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Abstract—We propose a novel document clustering method which aims to cluster the documents into different semantic classes. The

document space is generally of high dimensionality and clustering in such a high dimensional space is often infeasible due to the curse

of dimensionality. By using Locality Preserving Indexing (LPI), the documents can be projected into a lower-dimensional semantic

space in which the documents related to the same semantics are close to each other. Different from previous document clustering

methods based on Latent Semantic Indexing (LSI) or Nonnegative Matrix Factorization (NMF), our method tries to discover both the

geometric and discriminating structures of the document space. Theoretical analysis of our method shows that LPI is an unsupervised

approximation of the supervised Linear Discriminant Analysis (LDA) method, which gives the intuitive motivation of our method.

Extensive experimental evaluations are performed on the Reuters-21578 and TDT2 data sets.

Index Terms—Document clustering, locality preserving indexing, dimensionality reduction, semantics.
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1 INTRODUCTION

DOCUMENT clustering is one of the most crucial techni-
ques to organize the documents in an unsupervised

manner. It has received a lot of attention in recent years [18],
[28], [27], [17], [24].

Many clustering methods have been proposed, such as
k-means [20], naive Bayes or Gaussian mixture model [16],
[1], [18], single-link [16], and DBSCAN [11]. From different
perspectives, these clustering methods can be classified into
agglomerative or divisive, hard or fuzzy, deterministic or
stochastic. The typical data clustering tasks are directly
performed in the data space. However, the document space
is always of very high dimensionality, ranging from several
hundreds to thousands. Due to the consideration of the
curse of dimensionality, it is desirable to first project the
documents into a lower-dimensional subspace in which the
semantic structure of the document space becomes clear. In
the low-dimensional semantic space, the traditional cluster-
ing algorithms can be then applied. To this end, spectral
clustering [23], [21], clustering using LSI [29], and clustering
based on nonnegative matrix factorization [28], [27] are the
most well-known techniques.

Some recent work on spectral clustering shows its
capability to handle highly nonlinear data (the data space
has high curvature at every local area). Also, its strong
connections to differential geometry make it capable of
discovering the manifold structure of the document space.
The spectral clustering usually clusters the data points
using the top eigenvectors of graph Laplacian [5], which is
defined on the affinity matrix of data points. From the

graph partitioning perspective, the spectral clustering tries
to find the best cut of the graph so that the predefined
criterion function can be optimized. Many criterion
functions, such as the ratio cut [4], average association
[23], normalized cut [23], and min-max cut [8] have been
proposed along with the corresponding eigen-problem for
finding their optimal solutions. From the perspective of
dimensionality reduction, spectral clustering embeds the
data points into a low dimensional space where the
traditional clustering algorithm (e.g., k-means) is then
applied. One major drawback of these spectral clustering
algorithms might be that they use the nonlinear embed-
ding (dimensionality reduction) which is only defined on
“training” data. They have to use all the data points to
learn the embedding. When the data set is very large, to
learn such an embedding is computational expensive,
which restricts the application of spectral clustering on
large data sets.

Latent Semantic Indexing (LSI) [7] is one of the most
popular linear document indexing methods which pro-
duces low dimensional representations. LSI aims to find the
best subspace approximation to the original document
space in the sense of minimizing the global reconstruction
error. In other words, LSI seeks to uncover the most
representative features rather the most discriminative
features for document representation. Therefore, LSI might
not be optimal in discriminating documents with different
semantics which is the ultimate goal of clustering.

Recently, Xu et al. applied the Nonnegative Matrix
Factorization (NMF) algorithm for document clustering
[28], [27]. They model each cluster as a linear combination
of the data points, and each data point as a linear
combination of the clusters. They also compute the linear
coefficients by minimizing the global reconstruction error of
the data points using Nonnegative Matrix Factorization.
Thus, the NMF method still focuses on the global geome-
trical structure of document space. Moreover, the iterative
update method for solving NMF problem is computation-
ally expensive.

In this paper, we propose a novel document clustering
algorithm by using Locality Preserving Indexing (LPI).
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Different from LSI, which aims to discover the global
Euclidean structure, LPI aims to discover the local geome-
trical structure. LPI can have more discriminating power.
Thus, the documents related to the same semantics are close
to each other in the low-dimensional representation space.
Also, LPI is derived by finding the optimal linear approx-
imations to the eigenfunctions of the Laplace Beltrami
operator on the document manifold. The Laplace Beltrami
operator takes the second order derivatives of the functions
on the manifolds. It evaluates the smoothness of the
functions. Therefore, it can discover the nonlinear manifold
structure to some extent. Some theoretical justifications can
be traced back to He et al. [15], [14]. The original LPI is not
optimal in the sense of computation in that the obtained
basis functions might contain a trivial solution. The trivial
solution contains no information and is thus useless for
document indexing. A modified LPI is proposed to obtain
better document representations. In this low-dimensional
space, we then apply traditional clustering algorithms such
as k-means to cluster the documents into semantically
different classes.

The rest of this paper is organized as follows: In Section 2,
we give a brief review of LSI and LPI. Section 3 introduces
our proposed document clustering algorithm. Some theore-
tical analysis is provided in Section 4. The experimental
results are shown in Section 5. Finally, we give concluding
remarks and future work in Section 6.

