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Abstract. Effective document compression algorithms require that
scanned document images be first segmented into regions such as
text, pictures, and background. In this paper, we present a multilayer
compression algorithm for document images. This compression al-
gorithm first segments a scanned document image into different
classes, then compresses each class using an algorithm specifically
designed for that class. Two algorithms are investigated for seg-
menting document images: a direct image segmentation algorithm
called the trainable sequential MAP (TSMAP) segmentation algo-
rithm, and a rate-distortion optimized segmentation (RDOS) algo-
rithm. The RDOS algorithm works in a closed loop fashion by apply-
ing each coding method to each region of the document and then
selecting the method that yields the best rate-distortion trade-off.
Compared with the TSMAP algorithm, the RDOS algorithm can of-
ten result in a better rate-distortion trade-off, and produce more ro-
bust segmentations by eliminating those misclassifications which
can cause severe artifacts. At similar bit rates, the multilayer com-
pression algorithm using RDOS can achieve a much higher subjec-
tive quality than state-of-the-art compression algorithms, such as
DjVu and SPIHT. © 2001 SPIE and IS&T. [DOI: 10.1117/1.1344590]

1 Introduction

Common office devices such as digital photocopiers, fax
machines, and scanners require that paper documents be
digitally scanned, stored, transmitted, and then printed or
displayed. Typically, these operations must be performed
rapidly, and user expectations of quality are very high since
the final output is often subject to close inspection. Digital
implementation of this imaging pipeline is particularly for-
midable when one considers that a single page of a color
document scanned at 400–600 dpi ~dots per inch! requires
approximately 45–100 Mbytes of storage. Consequently,
practical systems for processing color documents require
document compression methods that achieve high compres-
sion ratios and at very low levels of image distortion.

Document images differ from natural images because
they usually contain well defined regions with distinct char-
acteristics, such as text, line graphics, continuous-tone pic-
tures, halftone pictures, and background. Typically, text re-
quires high spatial resolution for legibility, but does not
require high color resolution. On the other hand,
continuous-tone pictures need high color resolution, but can
tolerate low spatial resolution. Therefore, a good document
compression algorithm must be spatially adaptive, in order
to meet different needs and exploit different types of redun-
dancy among different image classes. Traditional compres-
sion algorithms, such as JPEG, are based on the assumption
that the input image is spatially homogeneous, so they tend
to perform poorly on document images.

Most existing compression algorithms for document im-
ages can be crudely classified as block-based approaches
and layer-based approaches. Block-based approaches, such
as Refs. 1–4, segment nonoverlapping blocks of pixels into
different classes, and compress each class differently ac-
cording to its characteristics. On the other hand, layer-
based approaches5–8 partition a document image into dif-
ferent layers, such as the background layer and the
foreground layer. Then, each layer is coded as an image
independently from other layers. Most layer-based ap-
proaches use the three-layer ~foreground/mask/background!
representation proposed in the ITU’s Recommendations
T.44 for mixed raster content ~MRC!. The foreground layer
contains the color of text and line graphics, and the back-
ground layer contains pictures and background. The mask
is a bi-level image which determines, for each pixel in the
reconstructed image, if the foreground color or the back-
ground color should be used. However, block-based and
layer-based document image representation approaches are
closely related. With some overhead, they can be ex-
changed from one to the other. In addition, they can some-
times be combined to achieve better performance.

The performance of a document compression system is
directly related to its segmentation algorithm. A good seg-
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mentation cannot only lower the bit rate, but also lower the
distortion. On the other hand, those artifacts which are most
damaging are often caused by misclassifications.

Some segmentation algorithms which have been pro-
posed for document compression use features extracted
from the discrete cosine transform ~DCT! coefficients to
separate text blocks from picture blocks. For example,
Murata1 proposed a method based on the absolute values of
DCT coefficients, and Konstantinides and Tretter3 use a
DCT activity measure to switch among different scale fac-
tors of JPEG quantization matrices. Other segmentation al-
gorithms are based on the features extracted directly from
the input document image. The DjVu document compres-
sion system6 uses a multiscale bicolor clustering algorithm
to separate foreground and background. In Ref. 7, text and
line graphics are extracted from a check image using mor-
phological filters followed by thresholding. Ramos and de
Queiroz proposed a block-based activity measure as a fea-
ture for separating edge blocks, smooth blocks, and detailed
blocks for document coding.4

In this paper, we present a multilayer document com-
pression algorithm. This algorithm first classifies 838 non-
overlapping blocks of pixels into different classes, such as
text, picture, and background. Then, each class is com-
pressed using an algorithm specifically designed for that
class. Two segmentation algorithms are used for the
multilayer compression algorithm: a direct image segmen-
tation algorithm called the trainable sequential MAP
~TSMAP! algorithm,9 and a rate-distortion optimized seg-
mentation ~RDOS! algorithm developed for document
compression.10

The TSMAP algorithm is a representative of most docu-
ment segmentation algorithms in that it computes the seg-
mentation from only the input document image. The disad-
vantage of such direct segmentation approaches for
document coding is that they do not exploit knowledge of
the operational performance of the individual coders, and
that they cannot be easily optimized for different target bit
rates.

In order to address these problems, we propose a seg-
mentation algorithm which optimizes the actual rate-
distortion performance for the image being coded. The
RDOS method works by first applying each coding method
to each region of the image, and then selecting the class for
each region which approximately maximizes the rate-
distortion performance. The RDOS optimization is based
on the measured distortion and an estimate of the bit rate
for each coding method. Compared with direct image seg-
mentation algorithms ~such as the TSMAP segmentation
algorithm!, RDOS has several advantages. First, RDOS
produces more robust segmentations. Intuitively, misclassi-
fications which cause severe artifacts are eliminated be-
cause all possible coders are tested for each block of the
image. In addition, RDOS allows us to control the trade-off
between the bit rate and the distortion by adjusting a
weight. For each weight set by a user, an approximately
optimal segmentation is computed in the sense of rate and
distortion.

