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ABSTRACT

Hierarchical taxonomies provide a multi-level view of large doc-

ument collections, allowing users to rapidly drill down to fine-

grained distinctions in topics of interest. We show that automat-

ically induced taxonomies can be made more robust by combining

text with relational links. The underlying mechanism is a Bayesian

generative model in which a latent hierarchical structure explains

the observed data — thus, finding hierarchical groups of documents

with similar word distributions and dense network connections. As

a nonparametric Bayesian model, our approach does not require

pre-specification of the branching factor at each non-terminal, but

finds the appropriate level of detail directly from the data. Unlike

many prior latent space models of network structure, the complex-

ity of our approach does not grow quadratically in the number of

documents, enabling application to networks with more than ten

thousand nodes. Experimental results on hypertext and citation

network corpora demonstrate the advantages of our hierarchical,

multimodal approach.
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I.2.6 [Artificial Intelligence]: Learning; G.3 [Probability and Statis-
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1. INTRODUCTION
As the quantity of online documents continues to increase, there

is a need for organizational structures to help readers find the con-

tent that they need. Libraries have long employed hierarchical tax-

onomies such as the Library of Congress System1 for this purpose;

a similar approach was taken in the early days of the Web, with

portal sites that present the user with a hierarchical organization of
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web pages. The key advantage of such taxonomies is that the log-

arithmic depth of tree structures permits fine-grained distinctions

between thousands of “leaf” subtopics, while presenting the user

with at most a few dozen choices at a time. The user can recur-

sively drill down to a very fine-grained categorization in an area of

interest, while quickly disregarding irrelevant topics at the coarse-

grained level. A partial example of a hierarchical taxonomy for

Wikipedia is shown in Figure 1.

Manual curation of taxonomies was possible when membership

was restricted to books or a relatively small number of web pub-

lishers, but becomes increasingly impractical as the volume of doc-

uments grows. This has motivated research towards inducing hi-

erarchical taxonomies automatically from data [39, 7]. However,

these existing solutions rely exclusively on a single modality, usu-

ally text. This can be problematic, as content is often ambiguous

— for example, the words “scale” and “chord” have very different

meanings in the contexts of computer networks and music theory.

As a solution, we propose to build taxonomies that incorporate

the widely available metadata of links between documents. Such

links appear in many settings: hyperlinks between web pages, ci-

tations between academic articles, and social network connections

between the authors of social media. Network metadata can dis-

ambiguate content by incorporating an additional view which is

often orthogonal to text. For example, we can avoid conflating two

documents that mention “scales” and “chords” if they exist in com-

pletely different network communities; analagously, we can group

documents which share network properties, even if the text is su-

perficially different.

We have incorporated these ideas into a system called TopicBlock,

which uses both text and network data to induce a hierarchical tax-

onomy for a document collection. This requires meeting three tech-

nical challenges:

• Challenge 1: Combining the disparate representations of

text and network data. Network and text content have very

different underlying representations. We propose a model

in which both the text and network are stochastic emissions

from a latent hierarchical structure. The inference task is to

find the latent structure which is likely to have emitted the

observed data. On the text side we use the machinery of hi-

erarchical latent topic models [7], a coarse-to-fine represen-

tation in which high-level content is generated from shared

nodes near the root of the hierarchy, while more technical

information is generated from the detailed subtopics at the

leaves. On the network side, we employ a hierarchical ver-

sion of the stochastic block model [21], in which links are

emissions from Bernoulli distributions associated with nodes

in the hierarchy.



Figure 1: An example 4-level topic hierarchy built from Wikipedia Simple English. We annotate each topic with its number of

documents, a manually-chosen label describing the topic, and a list of highly ranked-words according to TF-IDF. The dotted lines

in the hierarchy show parent and child topics (only the children of some parents are shown). For the bottom level topics, we also

provide the names of some Wikipedia documents associated with them. The associated network data is shown in Figure 4.