2 A BRIEF REVIEW OF LSI AND LPI

LSI is one of the most popular algorithms for document
indexing. It is fundamentally based on SVD (Singular Value
Decomposition). Given a set of documents x1; � � � ;xn 2 IRm,
they can be represented as a term-document matrix
X ¼ ½x1;x2; � � � ;xn�. Suppose the rank of X is r, LSI
decomposes the X using SVD as follows:

X ¼ U�V T ;

where � ¼ diagð�1; � � � ; �rÞ and �1 � �2 � � � � � �r are the
singular values of X, U ¼ ½a1; � � � ; ar� and ai is called the left
singular vector, and V ¼ ½v1; � � � ;vr� and vi is called the
right singular vector. LSI uses the first k vectors in U as the
transformation matrix to embed the original documents into
a k-dimensional subspace. It can be easily checked that the
column vectors of U are the eigenvectors of XXT . The basic
idea of LSI is to extract the most representative features at
the same time the reconstruction error can be minimized.
Let a be the transformation vector. The objective function of
LSI can be stated below:

aopt ¼ argmin
a

kX � aaTXk2

¼ argmax
a

aTXXTa;

with the constraint

aTa ¼ 1:

Since XXT is symmetric, the basis functions of LSI are
orthogonal. It would be important to note that XXT

becomes the data covariance matrix if the data points have
a zero mean, i.e., Xe ¼ 0, where e ¼ ½1; � � � ; 1�T . In such a
case, LSI is identical to Principal Component Analysis [10].

For more details on theoretical interpretations of LSI using
SVD, refer to [2], [9], [22].

Different from LSI, which aims to extract the most
representative features, LPI aims to extract the most dis-
criminative features. Given a similarity matrix S, LPI can be
obtained by solving the following minimization problem:

aopt ¼ argmin
a

Xn

i¼1

aTxi � aTxj

� �2
Sij

¼ argmin
a

aTXLXTa;

with the constraint

aTXDXTa ¼ 1;

where L ¼ D� S is the graph Laplacian [5] and Dii ¼
P

j Sij.
Dii measures the local density around xi. LPI constructs the
similarity matrix S as:

Sij ¼
xT
i xj; if xi is among the p nearest neighbors of xj

or xj is among the p nearest neighbors of xi

0; otherwise:

8
<
:

Thus, the objective function in LPI incurs a heavy penalty if
neighboring points xi and xj are mapped far apart.
Therefore, minimizing it is an attempt to ensure that, if xi

and xj are “close,” then yi ð¼ aTxiÞ and yj ð¼ aTxjÞ are
close as well [13]. Finally, the basis functions of LPI are the
eigenvectors associated with the smallest eigenvalues of the
following generalized eigen-problem:

XLXTa ¼ �XDXTa:

3 THE PROPOSED METHOD

In this section, we describe our clustering algorithm, which
can be thought of as a combination of subspace learning
and k-means. We begin with the motivations of our work.

3.1 Motivation

In this section, we will provide some motivations about the
reasoning of LPI followed by a traditional clustering
algorithm like k-means.

Generally, the document space is of high dimensionality,
typically ranging from several thousands to tens of
thousands. Learning in such a high-dimensional space is
extremely difficult due to the curse of dimensionality. Thus,
document clustering necessitates some form of dimension-
ality reduction. One of the basic assumptions behind data
clustering is that, if two data points are close to each other
in the high-dimensional space, they tend to be grouped into
the same cluster. Therefore, the optimal document indexing
method should be able to discover the local geometrical
structure of the document space. To this end, the LPI
algorithm is of particular interest. LSI is optimal in the
sense of reconstruction. It respects the global Euclidean
structure while failing to discover the intrinsic geometrical
structure, especially when the document space is nonlinear
(see [14] for details).

Another consideration is due to the discriminating power.
One can expect that the documents should be projected into
the subspace in which the documents with different
semantics can be well separated, while the documents with
common semantics can be clustered. As indicated in [14], LPI
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is an optimal unsupervised approximation to the Linear
Discriminant Analysis algorithm which is supervised.
Therefore, LPI can have more discriminant power than LSI.
There are some other linear subspace learning algorithms,
such as informed projection [6] and Linear Dependent
Dimensionality Reduction [25]. However, none of them has
shown discriminating power.

Finally, it would be interesting to note that LPI is
fundamentally based on manifold theory [14], [15]. LPI tries
to find a linear approximation to the eigenfunctions of the
Laplace Beltrami operator on the compact Riemannian
manifold (see [15] for details). Therefore, LPI is capable of
discovering the nonlinear structure of the document space
to some extent.

3.2 Clustering Based on Locality Preserving
Indexing

Consider a set of documents x1, x2, � � � , xn 2 IRm. Suppose xi

has been normalized to 1, thus, the dot product of
two document vectors is exactly the cosine similarity of the
two documents. Our clustering algorithm is performed as
follows:

1. Constructing the adjacency graph. Let G denote a
graph with n nodes. The ith node corresponds to the
document xi. We put an edge between nodes i and j if
xi and xj are “close,” i.e., xi is among p nearest
neighbors of xj or xj is among p nearest neighbors of
xi. Some fast pnearest neighbor search algorithms can
be used here to improve the overall speed [12], [30].