Recently, there has been considerable interest in opti-
mizing the operational rate-distortion characteristics of im-
age coders. Ramchandran and Vetterli11 proposed a rate-
distortion optimal technique to drop quantized DCT

coefficients of a JPEG or an MPEG coder. Effros and
Chou12 introduced a two-stage bit allocation algorithm for a
simple DCT-based source coder. ~The DCT-based coder
used in Ref. 12 differs from JPEG because the dc compo-
nent is not differentially encoded, and no zigzag run-length
encoding of the ac components is used.! Their encoder uses
a collection of quantization matrices, and each block of
DCT coefficients is quantized using a quantization matrix
selected by the ‘‘first-stage quantizer.’’ The two-stage bit
allocation is optimized in the sense of rate and distortion.
Schuster and Katsaggelos13 apply rate-distortion optimiza-
tion for video coding. But importantly, they also model the
one-dimensional inter-block dependency for estimating the
bit rate and distortion, and the optimization problem is
solved by dynamic programming techniques. For a compre-
hensive review of rate-distortion methods for image com-
pression, one can refer to Ref. 14.

Our approach to optimizing rate-distortion performance
differs from these previous methods in a number of impor-
tant ways. First, we switch among different types of coders,
rather than switching among sets of parameters for a fixed
vector quantizer ~VQ!, DCT, or Karhunén–Loeve ~KL!
transform coder. In particular, we use a coder optimized for
text representation that cannot be represented as a DCT
coder, VQ coder, or KL transform coder. Our text coder
works by segmenting each block into foreground and back-
ground pixels in a manner similar to that used by Har-
rington and Klassen.2 By exploiting the bi-level nature of
text, this coder gives performance which is far superior to
what can be achieved with transform coders. Another dis-
tinction of our method is that different coders use some-
what different distortion measures. This is motivated by the
fact that perceived quality for text, graphics, and pictures
can be quite different. A class-dependent distortion mea-
sure is also found valuable in Ref. 4. Our approach is simi-
lar in concept to the one proposed by Reusens et al. for
MPEG-4 video coding,15 where five compression models
are used for video conference applications: motion com-
pensation model, background model, bi-color text and
graphics model, DCT model, and fractal model. However,
they use a square-error distortion measure. In addition, to
minimize the coding cost of compressing a document im-
age Haffner et al. proposed a minimum description length
filtering of segmentation returned by the hierarchical color
clustering algorithm.16 But, distortion was not considered in
their optimization.

We test the multilayer compression algorithm on both
scanned and noiseless synthetic document images. For typi-
cal document images, we can achieve compression ratios
ranging from 180:1 to 250:1 with very high quality recon-
structions. In addition, experimental results show that, in
this range of compression ratios, the multilayer compres-
sion algorithm using RDOS results in a much higher sub-
jective quality than well-known compression algorithms,
such as DjVu, SPIHT,17 and JPEG.

2 Multilayer Compression Algorithm

The multilayer compression algorithm shown in Fig. 1 clas-
sifies each 838 block of pixels into one of four possible
classes: picture block, two-color block, one-color block,
and other block. Each of the four classes corresponds to a
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specific coding algorithm which is optimized for that class.
The class labels of all blocks are compressed and sent as
side information.

The flow diagram of our compression algorithm is
shown in Fig. 2. Ideally, one-color blocks should be from
uniform background regions, and each one-color block is
represented by an indexed color. The color indices of one-
color blocks are finally entropy coded using an arithmetic
coder. Two-color blocks are from text or line graphics, and
they need to be coded with high spatial resolution. There-
fore, for each two-color block, a bi-level thresholding is
used to extract two colors ~one foreground color and one
background color! and a binary mask. Since two-color
blocks can tolerate low color resolution, both the fore-
ground and the background colors of two-color blocks are
first quantized, and then entropy coded using the arithmetic
coders. The binary masks are coded using a JBIG2 coder.
Picture blocks are generally from regions containing either
continuous-tone or halftone picture data; these blocks are
compressed by JPEG using customized quantization tables.
In addition, some regions of text and line graphics cannot
be accurately represented by two-color blocks. For ex-
ample, thin lines bordered by regions of two different col-

ors require a minimum of three or more colors for accurate
representation. We assign these problematic blocks to the
other block class. Other blocks are JPEG compressed to-
gether with picture blocks. But they use different quantiza-
tion tables which have much lower quantization steps than
those used for picture blocks. The details of compression
and decompression of each of these four classes are de-
scribed in the following subsections.

Throughout this paper, we use y to denote the original
image and x to denote its 838 block segmentation. Also,

y i denotes the ith 838 block in the image, where the

blocks are taken in raster order, and x i denotes the class

label of block i, where 0<i,L , and L is the total number

of blocks. The set of class labels is then N

5$One ,Two ,Pic ,Oth%, where One, Two, Pic, Oth repre-
sent one-color, two-color, picture, and other blocks, respec-
tively.

2.1 Compression of One-Color Blocks

Each one-color block is represented by an indexed color.
Therefore, for one-color blocks, we first extract the mean
color of each block, and then color quantize the mean col-
ors of all one-color blocks. Finally, the color indices are
entropy coded using an arithmetic coder based on a third
order Markov model.18 When reconstructing one-color
blocks, smoothing is used among adjacent one-color blocks
if their maximal difference along all three color coordinates
is less than 12.