• Challenge 2: Selecting the appropriate granularity. The

problem of identifying model granularity is endemic for la-

tent structure models [38], but it is particulary vexing in the

hierarchical setting. A flat mixture model or topic model

requires only a single granularity parameter (the number of

clusters or topics), but a hierarchy requires a granularity pa-

rameter at each non-terminal. Furthermore, the ideal granu-

larity is not likely to be identical across the hierarchy: for ex-

ample, the nuclear physics topic may demand fewer subtopics

than the cephalopods topic. TopicBlock incorporates a Bayesian

nonparametric prior which lets the data speak for itself, thus

automatically determining the appropriate granularity at each

node in the hierarchy.

• Challenge 3: Scaling the network analysis. In network

data, the number of possible links grows quadratically with

the number of nodes. This limits the scalability of many pre-

vious techniques [2, 29]. In contrast, TopicBlock’s complex-

ity scales linearly with the number of nodes and the depth

of the hierarchy. This is possible due to the hierarchically-

structured latent representation, which has the flexibility to

model link probabilities finely where necessary (at the leaf

level), while backing off to a coarse representation where

possible (between nodes in disparate parts of the hierarchy).

We apply TopicBlock to two datasets. The first is Simple English

Wikipedia, in which documents on a very broad array of subjects

are connected by hyperlinks. The second is the ACL Anthology [5],

a collection of scientific research articles, in which documents are

connected by citations. TopicBlock yields hierarchies which are

coherent with respect to both text and relational structure, group-

ing documents which share terms and also contain dense relational

patterns. In the ACL Anthology data, we evaluate the capability

of TopicBlock to recommend citation links from text alone. In the

Wikipedia data, we evaluate TopicBlock’s ability to identify the

correct target of a hyperlink that is lexically ambiguous.

2. RELATED WORK

There is substantial prior work on hierarchical document cluster-

ing. Early approaches were greedy, using single-link or complete-

link heuristics [39]. This yields a dendrogram of documents, in

which a root node is decomposed in a series of binary branching

decisions until every leaf contains a single document. We pre-

fer flatter trees with fewer non-terminals, which are more simi-

lar to manually-curated hierarchies.2 Other work on hierarchical

clustering includes top-down techniques for iteratively partitioning

the data [41], search-based incremental methods [36], probabilis-

tic modeling of manually-created taxonomies [31], and interactive

exploration [11].

The splitting and merging decisions that characterize most hier-

archical clustering algorithms can be made on the basis of Bayesian

hypothesis tests [19]. However, our work more closely relates to

Bayesian generative models over the document content, as we fo-

cus on inducing a latent structure that provides a likely explanation

for the observed text and links. Hierarchical latent Dirichlet alloca-

tion (hLDA) is a prototypical example of such an approach: each

document sits on a path through a hierarchy with unbounded tree-

width, and the text is generated from a mixture of multinomials

along the path. We extend hLDA by incorporating network data,

enabling a better understanding of the relationship between these

two modalities. Adams et al. [1] present a hierarchical topic model

which differs from hLDA in that documents can be located at any

level, rather than exclusively at leaf nodes. Because all content

for each document is generated from the hierarchy node at which

it sits, the generative distributions must be formed by chaining to-

gether conjugate priors, requiring more complex inference.

In network data, clustering is often called “community discov-

ery” [23]. Graph-based approaches such as normalized-cut [37]

are fast and deterministic, but often require the desired number of

clusters to be specified in advance, and do not easily generalize

to hierarchical models. SHRINK [22] induces a hierarchical clus-

tering that prioritizes high modularity, while tolerating hubs and

outliers that violate the traditional hierarchical structure. However,

our work is more closely related to probabilistic approaches, which

provide a principled way to combine content and network struc-

2e.g., the Open Directory Project, http://www.dmoz.org



ture. Clauset et al. show that hierarchical community discovery can

be obtained using a Monte Carlo sampling algorithm; the genera-

tive model assigns a link probability at each node in the hierarchy,

and the sampling moves then converge on a stationary distribution

centered on a hierarchy with high likelihood of generating the ob-

served links [9]. However, this model is restricted to dendrograms,

or binary trees, which are unlike the flatter hierarchies produced by

human curators.