2. Choosing the weights. If nodes i and j are
connected, put

Sij ¼ xT
i xj:

Otherwise, put Sij ¼ 0. The weight matrix S of
graph G models the local structure of the document
space. We define D as a diagonal matrix whose
entries are column (or row, since S is symmetric)
sums of S, i.e., Dii ¼

P
j Sji. We also define

L ¼ D� S, which is called the Laplacian matrix in
spectral graph theory [5].

3. Data Preprocessing and SVD Projection. We
remove the weighted mean of x from each x

x̂x ¼ x� �xx; �xx ¼
1P
i Dii

� �
X

i

xiDii

 !

and project the document vector into the SVD sub-
space by throwing away those zero singular values.

bXX ¼ U�V T ;

where bXX ¼ ½x̂x1; � � � ; x̂xn�. We denote the transforma-
tion matrix of SVD by WSVD, i.e., WSVD ¼ U . After
SVD projection, the document vector x̂x becomes ~xx:

~xx ¼ WT
SVDx̂x:

After this step, the term-document matrix X
becomes eXX ¼ ½~xx1; � � � ; ~xxn�.

4. LPI Projection. Compute the eigenvectors and
eigenvalues for the generalized eigen-problem:

eXXL eXXTa ¼ � eXXD eXXTa: ð1Þ

LetWLPI ¼ ½a1; � � � ; ak� be the solutions of (1), ordered
according to their eigenvalues, �1 � �2 � � � � � �k.
Thus, the embedding is as follows:

x ! y ¼ WT x̂x;

W ¼ WSVDWLPI ; and

x̂x ¼ x�
1P
i Dii

� �
X

i

xiDii

 !
;

where y is a k-dimensional representation of the
document x. W is the transformation matrix.

5. Clustering in the Lower-Dimensional Semantic
Space. Now, we get lower-dimensional representa-
tions of the original documents. In the reduced
semantic space, those documents belonging to the
same underlying class are close to one another. The
traditional clustering methods (we choose k-means in
this paper) can be applied in the reduced semantic
space. The connection between LPI and LDA
motivates us to use k� 1 eigenvectors, where k is
the number of clusters [14], [10].

3.3 Computational Analysis

In this section, we provide a computational analysis of our
algorithm. One of the major modifications over the original
LPI [14] lies in the third step of our algorithm. In the new
algorithm, we remove the weighted mean of the document
vectors and use SVD to ensure that the term-document
matrix eXX is of full rank in row.

Making the matrix eXX of full rank in row can guarantee
that the matrix eXXD eXXT is positive definite, which is
necessary in solving the generalized eigen-problem (1) in
the fourth step [13].

In the following, we discuss why it is necessary to
remove the weighted mean from the original document
vectors. We first analyze the properties of the eigenvector of
the eigen-problem (1). Let 1 ¼ ½1; 1; � � � ; 1�T . We have the
following theorem:

Theorem 1. If there exists a0 which satisfies eXXTa0 ¼ 1 (in other
words, the vector 1 in the space spanned by the column vectors
of eXXT ), a0 is the eigenvector of (1) with respect to eigenvalue 0.

Proof.

eXXL eXXTa0 ¼ eXXðD� SÞ1 ¼ eXXðD1� S1Þ

¼ eXX0 ¼ 0 ¼ 0 eXXD eXXTa0:

Therefore, a0 is the eigenvector of (1) with respect to
eigenvalue 0. tu

Since the matrices eXXL eXXT and eXXD eXXT are both positive
semidefinite, the eigenvalues of (1) are no less than zero.
Therefore, a0 will be the first eigenvector. However, it is
clearly of no use for document representation since all the
document vectors collapse into a single point along this
direction.

The LPI eigen-problem (1) can be written as the Rayleigh
Quotient format [13]:

a0 ¼ argmin
a

aT eXXL eXXTa

aT eXXD eXXTa
; and

ai ¼ argmin

aTi
eXXDeXXTaj¼0; 0�j<i

aT eXXL eXXTa

aT eXXD eXXTa
:
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If 1 is in the space spanned by the column vectors of eXXT , the
eigenvectors of LPI eigen-problem (1) have the following
property:

eXXTa0 ¼ 1 and aTi
eXXD1 ¼ 0; i > 0: ð2Þ

Now, let us consider the data preprocessing step of our
algorithm. We can show that, after removing the weighted
mean of document vectors, for any vector a, aT eXXD1 ¼ 0.

aT eXXD1 ¼ aTWT
SVDX̂XD1 ¼ aTWT

SVD½x̂x1; x̂x2; � � � ; x̂xn�D1

¼ aTWT
SVD

X

i

x̂xiDii

 !

¼ aTWT
SVD

X

i

xDii �
X

i

�xxDii

 !

¼ aTWT
SVDð

X

i

xDii � �xx
X

i

DiiÞ ¼ aTWT
SVD0 ¼ 0:

Thus, the preprocessing step of our algorithm can guarantee
that the solutions of (1) will not contain the trivial
eigenvector as described above and all the eigenvectors
will satisfy the second part of (2).

4 THEORETICAL ANALYSIS

In this section, we give the theoretical analysis of our
algorithm. First, we will discuss the relationship between
LPI, LSI, and LDA. We will show that the key difference
between them is the different ways to construct the
adjacency graph. The adjacency graph construction in LPI
gives a best approximation to LDA which is supervised.
Second, our clustering algorithm has intrinsic connections to
spectral clustering andmanifold learning. Thismakes it clear
that our algorithm is capable of dealing with complex data.