2.2 Compression of Two-Color Blocks

The two-color class is designed to compress blocks which
can be represented by two colors, such as text blocks. Since
two-color blocks need to be coded with high spatial reso-
lution, but can tolerate low color resolution, each two-color
block is represented by two indexed colors and a binary
mask. The bi-level thresholding algorithm that we use for
extracting the two colors and the binary mask use a mini-
mal mean squared error ~MSE! thresholding followed by a
spatially adaptive refinement. The algorithm is performed
on two block sizes. First, 838 blocks are used. But some-

times an 838 block may not contain enough samples from
both color regions for a reliable estimate of the colors of
both regions and the binary mask. In this case, a 16316

block centered at the 838 block will be used instead.
The minimal MSE thresholding algorithm is illustrated

in Fig. 3. For a two-color block y i , we first project all

colors of y i onto the color axis a* which has the largest
variance among three color axes. The thresholding is done
only on a*. Since we are mainly interested in high quality
document images where text is sharp and the noise level is
low, the projection step significantly lowers the computa-
tion complexity without sacrificing the quality of the bi-
level thresholding. For a threshold t on a*, t partitions all

colors into two groups. Let E i(t) be the MSE, when colors
in each group are represented by the mean color of that
group. We compute the value t* which minimizes E i(t).

Then, t* partitions the block into two groups, G i ,0 and

G i ,1 , where the mean color of G i ,0 has a larger l1 norm

than the mean color of G i ,1 . Let c i , j be the mean color of

G i , j , where j50,1. Then, ic i ,0i1.ic i ,1i1 is true for all i.

Fig. 1 General structure of the multilayer document compression
algorithm.

Fig. 2 Flow diagram of the multilayer document compression algo-
rithm.
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We call c i ,0 the background color of block i, and c i ,1 the

foreground color of block i. The binary mask which indi-

cates the locations of G i ,0 and G i ,1 is denoted as b i ,m ,n ,

where b i ,m ,nP$0,1%, and 0<m ,n<7.
The minimal MSE thresholding usually produces a good

binary mask. But c i ,0 and c i ,1 are often biased estimates.
This is mainly caused by the boundary points between two
color regions since their colors are a combination of the

colors of the two regions. Therefore, c i ,0 and c i ,1 need to be

refined. Let a point in block i be an internal point of G i , j ,
if the point and its eight nearest neighbors all belong to

G i , j . If a point is not an internal point of either G i ,0 or

G i ,1 , we call it a boundary point. Also, denote the set of

internal points of G i , j as G̃ i , j . If G̃ i , j is not empty, we set

c i , j to the mean color of G̃ i , j . When G̃ i , j is empty, we

cannot estimate c i , j reliably. In this case, if the current

block size is 838, we will enlarge the block to 16316
symmetrically along all directions, and use the same bi-
level thresholding algorithm to extract two colors and a

16316 mask. Then, the two colors extracted from the 16

316 block are used as c i ,0 and c i ,1 , and the middle portion

of the 16316 mask is used as b i ,m ,n . If G̃ i , j is empty, and

the current block is a 16316 block, c i , j will be used as it is
without refinement.

After bi-level thresholding, foreground colors, $c i ,1ux i

5Two%, and background colors, $c i ,0ux i5Two%, of all
two-color blocks are quantized separately. Then, the color
indices of foreground colors are packed in raster order, and
compressed using an arithmetic coder based on a third or-
der Markov model. The color indices of background colors
are compressed similarly.

To compress the binary masks, b i ,m ,n , we form them
into a single binary image B which has the same size as the
original document image y. Any block in B which does not

correspond to a two-color block is set to 0’s, and any block
corresponding to a two-color block is set to the appropriate

binary mask b i ,m ,n . The binary image B is then compressed
by a JBIG2 coder using the lossless soft pattern matching
technique.19

2.3 Compression of Picture Blocks and Other
Blocks

Picture blocks and other blocks are all compressed using
JPEG. Therefore, they are also called JPEG blocks. Picture
blocks are compressed using quantization tables similar to
the standard JPEG quantization table at quality level 20;
however, the quantization steps for the dc coefficients in
both luminance and chrominance are set to 15. Other
blocks use the standard JPEG quantization tables at quality
level 75.

The JPEG standard generally uses 232 subsampling of
the two chrominance channels to reduce the overall bit rate.
This means that each 838 JPEG chrominance block will
correspond to four JPEG blocks in the luminance channel.
If any one of the four luminance blocks is JPEG’ed then the
corresponding chrominance block will also be JPEG’ed.
More specifically, the class of each chrominance block is
denoted by z j where j indexes the block. The class of the

chrominance block can take on the values z j

P$Pic ,Oth ,NoJ% where NoJ indicates that the chromi-

nance block is not JPEG’ed. The specific choice of z j will
depend on the choice of either the TSMAP or the RDOS
methods of segmentation, and will be discussed in detail in
Secs. 3.1 and 3.2.

All the JPEG luminance blocks ~i.e., those of type Pic or
Oth! are packed in raster order, and then JPEG coded using
conventional zigzag run length encoding followed by the
default JPEG Huffman entropy coding. The same proce-
dure is used for the chrominance blocks of type Pic or Oth
but with the corresponding chrominance JPEG default
Huffman table. We note that the number of luminance
blocks will in general be less than four times the number of
chrominance blocks. This is because some chrominance
blocks may correspond to a set of four luminance blocks
that are not all JPEG’ed. As an implementational detail, we
add blocks of zeros at the end of JPEG luminance blocks
packed in raster order to make the total number of JPEG
luminance blocks equal to four times the number of JPEG
chrominance blocks. Therefore, we can use the standard
JPEG library routines provided by the Independent JPEG
Group.

2.4 Additional Issues

The block segmentation x for the luminance blocks is en-
tropy coded using an arithmetic coder based on a third or-
der Markov model. We will see that for the TSMAP
method, the chrominance block segmentation, z, can be
computed from x, so it does not need to be coded sepa-
rately. However, for the RDOS method, z5$z j% is also en-
tropy coded using the arithmetic coder.