An alternative line of work on network clustering begins with

the Stochastic Block Model (SBM) [21]. The SBM is a generative

model in which nodes are partitioned into communities, which in

turn determine the link probabilities. This idea was extended in

the mixed-membership stochastic blockmodel (MMSB) [2], where

each node has a mixed-membership vector over possible “roles”; an

additional pair of latent variables selects the roles that are relevant

for each potential network connection. The multiscale community

block model (MSCB) places this idea in a non-parametric hierar-

chical setting: each document is associated with a path through a

hierarchy, and the roles correspond to levels on the path [20]. Both

the MSCB and MMSB assign latent variables to every potential

link, so that each sampling pass requires O(N2) complexity in the

number of nodes.

A key feature of TopicBlock is that we merge text and network

data, with the goal of inducing a more robust hierarchy and en-

abling applications in which the two modalities can help to explain

each other. Mei et al. combine latent topic models with network in-

formation by compiling the network into a regularizer that encour-

ages the topic proportions of linked documents to be similar [28].

This approach encodes the network into the structure of the gen-

erative model, so it does not permit probabilistic inferences about

the likelihood of additional network connections. Topic-sensitive

PageRank [17] takes a different notion of “topic,” seeding each

topic with documents from the top-level categories of the manually-

curated Open Directory Project hierarchy. This method is designed

to support information retrieval, and does not permit probabilistic

modeling of new content or unseen links. Unlike both of these ap-

proaches, TopicBlock is generative over both text and links.

Much of the prior work on joint generative models of text and

links falls into two classes. In one class, the identity of the tar-

get and/or source of the link is encoded as a discrete random vari-

able [10, 29, 14, 27, 35]. Such models permit probabilistic infer-

ence within the documents in the training set, but they are closed

to outside documents; it is not possible to use the text of an un-

seen document to predict who will link to it. In the second class

of models, each link is a binary random variable generated from

a Bernoulli distribution that is parametrized by the topical similar-

ity of the documents. In the Relational Topic Model (RTM), the

link probability is a function of the topical similarity [8] (Liu et

al. extend the RTM by incorporating a per-document “community”

membership vector [25]). The RTM treats non-edges as hidden

data, so its complexity is linear in the number of edges, and thus

less than the O(N2) required by the blockmodel variants. Such a

model is encouraged to assign arbitrarily high likelihood to the ob-

served links, leading to instability in the parameter estimates, which

must be corrected by a regularization heuristic. In contrast, we

model both edges and non-edges probabilistically, achieving sub-

quadratic complexity by limiting the flexibility of the link proba-

bility model.

3. MODEL DESCRIPTION
TopicBlock treats document text and relational links as emis-

sions from a latent hierarchy, which has fixed depth L but a non-

parametric branching factor at each non-terminal. Each document
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Figure 2: Graphical model illustration

is represented as a complete path through the hierarchy, with words

generated from a mixture across levels in the path, and links gen-

erated directly from the paths. We now present the model in detail.

A summary of the hypothesized generative process is presented in

Table 1, and a plate diagram is shown in Figure 2.

3.1 Latent hierarchy
Each document’s position in the hierarchy is denoted by an L×1

vector of integers ri ∈ Z
L, which we call a path. The path is inter-

preted as follows: ri1 denotes the hierarchy branch taken by docu-

ment i from level 0 (the implicit root, denoted by r0) to level 1, ri2
denotes the branch taken from level 1 to level 2 relative to ri1 (the

branch just taken), and so forth. Example: ri = (2, 1, 3, . . . ) says

that entity i is reached by taking the 2nd branch from the root, then

the 1st branch at the node we just arrived at, followed by the 3rd

branch at the next node, etc. The set of all paths ri fully determines

the shape of the hierarchy.

The nested Chinese Restaurant Process (nCRP) provides a suit-

able Bayesian prior for non-parametric hierarchies [7]. Each path

is obtained by making a series of draws from standard Chinese

Restaurant Processes associated with each node in the hierarchy.