4.1 Relationship between LPI and LSI

LPI is essentially obtained from a graph model. The graph
structure represents the geometrical structure of the docu-
ment space. In our algorithm, a p-nearest neighbor graph is
constructed to discover the local manifold structure. Intui-
tively, LPI with a complete graph should discover the global
structure. In this section, we present a theoretical analysis on
the relationship between LPI and LSI. Specifically, we show
that LPI with a complete graph is similar to LSI.

As shown in Section 2, LSI tries to solve the maximum
eigenvalue problem:

XXTa ¼ �a:

In LPI, recall that the weight on an edge linking xi and xj

is set to their inner product xT
i xj. Thus, the affinity matrix S

of the complete graph can be written as XTX. Since we first
apply SVD to remove the components corresponding to the
zero singular value, the matrix XXT is of full rank. The
generalized minimum eigenvalue problem of LPI can be
written as follows:

XLXTa ¼ �XDXTa

) XðD� SÞXTa ¼ �XDXTa

) XSXTa ¼ ð1� �ÞXDXTa

) XXTXXTa ¼ ð1� �ÞXDXTa:

ð3Þ

If we assume the diagonal matrix D is close to the identity
matrix, XDXT � XXT , the minimum eigenvalues of (3)
correspond to the maximum eigenvalues of the following
equation:

XXTXXTa ¼ �XXTa:

Since XXT is of full rank, we get:

XXTa ¼ �a;

which is just the eigenvalue problem of LSI. The above
analysis shows that LPI with a complete graph is actually
similar to LSI. Both of them discover the global structure.
The only difference is that there is a diagonal matrix D in
LPI which reflects the importance of the different document
vectors. In LSI, every document vector is treated as equally
important. In LPI, the weight of document xi is Dii. We
define �xx ¼ 1

n

Pn
i¼1 xi as the center vector of these document

vectors. In complete graph situation, we have

Dii ¼
Xn

j¼1

Sij ¼
Xn

j¼1

ðXTXÞij ¼
Xn

j¼1

xT
i xj

¼ xT
i

Xn

j¼1

xj ¼ nxT
i �xx ¼ �xT

i

�xx

jj�xxjj
;

where � ¼ njj�xxjj is a constant. Note that all the xis are
normalized to 1. Thus, they are distributed on a unit
hypersphere. �xx=jj�xxjj is also on this unit hypersphere. Thus,
Dii evaluates the cosine of the angle between vectors xi and
�xx. In other words, Dii evaluates the cosine similarity
between document xi and the center. The closer to the
center the document is, the larger weight it has. Some
previous studies [28] show that such D will improve the
performance and our experiments will also show this.

4.2 Relationship between LPI and LDA

In a supervised mode, the label information is available, so
we can apply Linear Discriminant Analysis (LDA) to reduce
the document space to a low-dimensional space in which
the documents of different classes are far from each other
and, at the same time, the documents of the same class are
close to each other. LDA is optimal in the sense of
discrimination.

Suppose the data points belong to k classes. LDA can be
obtained by solving the following maximization problem:

aopt ¼ argmax
a

jaTSbaj

jaTSwaj
;

Sb ¼
Xk

i¼1

ni mi �m
� �

mi �m
� �T

; and

Sw ¼
Xk

i¼1

Xni

j¼1

xi
j �mi

� �
xi
j �mi

� �T
 !

:

This leads to the following generalized maximum eigenva-
lue problem:

Sba ¼ �Swa; ð4Þ

wherem is the total sample mean vector, ni is the number of
samples in the ithclass,mi is theaveragevectorof the ithclass,
and xi

j is the jth sample in the ith class. We call Sw thewithin-
class scatter matrix and Sb the between-class scatter matrix.
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We define:

Wij ¼
1
nl
; if xi and xj both belong to the lth class;

0; otherwise

�
ð5Þ

and

Dij ¼

P
j Wij; if i ¼ j

0; if i 6¼ j:

�

It is easy to check that the row sum of W is 1, therefore, the
diagonal matrix D is exactly the identity matrix I.

L ¼ D�W ¼ I �W:

With some algebraic steps [14], we can show that, if the
samplemean is zero, the eigen-problem of (4) is equivalent to

XLXTa ¼ �XXTa: ð6Þ

This analysis tells us that, if the affinity matrix S in LPI is
defined as the W in (5), the result of LPI will be identical to
the LDA.

In the clustering scenario, the label information is not
available. Therefore, the matrix W is unknown. However,
based on the assumption that neighboring points probably
belong to the same underlying class, the affinity matrix S in
our LPI algorithm gives an optimal approximation to the
similarity matrix W in (5). Even though the label informa-
tion is not available, we can still discover the discriminating
structure to some extent by using LPI. Thus, in the subspace
obtained by LPI, those data points belonging to the same
underlying class are close to one another. Note that an
upper bound of the number of nonzero eigenvalues of LDA
is k� 1, where k is the number of classes (please see [10] for
details). This motivates us to use k� 1 eigenvectors in LPI
for clustering the documents into k categories.