As stated above, the two-color blocks and one-color
blocks use color quantization as a preprocessing step to
coding. Color quantization vector quantizes the set of col-
ors into a relatively small set or palette. Importantly, differ-
ent classes use different color palettes for the quantization
since this improves the quality without significantly in-
creasing the bit rate. In all cases, we use the binary splitting
algorithm of Ref. 20 to perform color quantization. The
binary splitting algorithm is terminated when either the
number of colors exceeds 255 or the principal eigenvalue
of the covariance matrix of every leaf node is less than a

Fig. 3 Minimal MSE thresholding. We use a* to denote the color

axis with the largest variance, and b* to denote the principle axis, t*

is the optimal threshold on a*, and x’s are the samples projected

on a*.
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threshold of 10 for the one-color blocks and 30 for the
two-color blocks.

3 Segmentation Algorithms

In order to better understand the role of segmentation in
document compression, we will compare two different
types of segmentation algorithms: the TSMAP algorithm of
Ref. 9, and the RDOS described in the following section.
The TSMAP is a representative of a broad class of direct
segmentation algorithms that segment the document based
solely on the document image. In contrast, the RDOS
method works in a closed loop fashion by applying each
coding method to each region of the document and then
selecting the method that yields the best rate-distortion
trade-off.

In essence, the TSMAP method makes decisions without
regard to the specific properties or performance of the in-
dividual coders that are used. Its advantage is simplicity
since it does require that each coding method be applied to
each region of the document. However, we will see that
direct segmentation methods such as TSMAP have two ma-
jor disadvantages. First, they tend to result in infrequent but
serious misclassification errors. For example, even if only a
few two-color blocks are misclassified as one-color blocks,
these misclassifications will lead to broken lines and
smeared text strokes that can severely degrade the quality
of the document. Second, the segmentation is usually com-
puted independently of the bit rate and the quality desired
by the user. This causes inefficient use of bits and even
artifacts in the reconstructed image.

Alternatively, the RDOS method requires greater com-
putation, but insures that each block is coded using the
method which is best suited to it. We will see that this
results in more robust segmentations which yield a better
rate-distortion trade-off at every quality level. The follow-
ing sections give details of the TSMAP and RDOS meth-
ods.

3.1 TSMAP Segmentation Algorithm

The first segmentation algorithm used for the multilayer
document compression is the TSMAP segmentation
algorithm.9 The TSMAP algorithm is based on the multi-
scale Bayesian approach proposed by Bouman and
Shapiro.21 Figure 4 shows the TSMAP segmentation
model. It has a novel multiscale context model which can
capture complex aspects of both local and global contextual
behavior. In addition, our multiscale image model uses lo-
cal texture features extracted via a wavelet decomposition,
and the textural information at various scales is captured.

The parameters which describe the characteristics of
typical images are extracted from a database of training
images which are produced by scanning typical images and
manually segmenting them into desired components. Once
the training procedure is performed, scanned documents
may be segmented using a fine-to-coarse-to-fine procedure
that is computationally efficient.

In the multilayer document compression algorithm, we
first use the TSMAP algorithm to segment each block into
one-color, two-color or picture blocks. Other blocks are
then selected from two-color blocks using a postprocessing
operation. Recall from Sec. 2.2 that each two-color block
y i , is partitioned into two groups G i ,0 and G i ,1 . Then, we
calculate the average distance ~in YCrCb color space! of
the boundary points to the line determined by the back-
ground color c i ,0 and the foreground color c0,1 . If the av-
erage distance is larger than 45, re-classify the current
block to other block. Also, if the total number of internal
points of G i ,0 and G i ,1 is less than or equal to 8, we re-
classify the current block to one-color block.

When TSMAP is used, the class of each chrominance
block is determined from the classes of the four corre-
sponding luminance blocks.

If any of the four luminance blocks is of type Oth, then
set the chrominance block to Oth.

Else if any of the four luminance blocks is of type Pic,
then set chrominance block to Pic.

Else set chrominance block to NoJ.
Intuitively, each chrominance block is set to the highest
quality of its corresponding luminance blocks.

The current implementation of the TSMAP algorithm
can only be used for grayscale images. In addition, because
the structure of the wavelet decomposition is used for fea-
ture extraction, TSMAP produces a segmentation map
which has half the spatial resolution of the input image.
Therefore, in order to compute an 838 block segmentation
of a 400 dpi color image, we first subsample the original
image by a factor of 4 using block averaging, and then
convert the subsampled image into a grayscale image. The
grayscale image will be used as the input image to TSMAP
for computing the 838 block segmentation.

3.2 Rate-Distortion Optimized Segmentation

Let R(y ux) be the number of bits required to code image y

with block segmentation x. Let R(x) be the number of bits

required to code x, and D(y ux) be the total distortion re-
sulting from coding y with segmentation x. Then, the rate-
distortion optimized segmentation, x*, is

x*5arg min
xPN L

$R~y ux !1R~x !1lD~y ux !%, ~1!

where l is a non-negative real number which controls the
trade-off between bit rate and distortion. In our approach,
we assume that l is a constant controlled by a user which
has the same function as the quality level in JPEG.

To compute RDOS, we need to estimate the number of
bits required for coding each block using each coder, and
the distortion of coding each block using each coder. For
computational efficiency, we assume that the number of
bites required for coding a block only depends on the image

Fig. 4 The TSMAP segmentation model. The left pyramid models
the contextual behavior, while the right pyramid models the data

features extracted using a Haar wavelet transform. X (n) are class

labels at scale n, and Y (n) are image feature vectors extracted at
scale n.
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data and class labels of that block and the previous block in
raster order. We also assume that the distortion of a block
can be computed independently from other blocks. With
these assumptions, Eq. ~1! can be rewritten as

x*5arg min

$x0 ,x1 , . . . ,xL21%PN L

(
i50

L21

$R i~x iux i21!1Rx~x iux i21!

1lD i~x i!%, ~2!

where R i(x iux i21) is the number of bits required to code

block i using class x i given x i21 , Rx(x iux i21) is the num-
ber of bits needed to code the class label of block i, and
D i(x i) is the distortion produced by coding block i as class

x i . After the rate and distortion are estimated for each
block using each coder, Eq. ~2! can be solved by a dynamic
programming technique similar to that used in Ref. 13.