This prior displays the “rich-get-richer” property: at each level,

a draw is likely to follow branches taken by previous documents;

however, there is always a possibility of choosing a new branch

which has never been taken before. Blei et al. [7] show that this

model permits collapsed sampling in a way that follows naturally

from the original Chinese Restaurant Process.

3.2 Generating words and links
We assume that each document i ∈ {1, . . . , N} is associated

with two kinds of observed data. The first is a collection of words

w, where wik denotes the k-th word associated with document i,

and Mi is the total number of word tokens in document i. The

second type of observation is a collection of directed links to other

documents, referred to as a network. This network is given as an

N×N adjacency matrix E, such that Eij = 1 denotes the presence

of a (directed) link from document i to document j, while Eij = 0
denotes its absence. We ignore self-links Eii.

Every node in the hierarchy represents a distribution over words

and links; documents whose path contains a hierarchy node h can

draw their words and links from the distributions in h. More for-

mally, every hierarchy node h is associated with two distributions.

For the text, we define a set of vocabularies βh which generate

words wik; specifically, βh is a V -dimensional multinomial pa-

rameter representing a distribution over words, as in LDA. For the

links, we define a set of link-density probabilities Φh. Here, Φh

is the probability of generating a link between documents whose

paths both contain hierarchy node h. In cases where two document



paths share multiple hierarchy nodes, we take h to be the deepest

shared node, which may be the root of the tree.

3.2.1 Words

Document text is generated from a bag-of-words model, in which

each word is produced by some node along the document’s path

through the hierarchy. On this view, some words will be general

and could appear in any document (these words are drawn from the

root) while others will be specific (these are drawn from a leaf).

This encourages a hierarchy in which the most similar documents

are grouped at the leaf level, while moderately similar documents

are grouped at coarser levels of the hierarchy.

More formally, the words for document i are generated from a

mixture of the β distributions found along the path ri, including

the implicit root. Each word wik associated with document i can

be generated by any of the path nodes ri1, . . . , riL or the root r0.

The specific path node chosen to generate wik is given by a level

indicator zik ∈ {0, . . . , L}, for example, zik = 3 means that wik

is generated from the vocabulary βh associated with the hierarchy

node at (ri1, ri2, ri3). These level indicators zik are drawn from

(L + 1)-dimensional multinomial parameters πi, which we refer

to as level distributions. Intuitively, these represent document i’s

preference for shallower or deeper hierarchy levels.

3.2.2 Links

The generative model for links between documents is motivated

by the intuition that the non-terminals of the hierarchy represent

progressively more specific communities of documents. While one

might explicitly model the link probability between, say, organic

chemistry and ancient Greek history (as distinct from the likeli-

hood of links from organic chemistry to ancient Roman history),

a much simpler and more tractable model can be obtained by us-

ing the hierarchical structure to abstract this relationship. We make

the simplifying assumption that relations between communities in

disparate parts of the hierarchy can be summarized by their deep-

est common ancestor. As a result, the number of parameters grows

linearly rather than quadratically with the number of non-terminals.
More formally, each nonterminal h has an associated Bernoulli

parameter Φh, which indicates the link-likelihood between docu-
ments that share h as their deepest common ancestor. We define
S(ri, rj) as a function that selects the deepest shared Φh between
the paths ri, rj :

SΦ(ri, rj) := Φh (1)

h := (ri1, . . . , riω), ω := argmax
k≥0

I(ri,1:k = rj,1:k),

so that,

P (E | r,Φ) =
∏

i,j ̸=i

SΦ(ri, rj)
Eij (1− SΦ(ri, rj))

1−Eij .

The likelihood is a product over all N2 potential links, but as we

will see, it can be computed in fewer than O(N2) steps. Note that

SΦ(ri, rj) will select the root parameter Φr0 when ri and rj are

completely different.

3.3 Parameters
TopicBlock has four parameter types: the paths ri, level distri-

butions πi, word probabilities βh, and the link probabilities Φh.