4.3 The Construction of Affinity Matrix S

The previous two sections show that the key difference
among LSI, LPI, and LDA is the construction of the affinity
matrix (the weighted matrix of graph). The LSI tries to
discover the global structure (with the complete weighted
graph). The LPI tries to discover the local geometrical
structure of the document space (with a p-nearest neighbor
graph). The LDA is performed in supervised mode, thus the
graph can be constructed to reflect the label information.
From this point of view, the LPI can be performed in either
an supervised, unsupervised, or semisupervised manner.
The label information can be used to guide the construction
of affinity matrix S.

The construction of the affinity matrix is also very
important in spectral clustering [23], [21] and spectral
embedding [3]. It includes two steps: constructing the graph
and setting the weight. In our algorithm, we construct a
p-nearest neighbor graph and choose the dot product
(cosine similarity) as the weight. There are also some other
choices as discussed below.

In the step of graph construction, we put an edge
between nodes i and j if xi and xj are “close.” There are
two variations:

1. p-nearest neighbors. Nodes i and j are connected
by an edge if xi is among p nearest neighbors of xj

or xj is among p nearest neighbors of xi. The
advantage of this method is that it is simpler to

choose connected edges, which tends to lead to
connected graphs. However, the edges so chosen
are less geometrically intuitive.

2. � neighbors. Nodes i and j are connected by an edge
if jjxi � xjjj

2 < �. The advantage of this method is
that it is geometrically motivated and the relation-
ship is naturally symmetric. However, the method
often leads to graphs with several disconnected
components, and it is difficult to choose �.

In the step of setting the weight, there are several choices:

1. 0-1 weighting. Sij ¼ 1 if and only if nodes i and j are
connected by an edge. This is the simplest weighting
method and is very easy to compute.

2. Gaussian kernel weighting. If nodes i and j are
connected, put

Sij ¼ e�
kxi�xjk

2

t :

The Gaussian kernel weighting is also called heat
kernel weighting. It has an intrinsic connection to the
Laplace Beltrami operator on differentiable functions
on a manifold [3].

3. Polynomial kernel weighting. If nodes i and j are
connected, put

Sij ¼ ðxT
i xj þ 1Þd:

The parameter d in the equation indicates the degree
of the polynomial kernel. Order d polynomial
kernels can discover a nonlinear structure with
polynomial basis functions of order d.

4. Dot-product weighting. If nodes i and j are
connected, put

Sij ¼ xT
i xj:

Note that, if x is normalized to 1, the dot product of
two vectors is equivalent to the cosine similarity of
the two vectors. The dot-product weighting can
discover the linear Euclidean structure of the
document space.

We will compare the different weighting choices in our
experiments section.

4.4 Relationship between Clustering Using LPI and
Spectral Clustering

The spectral clustering algorithm [23], [26], [21] can be
thought of as a combination of spectral dimensionality
reduction [3] and a traditional clustering method, such as
k-means.

Spectral dimensionality reduction or spectral embedding
is the key part of spectral clustering. In this step, a weighted
graph S is first constructed as described in Section 4.3. We
define D as a diagonal matrix whose entries are column (or
row, since S is symmetric) sums of S, Dii ¼

P
j Sji. We also

define L ¼ D� S. All the spectral clustering methods can
be reduced to an eigen-problem. The different methods
have different eigen-problems.

1. Normalized cut [23] and Min-Max cut [8] have the
following minimum eigenvalue problem:

Ly ¼ �Dy: ð7Þ
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2. Ng’s method [21] has the following maximum
eigenvalue problem:

D�1=2SD�1=2y ¼ �y: ð8Þ

3. Average association [23] and Ratio cut [4] have the
following minimum eigenvalue problem:

Ly ¼ �y: ð9Þ

Let z ¼ D1=2y with some mathematical deduction of (7),
we have:

Ly ¼ �Dy

) ðD� SÞy ¼ �Dy

) Sy ¼ ð1� �ÞDy

) SD�1=2D1=2y ¼ ð1� �ÞD1=2D1=2y

) SD�1=2z ¼ ð1� �ÞD1=2z

) D�1=2SD�1=2z ¼ ð1� �Þz:

Thus, the maximum eigenvalue problem (8) has a direct

connection to the minimum eigenvalue problem (7). Let y be

the eigenvector of (7) with eigenvalue �, then D1=2y is the

eigenvector of (8) with eigenvalue 1� �. In the following

discussion, we only consider the minimum eigenvalue

problem (7). After the spectral embedding step, the

eigenvector y will be the low dimensional representation

of original data points.
Recall the eigen-problem in LPI:

XLXTa ¼ �XDXTa: ð10Þ

The eigenvector a will be the mapping function and XTa

will be the low-dimensional representation of original data

points. The LPI imposes a constraint on (7) that y should be

the linear combination of the column vectors of XT [15].
The dimensionality reduction method in traditional

spectral clustering is nonlinear and the embedding result is
only defined on “training” data points. The dimensionality

reduction method in our clustering algorithm is linear and

the mapping function a can be applied to the unseen data

which provides us more flexibility. When the data set is very

large, to learn such an embedding is computationally

expensive. Since the LPI is linear and defined everywhere,

we can use part of the data to learn such an embedding. Our

experiments will show this.
It is interesting to see in which condition the LPI result

will be identical to the result of spectral dimensionality

reduction in traditional spectral clustering. In this case, our

clustering algorithm will be identical to the traditional

spectral clustering [3].