An important aspect of our approach is that we use a
class-dependent distortion measure. This is desirable be-
cause, for document images, different regions, such as text,
background, and pictures, can tolerate different types of
distortion. For example, errors in high frequency bands can
be ignored in background and picture regions, but they can
cause severe artifacts in text regions.

In the following sections, we specify how to compute
the rate and distortion terms for each of the four classes,
one-color, two-color, picture and other. The expressions for
rate are often approximate due to the difficulties of accu-
rately modeling high performance coding methods such as
JBIG2. However, our experimental results indicate that
these approximations are accurate enough to consistently
achieve good compression results. For the purposes of this
work, we also assume that the term Rx(x iux i21)50. This is
reasonable since coding the block segmentation x requires
only an insignificant number of overhead bits to code, typi-
cally less than 0.01 bits per color pixel.

3.2.1 One-color blocks

Recall from Sec. 2.1 that each one-color block is repre-
sented by an indexed color. Color indices of all one-color
blocks are entropy coded with an arithmetic coder based on
a third order Markov model. But for simplicity, the number
of bits used for coding a one-color block is estimated with
a first order approximation. That is when x i and x i21 are all
one-color blocks, we let

R i~x iux i21!52log2 pm~m ium i21!,

where m i is the indexed color of block i, and pm(m ium i21)
is the transition probability of indexed colors between ad-
jacent blocks. When x i21 is not a one-color block, we let

R i~x iux i21!52log2 pm~m i!.

To estimate pm(m ium i21) and pm(m i), we assume that all
blocks are one-color blocks, and compute the probabilities.

In addition, the total squared error in YCrCb color space
is used as the distortion measure of one-color blocks. If
x i5One , then

D i~x i!5 (
m50

7

(
n50

7

iy i ,m ,n2m ii
2,

where y i ,m ,n is the color of pixel ~m,n! in the ith block y i ,

0<m , n<7, and iai5Aa ta .

3.2.2 Two-color blocks

A two-color block is represented by two indexed colors and
a binary mask. For block i, let c̃ i ,0 , c̃ i ,1 be the two indexed

colors, and let b i ,m ,n be the binary mask for block i where

0<m , n<7. Then, in the reconstructed image, the color of

pixel ~m,n! in block i is c̃ i ,b i ,m ,n
.

The bits used for coding the two indexed colors

are approximated as 2( j50
1 log2 pj(c̃i,juc̃i21,j), where

p j( c̃ i , ju c̃ i21,j) is the transition probability of the j th in-
dexed color between adjacent blocks in raster order. We
also assume that the number of bits for coding b i ,m ,n only

depends on its four causal neighbors, denoted as V i ,m ,n

5@b i ,m21,n21 ,b i ,m21,n ,b i ,m21,n11 ,b i ,m ,n21# t. Define

b i ,m ,n to be 0, if m,0 or n,0 or m.7 or n.7. Then, the
number of bits required to code the binary mask is approxi-
mated as

2 (
m50

7

(
n50

7

log2 pb~b i ,m ,nuV i ,m ,n!,

where pb(b i ,m ,nuV i ,m ,n) is the transition probability from
the four causal neighbors to pixel ~m,n! in block i. There-
fore, when x i and x i21 are both two-color blocks, the total
number of bits is estimated as

R i~x iux i21!52(
j50

1

log2 p j~ c̃ i , ju c̃ i21,j!

2 (
m50

7

(
n50

7

log2 pb~b i ,m ,nuV i ,m ,n!.

If x i21 is not a two-color block, we use p j( c̃ i , j) instead of

p j( c̃ i , ju c̃ i21,j) to estimate the number of bits for coding the

color indices. The probabilities p j( c̃ i , j), p j( c̃ i , ju c̃ i21,j), and

Fig. 5 Two-color distortion measure c̃0 and c̃1 are indexed mean

colors of group G0 and G1 , respectively, g is the line determined by

c̃0 and c̃1 . The distance between a color c and g is d. When c is a

combination of c̃0 and c̃1 , d50.
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pb(b i ,m ,nuV i ,m ,n) are estimated for all 838 blocks whose
maximal dynamic range along the three color axes is larger
or equal to 8.

The distortion measure used for two-color blocks is de-
signed with the following considerations. In a scanned im-
age, pixels on the boundary of two color regions tend to
have a color which is a combination of the colors of both
regions. Since only two colors are used for the block, the
boundaries between the color regions are usually sharp-
ened. Although the sharpening generally improves the qual-
ity, it gives a large difference in pixel values between the
original and the reconstructed images on boundary points.

On the other hand, if a block is not a two-color block, a
third color often appears on the boundary. Therefore, a de-
sired distortion measure for two-color coder should not ex-
cessively penalize the error caused by sharpening, but has
to produce a high distortion value, if more than two colors
exist. Also, desired two-color blocks should have a certain
proportion of internal points. If a two-color block has very
few internal points, the block usually comes from back-
ground or halftone background, and it cannot be a two-
color block. To handle this case, we set the cost to the
maximal cost, if the number of internal points is less than
or equal to 8.

Fig. 6 Segmentation results of TSMAP and RDOS. (a) Test image I. (b) TSMAP segmentation of test
image I; achieved bit rate is 0.138 bpp (173:1 compression). (c) RDOS segmentation of test image I

with l 5 0.0021; achieved bit rate is 0.132 bpp (182:1 compression). (d) Test image II. © 1994 IEEE.
Reprinted, with permission, from IEEE Spectrum, page 33, July 1994. (e) TSMAP segmentation of test
image II; achieved bit rate is 0.120 bpp (200:1 compression). (f) RDOS segmentation of test image II

with l 5 0.0018; achieved bit rate is 0.114 bpp (210:1 compression). Black, gray, white, dark gray
represent two-color, picture, one-color, and other blocks, respectively.
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The distortion measure for the two-color block is de-
fined as follows. Define I i ,m ,n as an indicator function.