Each parameter is drawn from a suitable prior: the paths ri are

drawn from a depth-L nCRP(γ); the level distributions πi are

drawn from Dirichlet(α); the topics βh are drawn from a sym-

metric Dirichlet(ηk) (where k is the depth of node h); and the link

probabilities Φh are drawn from Beta(λ1, λ2). The hyperparam-

eter γ > 0 is an L × 1 vector, while α, η > 0 are (L + 1) × 1
vectors, and λ1, λ2 > 0 are scalars.

• Draw the hierarchy — for each entity i:

– Path ri ∼ nCRP(γ)

– Word level distribution πi ∼ Dirichlet(α)

• Draw hierarchy node parameters — for each node h:

– Word probabilities βh ∼ Dirichlet(ηdepth(h))

– Link probabilities Φh ∼ Beta(λ1, λ2)

• Draw text — for each entity i and word k:

– Word level zik ∼ Multinomial(πi)

– Word wik ∼ Multinomial(βh),
where h is the hierarchy node at (ri,1, . . . , ri,zik )

• Draw network — for each pair of entities i and j ̸= i:

– Link Eij ∼ Bernoulli(SΦ(ri, rj)), where SΦ() is defined
in Section 3.2

Table 1: The generative process for TopicBlock’s model of text

and relational connections

4. INFERENCE
Exact inference on our model is intractable, so we derive a col-

lapsed Gibbs sampler for posterior inference [34]. We integrate out

π, β and Φ for faster mixing (collapsed sampling for topic mod-

els was introduced in [13]), so we need sample only the paths r

and word levels z. We present the sampling distributions for these

parameters now.

Word levels z.
The sampling distribution of zik is

P(zik | r,z−(ik),E,w)

∝ P(wik, zik | r,z−(ik),E,w−(ik))

= P(wik | r,z,w−(ik))P(zik | zi,(−k)) (2)

where zi,(−k) = {zi·} \ zik and w−(ik) = {w.} \ wik. The first
term represents the likelihood; for a particular value of zik, it is

P(wik | r,z,w−(ik)) =
ηzik + awik

V ηzik +
∑V

v=1 av
, (3)

av = |{(x, y) | (x, y) ̸= (i, k), zxy = zik,

(rx1, . . . , rxzxy ) = (ri1, . . . , rizik ), wxy = v
}
∣

∣ .

In plain English, av is the number of words wxy equal to v (ex-

cluding wik) and coming from hierarchy position (ri1, . . . , rizik ).
Thus, we are computing the empirical frequency of emitting word

v, smoothed by level zik’s symmetric Dirichlet prior ηzik .
The second term represents the prior on zik:

P(zik | zi,(−k)) =
αzik +#[zi,(−k) = zik]

∑L
ℓ=1 αℓ +#[zi,(−k) = ℓ]

. (4)

Paths r.
The sampling distribution for the path ri is

P(ri | r−i, z,E,w) (5)

∝ P(ri,E(i·),(·i),wi | r−i,z,E−(i·),−(·i),w−i)

= P(E(i·),(·i) | r,E−(i·),−(·i))P(wi | r,z,w−i)P(ri | r−i)

where wi = {wi·} is the set of tokens in document i, and w−i is

its complement. E(i,·),(·,i) = {Exy | x = i ∨ y = i} is the set of

all links touching document i and E−(i,·),−(·,i) is its complement.

In particular, the set E(i,·),(·,i) is just the i-th row and i-th column

of the adjacency matrix E, sans the self-link Eii.
Equation 5 decomposes into three terms, corresponding to link

likelihoods, word likelihoods, and the path prior distribution re-
spectively. The first term represents the link likelihoods for all



links touching document i. These likelihoods are Bernoulli dis-
tributed, with a Beta prior; marginalizing the parameter Φ yields a
Beta-Bernoulli distribution, which has an analytic closed-form:

∏

Φ∈Φ(i·),(·i)

Γ(A+B+λ1+λ2)
Γ(A+λ1)Γ(B+λ2)

·
Γ(A+C+λ1)Γ(B+D+λ2)
Γ(A+B+C+D+λ1+λ2)

(6)