Theorem 2. If X is a full rank square matrix, the embedding

result of LPI (XTa in (10)) is identical to embedding result in

spectral clustering (y in (7)) if the S is the same.

Proof. Let y ¼ XTa. Equation (10) can be rewritten as

follows:

XLy ¼ �XDy:

Since X is a full rank square matrix, the inverse of X

always exists. Thus, the above equation can be changed to

X�1XLy ¼ �X�1XDy:

Finally, we get

Ly ¼ �Dy:

Thus, we have proven the embedding result of LPI (XTa

in (10)) is identical to embedding result of spectral

clustering (y in (7)). tu

In our algorithm, we use SVD projection in our data

preprocessing step to remove those components correspond-

ing to the zero singular value. If the rank of original term-

document matrix X equals to the number of documents, the

X will be a full rank square matrix after SVD projection. In

document clustering, the number of terms is often larger than

the number of documents, thus, if all the document vectors x

are linearly independent, the X will be a full rank square

matrix after SVD projection.
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5 EXPERIMENTAL RESULTS

In this section, several experiments were performed to show

the effectiveness of our proposed algorithm. Two standard

document collections were used in our experiments:

Reuters-21578 and TDT2. We compared our proposed

algorithm with clustering based on LSI, spectral clustering

method, and Nonnegative Matrix Factorization clustering

method [28].

5.1 Data Corpora

Reuters-21578 corpus1 contains 21,578 documents in

135 categories. In our experiments, we discarded those

documents with multiple category labels, and selected the

largest 30 categories. It left us with 8,067 documents in

30 categories as described in Table 1.
The TDT2 corpus2 consists of data collected during the

first half of 1998 and taken from six sources, including

two newswires (APW, NYT), two radio programs (VOA,

PRI), and two television programs (CNN, ABC). It consists

of 11,201 on-topic documents which are classified into

96 semantic categories. In this data set, we also removed

those documents appearing in two or more categories and

used the largest 30 categories, thus leaving us with

9,394 documents in 30 categories as described in Table 2.
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TABLE 2
Thirty Semantic Categories from TDT2 Used in Our Experiments

Fig. 1. Two-dimensional embedding results of LSI and LPI on the TDT2 corpus. The dimensions of document vectors are reduced to two using LSI
and LPI. Each color (shape) represents a topic. As can be seen, LPI is more powerful than LSI as to separating the documents with different
semantics. (a) Five classes. (b) Six classes. (c) Seven classes. (d) Eight classes.

2. Nist Topic Detection and Tracking corpus is at http://www.nist.gov/
speech/tests/tdt/tdt98/index.html.

1. Reuters-21578 corpus is at http://www.daviddlewis.com/resources/
testcollections/reuters21578/.



Each document is represented as a term-frequency

vector. We simply removed the stop words and no further

preprocessing was done. Each document vector is normal-

ized to one and the Euclidean distance is used as the

distance measure.

5.2 Evaluation Metric

The clustering performance is evaluated by comparing the

obtained label of each document with that provided by the

document corpus. Two metrics, the accuracy (AC) and the

normalized mutual information metric (MI), are used to

measure the clustering performance [28]. Given a document

xi, let ri and si be the obtained cluster label and the label

provided by the corpus, respectively. The AC is defined as

follows:

AC ¼

Pn
i¼1 �ðsi;mapðriÞÞ

n
;

where n is the total number of documents, �ðx; yÞ is the

delta function that equals one if x ¼ y and equals zero

otherwise, and mapðriÞ is the permutation mapping func-

tion that maps each cluster label ri to the equivalent label

from the data corpus. The best mapping can be found by

using the Kuhn-Munkres algorithm [19].
Let C denote the set of clusters obtained from the ground

truth and C0 obtained from our algorithm. Their mutual

information metric MIðC;C0Þ is defined as follows:

MIðC;C0Þ ¼
X

ci2C;c0j2C
0

pðci; c
0
jÞ � log2

pðci; c
0
jÞ

pðciÞ � pðc0jÞ
;

where pðciÞ and pðc0jÞ are the probabilities that a document

arbitrarily selected from the corpus belongs to the clusters ci
and c0j, respectively, and pðci; c

0
jÞ is the joint probability that

the arbitrarily selected document belongs to the clusters ci
as well as c0j at the same time. In our experiments, we use

the normalized mutual information MI as follows:

MIðC;C0Þ ¼
MIðC;C0Þ

maxðHðCÞ; HðC0ÞÞ
;

where HðCÞ and HðC0Þ are the entropies of C and C0,

respectively. It is easy to check thatMIðC;C0Þ ranges from 0

to 1. MI ¼ 1 if the two sets of clusters are identical, and

MI ¼ 0 if the two sets are independent.
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5.3 LPI Embedding versus LSI Embedding

Our theoretical analysis shows that LPI is able to map the
documents related to the same semantics as close to each
other as possible. This motivates us to perform traditional
clustering in the LPI subspace rather than directly in the
original space. In this section, we first present some
embedding results by using LPI and LSI.

Fig. 1 shows the 2D embedding results on the TDT2
corpus. The experiments were conducted on 5, 6, 7, and
8 classes, respectively. The parameter p was set to 15 in LPI.
As can be seen, LPI is more powerful than LSI as to
separating the documents with different semantics.