I i ,m ,n51, if ~m,n! is an internal point. I i ,m ,n50, if ~m,n! is a

boundary point. If x i5Two , then

D i~x i!55
(
m50

7

(
n50

7

[I i ,m ,niy i ,m ,n2 c̃ i ,b i ,m ,n
i2

1~12I i ,m ,n!d2~y i ,m ,n ; c̃ i ,0 , c̃ i ,1!],

if (
j50

1

uG̃ i , ju.8

2552
36433, if (

j50

1

uG̃ i , ju<8,

where uG̃ i , ju is the set of internal points of G i , j, uG̃ i , ju is the

number of elements in the set G̃ i , j , and d(y i ,m ,n ; c̃ i ,0 , c̃ i ,1)

is the distance between y i ,m ,n and the line determined by

c̃ i ,0 and c̃ i ,1 . As illustrated in Fig. 5, if a color c is a com-

bination of c1 and c2 , c will be on the line determined by

c1 and c2 , d(c;c1 ,c2)50. Therefore, for boundary points

of two-color blocks, d(y i ,m ,n ; c̃ i ,0 , c̃ i ,1) is small. However,
if a third color does exist on a boundary point,
d(y i ,m ,n ; c̃ i ,0 , c̃ i ,1) tends to be large.

3.2.3 JPEG blocks

JPEG blocks contain both picture blocks and other blocks.
The bits required for coding a JPEG block i can be divided
into two parts: the bits required for coding the luminance of

block i, denoted as R i
l(x iux i21), and the bits for coding the

chrominance, denoted as R i
c(x iux i21). Therefore

R i~x iux i21!5R i
l~x iux i21!1R i

c~x iux i21!.

Fig. 7 Comparison between images compressed using the TSMAP
segmentation and the RDOS segmentation at similar bit rates. (a) A
portion of the original test image I. (c) A portion of the reconstructed
image compressed with the TSMAP segmentation at 0.138 bpp
(173:1 compression). (b) A portion of the reconstructed image com-
pressed with the RDOS segmentation at 0.132 bpp (182:1 compres-

sion), where l50.0021.

Table 1 Bit rates, compression ratios, and RDOS distortion per pixel per color channel of three test
images compressed by the multilayer compression algorithm using both TSMAP and RDOS.

Image
Segmentation

algorithm
Bit rate
(bbp)

Compression
ratio

RDOS distortion
per pixel per color l

Test image I TSMAP 0.138 173:1 27.58 n/a

RDOS 0.132 182:1 23.47 0.0021

RDOS 0.125 192:1 24.99 0.0018

RDOS 0.095 253:1 31.00 0.0013

Test image II TSMAP 0.120 200:1 40.33 n/a

RDOS 0.114 210:1 32.14 0.0018

Test image III TSMAP 0.089 245:1 32.12 n/a

(synthetic) RDOS 0.101 237:1 3.40 0.0042

Table 2 Mean and standard deviation of the bit rate of coding of
each class computed over 30 document images scanned at 400 dpi

and 24 bpp. These images are compressed using RDOS with l

50.0018.

Classes Average bit rate (bbp) Standard deviation

One color 0.0240 0.0092

Two color 0.3442 0.1471

JPEG 0.8517 0.3260

Segmentations 0.0097 0.0002
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Let a i
d(x i) be the quantized dc coefficients of the lumi-

nance using the quantization table specified by class x i ,

and a i
a(x i) be the vector which contains all 63 quantized ac

coefficients of the luminance of block i. Using the standard

JPEG Huffman tables for luminance, R i
l(x iux i21) can be

computed as

R i
l~x iux i21!5rd@a i

d~x i!2a i21
d ~x i21!#1ra@a i

a~x i!# ,

where rd@•# is the number of bits used for coding the dif-
ference between two consecutive dc coefficients of the lu-
minance component, and ra@•# is the number of bits used
for coding ac coefficients. The formula for calculating

rd@•# and ra@•# is specified in the JPEG standard.22 Notice

that when x i21 is also a JPEG class, R i(x iux i21) is the

exact number of bits required for coding the luminance

component using JPEG. If x i21 is not a JPEG class, we

assume that the previous quantized dc value is 0. ~In the

JPEG library, a 0 dc value corresponds to a block average

of 128.!

Since the two chrominance components are subsampled

232, we approximate the number of bits for coding the

chrominance components of an 838 block i , R i
c(x iux i21),

as follows. Let j be the index of the 16316 block which

contains block i. Also, let b j ,k
d (z j) be the quantized dc co-

Fig. 8 RDOS segmentations with different l’s. (a) Test image I. (b) RDOS segmentation with l1

50.0013; achieved bit rate is 0.095 bpp (253:1 compression). (c) RDOS segmentation with l2

50.0018; achieved bit rate is 0.125 bpp (192:1 compression). Black, gray, white, dark gray represent
two-color, picture, one-color, and other blocks, respectively.

Fig. 9 Comparison of rate-distortion performance of the multilayer document compression algorithm
using RDOS, TSMAP, and manual segmentations.
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efficient of the kth chrominance component using the

chrominance quantization table of class z j , and b j ,k
a (z j) be

the vector of the quantized ac coefficients. Then, we as-
sume that

R i
c~x iux i21!5

1

4 (
k50

1

$rd8@b j ,k
d ~x i!2b j21,k

d ~x i21!#

1ra8@b j ,k
a ~x i!#%,

where rd8@•# is the number of bits used for coding the dif-

ference between two consecutive dc coefficients of the

chrominance components, and ra8@•# is the number of bits

used for coding ac coefficients of the chrominance compo-

Fig. 10 Test image III and its segmentations. (a) Test image III. (b) RDOS segmentation with l

50.0042; achieved bit rate is 0.101 bpp (237:1 compression). (c) A manual segmentation, achieved
bit rate is 0.153 bpp (156:1 compression). Black, gray, white, dark gray represent two-color, picture,
one-color, and other blocks, respectively.