Φ(i·),(·i)={Φh |∃(x, y)[Exy∈E(i·),(·i),S
xy
Φ =Φh]}

A =
∣

∣

{

(x, y) | Exy∈E−(i·),−(·i), S
xy
Φ =Φ, Exy=1

}
∣

∣

B =
∣

∣

{

(x, y) | Exy∈E−(i·),−(·i), S
xy
Φ =Φ, Exy=0

}
∣

∣

C =
∣

∣

{

(x, y) | Exy∈E(i·),(·i), S
xy
Φ =Φ, Exy=1

}
∣

∣

D =
∣

∣

{

(x, y) | Exy∈E(i·),(·i), S
xy
Φ =Φ, Exy=0

}
∣

∣

where Φ(i·),(·i) is the set of all link probability parameters Φh

touched by the link set E(i,·),(·,i). Observe that only those Φh

along path ri (or the root) can be in this set, thus it has size |Φ(i·),(·i)| ≤
L+1. Also, note that the terms A,B,C,D depend on Φ. The sec-
ond term of Equation 5 represents the word likelihoods:

L
∏

ℓ=1

Γ(V ηℓ+
∑V

v=1 Gℓ,v)
∏

V
v=1 Γ(Gℓ,v+ηℓ)

·
∏V

v=1 Γ(Gℓ,v+Hℓ,v+ηℓ)

Γ(V ηℓ+
∑

V
v=1 Gℓ,v+Hℓ,v)

(7)

Gℓ,v = |{(x, y) | x ̸= i, zxy = ℓ,

(rx1, . . . , rxℓ) = (ri1, . . . , riℓ), wxy = v}|

Hℓ,v = |{y | ziy = ℓ, wiy = v}|

where V is the vocabulary size. Gℓ,v is just the number of words in

w−i equal to v and coming from hierarchy position (ri1, . . . , riℓ).
Hℓ,v is similarly defined, but for words in wi.

The third term of Equation 5 represents the probability of draw-
ing the path ri from the nCRP, and can be computed recursively for
all levels ℓ,

P(riℓ = x | r−i, ri,1:(ℓ−1)) = (8)










|{j ̸=i | rj,1:(ℓ−1)=ri,1:(ℓ−1),rjℓ=x}|
|{j ̸=i | rj,1:(ℓ−1)=ri,1:(ℓ−1)}|+γℓ

if x is an existing branch,

γℓ

|{j ̸=i | rj,1:(ℓ−1)=ri,1:(ℓ−1)}|+γℓ
if x is a new branch

This equation gives the probability of path ri taking branch x at

depth ℓ. At step ℓ in the path, the probability of following an ex-

isting branch is proportional to the number of documents already

in that branch, while the probability of creating a new branch is

proportional to γℓ.

Hyperparameter Tuning.
The hyperparameters γ, α, η, λ1, λ2 significantly influence the

size and shape of the hierarchy. We automatically choose suitable

values for them by endowing γ, α, η with a symmetric Dirichlet(1)
hyperprior, and λ1, λ2 with an Exponential(1) hyperprior. Using

the Metropolis-Hastings algorithm with these hyperpriors as pro-

posal distributions, we sample new values for γ, α, η, λ1, λ2 after

every Gibbs sampling iteration.

4.1 Linear time Gibbs sampling
To be practical on larger datasets, each Gibbs sampling sweep

must have runtime linear in both the number of tokens and the

number of 1-links Eij = 1. This is problematic for standard imple-

mentations of generative network models such as ours, because we

are modeling the generative probability of all 1-links and 0-links.

The sufficient statistics for each Φh are the number of 1-links and

0-links, and these statistics must be updated when we resample the

paths ri. Naïvely updating these parameters would takeO(N) time

since there are 2N − 2 links touching document i. It follows that a

Gibbs sampling sweep over all ri would require O(N2) quadratic

runtime.

Algorithm 1 Removing document i from sufficient statistics of Φh

Let h0, . . . , hL be the hierarchy nodes along ri.