5.4 Clustering Results

To demonstrate how our method improves the performance
of document clustering, we compared five methods on
two data sets: Reuters-21578 and TDT2. These five methods
are listed below:

. k-means on original term-documentmatrix (Kmeans),
which is treated as our baseline,

. k-means after LSI (LSI),

. k-means after LPI (LPI),

. Spectral Clustering (k-means after Laplacian Eigen-
maps, or LE), and

. Nonnegative Matrix Factorization-based clustering
(NMF-NCW, [28]).

Note that the two methods LPI and LE need to construct a
graph on the documents. In the following experiments, we
used the same graph for these two methods and the
parameter p was set to 15. The weighted Nonnegative
Matrix Factorization-based document clustering algorithm
(NMF-NCW, [28]) is a recently proposed algorithm, which
has shown to be very effective in document clustering.
Please see [28] for details.

Tables 3 and 4 showed the experimental results on the
TDT2 and the Reuters corpus, respectively. The evaluations
were conducted with different number of clusters, ranging
from two to 10. For each given cluster number k, 50 tests
were conducted on different randomly chosen clusters and
the average performance was computed over these 50 tests.
For each test, the k-means algorithm was applied 10 times
with different start points and the best result in terms of the
objective function of k-means was recorded.

After LSI, LPI, or Laplacian Eigenmaps, how to determine
the dimensions of the subspace is still an open problem. In
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the k cluster situation, we choose the first k� 1 dimensions
in LPI based on our previous analysis. For Laplacian
Eigenmaps, since the first eigenvector is 1, we use the
following k� 1 dimensions. Note that, in typical spectral
clustering, the dimensions of the subspace are set to the
number of clusters [21], which is the same with our selection
in spirit (since [21] does not remove the first 1 eigenvector).
For LSI, we choose the k dimensions for comparison. Besides
such determined dimensions, for LSI and LPI, we also
compute their best performance on different dimensions in
each test. We iterate all the dimensions for the best
clustering performance and average all the 50 best results.
In a real situation, it might not be possible to iterate all the
dimensions to get the best performance.

In Tables 3 and 4, LSI, LPI, and LE indicate this
determined dimension while “LSI (best)” and “LPI (best)”
are the best performance. Fig. 2 shows the optimal
dimensions with different numbers of clusters by using
LPI and LSI. The optimal dimension in LSI is much higher
than LPI. Also, the variance of the dimensions obtained by
using LSI is much higher than that obtained by using LPI.
For LPI, the optimal number is nearly k� 1, where k is the
number of clusters. This figure showed that LPI is more
powerful than LSI in finding the intrinsic dimensionality of
the document space. Thus, LPI is very suitable for clustering.

The experimental results showed that LSI seems not
promising in dimension reduction for clustering because
the k-means on the LSI subspace is even worse than k-means

on the original document space. As can be seen, LPI

performed much better than LSI. We also see that the result
of Laplacian Eigenmaps is nearly identical to the result of
LPI. Actually, in our experiments, for 312 of 450 (50 � 9)
tests on Reuters corpus and 430 of 450 (50 � 9) tests on
TDT2 corpus, the X is full rank square matrix, thus, the
results of clustering using LPI are identical to those of
clustering using Laplacian Eigenmaps.

In [28], Xu et al. compared the NFM-NCW method with
the spectral clustering method. In their comparison, they
constructed the affinity matrix in spectral clustering as a
complete graph. While, in our LSI and LE methods, the
p-nearest neighbor graphs which put more focus on the
local geometric document structure were used. More
experiments on the different graph construction will be
given in the next section.

5.5 Clustering Performance on Different Graph
Model

The construction of the adjacency graph is one of the key
points in our algorithm. Also, it is the key difference among
LSI, LPI, and LDA. In this section, we test our algorithm
under different adjacency graph constructions to see how
the different graph structures will affect the clustering
performance.

5.5.1 Local versus Global

In LPI clustering, one needs to set the number of nearest
neighbors, i.e., the value of p, which defines the “locality.”
As we examined in Section 4.1, LPI approximates LSI when
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Fig. 2. Optimal dimension with different number of classes. Each bar shows the average of 50 test runs, the error bar indicates the standard deviation.
(a) TDT2 corpus. (b) Reuters corpus.



p tends to be infinite (complete graph). In Fig. 3, we show
the relationship between the clustering performance and
the value of p. Here, the clustering performance is the
average over 2 � 10 classes. The value of p varies from 3 to
40. As can be seen, the performance of LPI clustering
reaches its peak when p is 6 in TDT2 corpus and 15 in
Reuters21578 corpus. As p increases, the performance
decreases. This experiment shows that the local structure
is more important than the global structure as to discover-
ing the semantic structure of the document space.

In Fig. 3, we can also find that, even performed under
complete graph, clustering after LPI is better than clustering
after LSI. Our theoretical analysis in Section 4.1 shows that
the only difference between LPI with complete graph and
LSI is that LPI has theDmatrix. Xu et al. [28] show a similar
result that D can really improve the clustering result.

5.5.2 Gaussian versus Polynomial versus 0-1

Our algorithm uses the dot-product weighting in construct-
ing the nearest neighbor graph. We can also use other kinds
of weighting methods as described in Section 4.3. In this
experiment, we examine the LPI clustering performance
under different weighting choices.