Fig. 11 Compression result I. (a) A portion of the original test image
III. (b) RDOS compressed at 0.101 bpp (237:1 compression), where

l50.0042. (c) DjVu compressed at 0.103 bpp (232:1 compression).
(d) SPIHT compressed at 0.103 bpp (233:1 compression). (e) JPEG
compressed at 0.184 bpp (131:1 compression).

Fig. 12 Compression result II. (a) A portion of the original test im-
age III. (b) RDOS compressed at 0.101 bpp (237:1 compression),

where l50.0042. (c) DjVu compressed at 0.103 bpp (232:1 com-
pression). (d) SPIHT compressed at 0.103 bpp (233:1 compres-
sion).
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nents. Notice that we split the bits used for coding the
chrominance equally among the four corresponding 838
blocks of the input document image, and assume that the
classes of the chrominance blocks j , j21 are x i and x i21 ,
respectively.

The total squared error in YCrCb is used as the distor-
tion measure for JPEG blocks. The distortion is computed
in the DCT domain, eliminating the need to compute in-

verse DCT’s. Let e i
l(x i) be the quantization error of lumi-

nance DCT coefficients of block i using the luminance

quantization table of x i , and e j ,k
c (z j) be the quantization

error of DCT coefficients of the kth chrominance compo-

nent of the 16316 block containing block i using the

chrominance quantization table of z j . Then, the distortion
is approximately given by

D i~x i!5ie i
l~x i!i2

1 (
k50

1

ie j ,k
c ~x i!i2.

Here, we approximate the distortion due to the chromi-

nance channels by dividing the chrominance error among
the four corresponding 838 blocks of the luminance chan-
nel.

In RDOS, the chrominance segmentation is not com-
puted from the 838 block segmentation x. It is computed
separately using a similar rate-distortion approach followed
by a postprocessing step. Let ỹ j be the j th 16316 block in

raster order. We first compute a 16316 block segmentation

z5$z0 ,z1 , . . . ,zL/421% which is rate distortion optimized

with the constrain that zP$Pic ,Oth%L/4. Ignoring the bits
used for coding z, z is computed as

z5arg min
z8P$Pic ,Oth%L/4

(
j50

L/421

$R̃ j~z j8uz j218 !1lD̃ j~z j8!%,

where R̃ j(z juz j21) is the number of bits required for coding

ỹ j with segmentation z i given z j21 ,

Fig. 13 Compression result III. (a) A portion of the original test image II. (b) RDOS compressed at 0.114 bpp (210:1 compression), where

l50.0018. (c) DjVu compressed at 0.114 bpp (211:1 compression). (d) SPIHT compressed at 0.114 bpp (211:1 compression).
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R̃ j~z juz j21!5 (
k50

1

$rd8@b j ,k
d ~z j!2b j21,k

d ~z j21!#

1ra8@b j ,k
a ~z j!#%

and D̃ j(z j) is the distortion of coding ỹ j with segmentation

z j

D̃ j~z j!5 (
k50

1

ie j ,k
c ~z j!i2.

Finally, in the postprocessing step, we set z j to NoJ, if none

of the four 838 blocks corresponding to j is either a pic-
ture block or an other block.

4 Experimental Results

For our experiments, we use an image database consisting
of 30 scanned and one synthetic document image. The
scanned documents come from a variety of sources, includ-
ing ASEE Prism and IEEE Spectrum. These documents are
scanned at 400 dpi and 24 bits per pixel ~bpp! using the HP
flatbed scanner, scanjet 6100C. A large portion of the 30
scanned images contain halftone background and have
ghosting artifacts caused by printing on the reverse side of
the page. These images are used without preprocessing.
The synthetic image is shown in Fig. 10. To obtain a color
version of the experimental results, please visit
http://dynamo.ecn.purdue.edu/~bouman/publications or
visit http://min.ecn.purdue.edu/~hui. It has a complex lay-
out structure and many colors. It is used to test the ability

of a compression algorithm to handle complex document
images. The TSMAP segmentations are computed using the
parameters obtained in Ref. 9. These parameters were ex-
tracted from a separate set of 20 manually segmented gray-
scale images scanned at 100 dpi.

Figures 6~a! and 6~d! show the original test image I and
test image II ~©1994 IEEE. Reprinted, with permission,
from IEEE Spectrum, page 33, July 1994!. Their TSMAP
segmentations are shown in Figs. 6~b! and 6~e!. Figure 6~c!
is the RDOS segmentation of test image I with l

50.0021, and Fig. 6~c! is the RDOS segmentation of test

image II with l50.0018. The bit rates and compression
ratios of these test images compressed by the multilayer
compression algorithm using both TSMAP and RDOS are
shown in Table 1.

Both TSMAP and RDOS segmentations classify most of
the regions correctly. In many ways, TSMAP segmenta-
tions appear better than RDOS segmentations with solid
picture regions and clearly defined boundaries. In contrast,
the RDOS segmentation often classifies smooth regions of
pictures as one-color class. In fact, this yields a lower bit
rate without producing noticeable distortion. More impor-
tantly, RDOS more accurately segments two-color blocks.
For example, in Fig. 6~e!, several line segments in the
graphics are misclassified as one-color blocks.

In Fig. 7, we compare the quality of reconstructed im-
ages compressed using both the TSMAP segmentation and
the RDOS segmentation at similar bit rates. Figures 7~a!,
7~b!, and 7~c! show a portion of test image I together with
the results of compression using the TSMAP and RDOS
methods. We can see from Fig. 7~b! that several textstrokes
are smeared, when the image is compressed using the TS-
MAP segmentation. These artifacts are caused by misclas-
sifying two-color blocks as one-color blocks. This type of
misclassification does not occur in the RDOS segmentation.

