergence = Divergence(image)

[4] EdgeImage = Canny(image, thi)

[5] Clusters = MeanShiftCluster(DataPoints, Bandwidth)

while ( sizeof(maximal(Clusters)) ≥ tsz) do

[6] Bandwidth = Bandwidth / 2

[7] Clusters = MeanShiftCluster(DataPoints, Band-

width)

end while

[8] BinaryImage = [ maximal(Clusters)== 0 ]

[9] EdgeImage = Compute8neighbours(BinaryImage,

EdgeImage)

[10] BinaryImage = GraphCut(Divergence, EdgeImage)

[11] WeakEdgeImage = Canny(image, tlo)

[12] EdgeImage = EdgeImage | (WeakEdgeImage & Bi-

naryImage)

[13] BinaryImage = GraphCut(Divergence, EdgeImage)

III. EXPERIMENTS

The experiments were conducted in MATLAB so we

adhere to the MATLAB convention for data representation.

Table I
COMPARISON OF THE RESULTS FOR FM, P-FM, PSNR, DRD

File Name
FMeasure p-FMeasure PSNR

Howe MSC Howe MSC Howe MSC

2013 HW05.bmp 69.40 85.72 71.24 88.55 15.95 20.17

2012 H13.png 63.05 78.09 66.50 81.33 15.58 17.24

2011 PR6.png 85.81 92.04 86.66 93.01 18.13 20.94

2011 PR2.png 74.98 79.91 77.21 82.46 11.46 12.70

2011 HW1.png 85.41 73.79 87.80 75.53 13.91 10.72

2009 H05.bmp 86.05 75.35 87.25 76.25 19.80 16.71

2013 HW03.bmp 85.59 77.96 88.85 81.14 17.49 15.98

Mean 87.20 87.70 89.67 90.17 17.70 17.86

Median 88.70 90.11 91.53 91.88 18.14 18.29

Mode 92.00 91.00 95.00 96.00 19.00 19.00

Avg. Gain/Loss 0.56 0.57 0.18

Table II
COMPARISON OF THE RESULTS FOR DRD, RECALL, PRECISION

File Name
DRD Recall Precision

Howe MSC Howe MSC Howe MSC

2013 HW05.bmp 19.17 6.10 92.85 92.87 55.40 79.60

2012 H13.png 8.03 5.16 48.84 69.61 88.90 88.92

2011 PR6.png 8.17 3.32 93.77 93.78 79.10 90.36

2011 PR2.png 13.45 9.60 91.32 91.30 63.60 71.05

2011 HW1.png 8.38 19.07 93.80 94.07 78.40 60.70

2009 H05.bmp 4.27 11.28 84.69 85.44 87.46 67.39

2013 HW03.bmp 3.73 5.65 80.21 67.60 91.75 92.07

Mean 4.45 4.20 87.73 88.31 87.94 88.05

Median 3.42 3.16 90.92 91.21 89.97 89.78

Mode 3.00 3.00 91.00 91.00 92.00 93.00

Avg. Gain/Loss -0.29 0.59 0.22

For each image (M rows, N columns) we compute the x-

derivative, y-derivative of the image and create an (3xMN)

matrix of the image by augmenting the linearised matrices

of image pixel values, and its x and y derivatives as

shown in STEP[2] of the algorithm. The current clustering

approach is an unsupervised clustering method and we

exploit the fact that variation in intensities or their derivative

will not exceed 255 so the MSC bandwidth is set to a value

of 128 or 256 as indicated in STEP[1]. The MSC algorithm

is run on the data-points matrix with reducing bandwidth

parameters. The resulting cluster sizes are monitored

until the size threshold on the FG clusters (tsz = 2% of

total image size) is met as indicated in STEP[4]-[7]. The

binarized image is generated by marking BG pixels in black

and FG in white (STEP [8]) as it will be used to preserve

all the edges (STEP[4] with thresholds thi indicated in

Howe’s algorithm [4]) with at least one pixel classified as

FG by saving all the 8-connected neighbours of FG pixels

along the edges (STEP [9]). The graph-cut was done on the

binarized image acting as source-sink prior guided by the

modified edges with their respective weights (Wss = 0.66,

Wedge = 25.0). The resulting binary image was used to

refine the edges with lower thresholds (STEP[11] with



thresholds tlo indicated in Howe’s algorithm [4]). A second

graph-cut on the divergence map of the image (STEP[3])

with the refined edges (STEP[12]) yields the final binary

image.

The DIBCO [8] datasets form 2009 to 2013 consisting

of 66 images were used in testing. This dataset consists

of a varied collection with samples from hand written and

machine written documents with cursive/calligraphic text;

images with textured / varying intensity BG; images with

bleed-through; documents with stains/smudges or folds that

tend to match FG when digitally replicated; and images

with a low contrast between the FG and BG due to colour,

varying pressure in hand strokes or fading. These images

from a rigours if not a comprehensive test set for measuring

the performance of the classifier. The experiments were run

on a 64-bit Intel i7-4600U processor with 16 GB RAM,

the tests would run for about a minute for most of the

images to about an hour for files with low contrast such

as (2012 H10.png; 2012 H11.png). The performance of

the clustering algorithm can be improved by reusing the

clusters data obtained through the coarser bandwidth. The

parameter used for the clusters sizes were used from the

estimates gained through the reachability plots of OPTICS

and the size threshold were reused with MSC clustering.

The threshold Wss,Wedge used on the clustered output ever

estimated by normalizing the Wss,Wedge estimates used in

the divergence map in the ratio of the source-sink average

grey-scale values. The following tables present the results for

the files where a gain or loss of more than 5% as reported

from the DIBCO-evaluation tool was observed. The top

four rows report the files where the algorithm gained and the

next three rows show where the algorithm lost wrt. Howe’s

method. The mean, median, mode values ( mode figures are

rounded to the nearest integers values to allow repetition)

and average gain over all the 66 test cases have been reported

in the bottom four rows. The file names have been prefixed

with the corresponding year of the dataset release for dis-

ambiguity. The evaluation metrics used here are standard

metrics employed in evaluating imaging algorithms [8].

IV. CONCLUSION

The current work aims at presenting a simple unsuper-

vised classifier that can predict the background and fore-

ground in an image accurately. A theoretical framework

behind the working of the classifier was developed. The

classification approach combines the structural advantage

OPTICS has to offer with the computational speed of Mean

Shift Clustering. The result from the experiments show a

considerable gain in the case where the documents suffer

from bleed through and textured backgrounds. The classifier

is also efficient in revealing the text behind smudged/blotted

foreground. The current approach however suffer in in-

creased noise due to misclassification of background with

gradation in intensities and high cursive text where some

edge information is not propagated by the classifier. The

current approach can be further refined through better tuning

of the weights parameter used for the graph-cut as opposed

to a simple heuristic estimate based on average intensity

ratios. The method can also gain to estimate edge pixel

better from employing features such as distance transform

to respect edge pixels.
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