We compare four kinds of weighting methods:

1. 0-1 weighting,
2. Gaussian kernel weighting, where the parameter t is

set as 1,

3. dot-product weighting, and
4. polynomial kernel weighting with degrees 2 and 5.

The clustering results are shown in Table 5. We can see
that LPI-based clustering is insensitive to the weighting
function. Even the simplest one (0-1 weighting) can achieve
the similar results. This tells us that the local document
structure (p-neighbor graph) is essential in LPI-based
clustering whereas the specific weighting values in the
connected edges are not so influential.

5.6 Generalization Capability

Both LSI and LPI try to learn an optimal embedding

function in the data set. In real applications, some new data

might be registered into the data set. The performance on

the new data can reflect the generalization capability of the

algorithms. This generalization capability is very important

for the clustering methods performed on the reduced

dimensional space. In these clustering algorithms, learning

the low-dimensional representation is time consuming and

scales with the number of data points. LSI and LPI are linear

and their mapping functions are defined everywhere. Thus,

in large data set situations, LSI and LPI can choose part of

the data to learn such mapping functions and map all the

data points to the low-dimensional space which can speed

up the whole process. It is hard for the spectral clustering to

adopt such a technique since traditional spectral clustering
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Fig. 3. Graph model—local versus global. (a) TDT2 corpus. (b) Reuters corpus.



uses nonlinear embedding methods, which is only defined

on “training” samples.
To compare the generalization capability of LSI and LPI,

we designed the following experiment: In each test in the

previous experiment, we only chose part of the data to learn

the embedding function, embedded the whole data set, and

then performed clustering in the subspace. The size of the

training set ranged from 5 percent to 90 percent of the data

set. For each case, 10 times of random selection were

performed to minimize the impact of occasionality.
The average accuracy (averaged over 2 � 10 classes)

and normalized mutual information (averaged over 2 �

10 classes) are shown in Fig. 4. It is clear that the

performance improves with the number of training

samples. Both LSI and LPI have good generalization

capability, however, the performance of LSI is always

below the baseline which makes LSI less practical. For

LPI, it achieved similar performance to that using all the

samples when only 30 percent of training samples were

used. This makes it practical for clustering large sets of

documents.

5.7 Discussions

We summarize the experiments below:

1. In document clustering, dimension reduction can
make significant improvement (the best perfor-
mances obtained by both LSI and LPI are better than
the baseline). However, in the real world, one cannot
test all the possibilities to find the optimal dimension-
ality. Therefore, LSI is less practical since it is hard to
estimate the optimal dimensionality. In contrast to
LSI, clustering after LPI might be a better choice. It is
easy for LPI to estimate the optimal dimension and
the performance is always better than baseline.

2. In dimension reduction for clustering, the local
geometric structure is more important than the
global structure. Based on the assumption that
neighboring points probably belong to the same
underlying class, the p-nearest graph in our LPI
algorithm gives an optimal approximation to the
labeled similarity matrix W in (5). Thus, even in an
unsupervised mode, LPI has discriminating power
to some extent which provides a better low-dimen-
sional representation for clustering.
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3. In document clustering, clustering after LPI is a good

linear approximation to spectral clustering. The

experiments on generalization capability showed that

LPI clustering might bemore applicable than spectral

clustering in that LPI is linear and is defined every-

where rather than just on the training data points.

6 CONCLUSIONS

A novel document clustering algorithm based on Locality

Preserving Indexing is proposed in this paper. Based on the

analysis of the computational properties of LPI, we

presented the modified LPI algorithm for document

clustering. Analysis on the relationship among LSI, LPI,

and LDA indicates that the affinity graph is the key to

distinguish these algorithms. The p-nearest neighbor graph

makes LPI approximate to LDA, which is supervised. A

complete graph makes LPI similar to LSI. Extensive

experiments on Reuters-21578 and TDT2 showed that our

algorithm performed much better than the LSI-based

clustering algorithm and close to the traditional spectral

clustering algorithm. Moreover, the linearity of LPI makes

our clustering algorithm more applicable than spectral

clustering when the data set is large.

Several questions remain to be investigated in our

future work:

1. In this paper, we gave some empirical estimation on
the dimensionality using LPI. However, it lacks a
strong theoretical foundation. How to estimate the
dimensionality in theory remains to be investigated.
Also, it remains unclear how to estimate the number
of topics hidden in the document set. These
two problems seem to be two sides of a coin in that
the dimensionality can be inferred from the number
of topics as suggested in our experiments.

2. As shown in Section 4, LPI provides an optimal
approximation to LDA which is supervised. Speci-
fically, we approximate the graph defined in (5) by a
p-nearest neighbor graph. The more accurate the
approximation is, the more discriminating power
our algorithm has. However, it is unclear if there
exists a better approximation and how to obtain it.

3. Clustering is inherently an unsupervised learning
process. In all of our experiments, the data points are
unlabeled. However, sometimes a small set of
labeled data points might be available. In such a
case, the unsupervised learning becomes semiunsu-
pervised (or, semisupervised) learning. Thus, the
optimal projection can be obtained by preserving
locality as well as separating the data points with
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Fig. 4. Generalization capability of LSI and LPI. (a) TDT2 corpus. (b) Reuters corpus.



different labels. It is unclear how to obtain such
constrained LPI, though it seems to be promising.
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