In Table 2, we list the average bit rate and standard
deviation of each class computed over 30 scanned docu-
ment images. These images are compressed using RDOS
segmentation with l50.0018. Although JPEG classes in-

clude picture class and other class, when l50.0018, very
few blocks are segmented as other blocks. Therefore, the
listed average bit rate for JPEG classes is close to the av-
erage bit rate for picture class. The bit rate for segmenta-
tions includes both for the 838 block segmentation and the
chrominance segmentation.

Figure 8 shows the RDOS segmentations of test image I
using different l’s, where l150.013 and l250.018. It can
be seen that for smaller l, less weight is put on the distor-
tion, and more blocks are segmented as one-color blocks.
When l increases, more weight is put on the distortion, and
more blocks are segmented as picture blocks. But in all
cases, text blocks are reliably classified as l changes within
a reasonable range.

In Fig. 9, we compare the rate-distortion performance
achieved by the multilayer compression algorithm using
RDOS, TSMAP, and manual segmentations. Figure 9~a! is
computed from test image I shown in Fig. 6~a!, and Fig.
9~b! is computed from test image III, the synthetic image
shown in Fig. 10~a!. The x axis is the bit rate, and the y axis
is the average distortion per pixel per color channel, where
the distortion is defined in Sec. 3.2. The solid lines in Fig.
9 are the true rate-distortion curves with RDOS, and the

Fig. 14 Compression result IV. (a) A portion of the original test im-
age I. (b) RDOS compressed at 0.125 bpp (192:1 compression),

where l50.0018. (c) DjVu compressed at 0.132 bpp (182:1 com-
pression). (d) SPIHT compressed at 0.125 bpp (192:1 compres-
sion).
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dash lines are the estimated rate-distortion curves with
RDOS using both estimated bit rate and estimated distor-
tion. It can be seen that the distortion is estimated quite
accurately, but the bit rate tends to be overestimated by a
fixed constant. The manual segmentations are generated by
an operator to achieve the best possible performance. No-
tice that for a document image with a simple layout, such as
test image I, the manual segmentation has a comparable
rate-distortion performance with the RDOS segmentation.
However, for a document image with a complex layout,
such as test image III, the manual segmentation shown in
Fig. 10~c! has rate-distortion performance which is inferior
to that which is achieved by the RDOS segmentation. Both
the RDOS and the manual segmentations result in superior
rate-distortion performance to the TSMAP segmentations.

Figures 11–14 compare, at similar bit rates, the quality
of the reconstructed images compressed using RDOS seg-
mentation with those compressed using three well-known
coders: DjVu, SPIHT,17 and JPEG. Among the three cod-
ers, DjVu is designed for compressing scanned document
images. It uses the basic three-layer MRC model, where the
foreground and the background are subsampled and com-
pressed using a wavelet coder, and the bi-level mask is

compressed using JBIG2. Since DjVu is designed to view
and browse document images on the web, it can achieve
very high compression ratios, but the quality of the recon-
structed images tends not to be very high, especially for
images with complex layouts and many color regions.
SPIHT is a state-of-the-art wavelet coder. It works well for
natural images, but it fails to compress document images at
a low bit rate with high fidelity. For our test images, the
base line JPEG usually cannot achieve the desired bit rate,
around 0.1 bpp, at which the other three algorithms operate.
Even at a bit rate near 0.2 bpp, JPEG still generates severe
artifacts.

Figure 11 shows a comparison of the four algorithms for
a small region of color text in test image III. The RDOS
method clearly outperforms other algorithms on the color
text region. Figure 12~a! is another part of test image III,
where a logo is overlaid on a continuous-tone image. It is
difficult to say whether this region should belong to picture
class or two-color class. However, since RDOS uses a lo-
calized rate and distortion trade-off, it performs well in this
region, producing a much sharper result than those coded
using DjVu or SPIHT. A disadvantage of SPIHT is that

Fig. 15 Estimated vs. true bit rates of coding each class.
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many bits are used to code text regions, so it does not
allocate enough bits for picture regions.

Figure 13 compares the RDOS method with DjVu and
SPIHT for a small region of scanned text. In general, the
quality of text compressed using the RDOS method tends
to be better than the other two methods. For example, in
Fig. 13~c!, the text strokes compressed using DjVu look
much thicker, such as the ‘‘t’’s and the ‘‘i’’s. This artifact
may be caused by the intentional thickening of letters to
increase readability in DjVu. This thickening can be turned
off by the option ‘‘2t’’ in DjVu. However, all algorithms
are run with their default settings. Figure 14 shows the
quality of a scanned picture region compressed using
RDOS, DjVu, and SPIHT. The result of the RDOS method
generally appears sharper than the results of either of the
other two methods.

Figure 15 compares the estimated versus the true bit
rates for the three types of coders: one-color, two-color,
and JPEG. The estimates are quite accurate for the one-
color class and JPEG class. But for the two-color class, the
estimated rates are substantially higher than the true rates.
The reason for this is that we use the JBIG2 compression
algorithm for coding binary masks. JBIG2 is a state-of-the-
art bi-level image coder, and it exploits the redundancy of a
bi-level image at the symbol level. Therefore, it signifi-
cantly outperforms what can be achieved by the nearest
neighbor prediction which is used to estimate the rate of
two-color blocks in RDOS.

5 Conclusion

In this paper, we propose a spatially adaptive compression
algorithm for document images which we call the
multilayer document compression algorithm. This algo-
rithm first segments a scanned document image into differ-
ent classes. Then, it compresses each class with an algo-
rithm specifically designed for that class. We also propose a
rate-distortion optimized segmentation ~RDOS! algorithm
for our multilayer document compression algorithm. For
each rate-distortion trade-off selected by a user, RDOS
chooses the class of each block to optimize the rate-
distortion performance over the entire image. Since each
block is tested on all coders, RDOS can eliminate severe
misclassifications, such as misclassifying a two-color block
as a one-color block. Experimental results show that at
similar bit rates, our algorithm can achieve a higher subjec-
tive quality than well-known coders such as DjVu, SPIHT
and JPEG.
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