Let A be a temporary variable.

for ℓ = L . . . 0 do

if ℓ < L then

uhℓ
← uhℓ

− (A− Uhℓ+1)
thℓ
← thℓ

− 1
end if

A← Uhℓ
(Store the original value of Uhℓ

)

Uhℓ
← Uhℓ

− Uhℓ,i

Thℓ
← Thℓ

− 1
for j s.t. j ∈ Neighbors(i) and hℓ ⊆ rj do

Uhℓ,j ← Uhℓ,j − I(Eij = 1)− I(Eji = 1)
Uhℓ,i ← Uhℓ,i − I(Eij = 1)− I(Eji = 1)

end for

end for

The solution is to maintain an augmented set of sufficient statis-
tics for Φh. Define h ⊆ ri to be true if path ri passes through node
h. Then the augmented sufficient statistics are:

1. Uh,i =
∑

j ̸=i(Eij + Eji)I(h ⊆ ri, h ⊆ rj), the number of 1-

links touching document i and drawn from Φh and its descendants.

2. Uh =
∑

i,j EijI(h ⊆ ri, h ⊆ rj), the number of 1-links drawn

from Φh and its hierarchy descendants.

3. uh =
∑

h′∈children(h) Uh′ , the number of 1-links drawn from

Φh’s descendants only.

4. Th =
∑

i I(h ⊆ ri), the number of documents at h and its descen-
dants.

5. th =
∑

h′∈children(h) Th′ , the number of documents at h’s de-

scendants only.

The number of 0- or 1-links specifically at Φh is given by

#[1-links at h] = Uh − uh (9)

#[0-links at h] = [(Th)(Th − 1)− (th)(th − 1)]− (Uh − uh)

Before sampling a new value for document i’s path ri, we need to

remove its edge set E(i,·),(·,i) from the above sufficient statistics.

Once ri has been sampled, we need to add E(i,·),(·,i) back to the

sufficient statistics, based on the new ri. Algorithms 1, 2 perform

these operations efficiently; observe that they run in O(PiL) time

where Pi is the number of 1-links touching document i. Letting

P be the total number of 1-links in E, we see that a Gibbs sam-

pler sweep over all ri spends O(PL) time updating Φh sufficient

statistics, which is linear in P .

Algorithm 2 Adding document i to sufficient statistics of Φh

Let h0, . . . , hL be the hierarchy nodes along ri.

Let A be a temporary variable.

for ℓ = L . . . 0 do

if ℓ < L then

uhℓ
← uhℓ

+ (Uhℓ+1 −A)
thℓ
← thℓ

+ 1
end if

for j s.t. j ∈ Neighbors(i) and hℓ ⊆ rj do

Uhℓ,j ← Uhℓ,j + I(Eij = 1) + I(Eji = 1)
Uhℓ,i ← Uhℓ,i + I(Eij = 1) + I(Eji = 1)

end for

A← Uhℓ
(Store the original value of Uhℓ

)

Uhℓ
← Uhℓ

+ Uhℓ,i

Thℓ
← Thℓ

+ 1
end for
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documents 14,675 15,032
tokens 1,467,500 2,913,665
links 134,827 41,112
vocabulary 10,013 2,505

Table 2: Basic statistics about each dataset

The remaining work for sampling ri boils down to (1) calculat-

ing existing and new path probabilities through the hierarchy, and

(2) updating sufficient statistics related to the vocabularies β. Cal-

culating the path probabilities requiresO(HLV ) time, where H is

the number of hierarchy nodes and V is the vocabulary size; updat-

ing the vocabularies requires O(MiL) time where Mi is the num-

ber of tokens wik belonging to document i. Thus, the total runtime

required to sweep over all ri is O(PL + NHLV + ML) where

M is the total number of tokens w. Treating L,H, V as constants

and noting that N ≤ M , we see that sampling all ri is indeed

linear in the number of tokens M and number of 1-links P . We

also need to sample each word level zik, which takes O(L) time

(including sufficient statistic updates) for a total of O(ML) linear

work over all z. Finally, the hyperparameter tuning steps require

us to compute the probability of all tokens w and links E given

the paths r and word levels z, which can be performed in at most

linear O(PL+ML) time. Since we only update the hyperparam-

eters once after every Gibbs sampling sweep, our total runtime per

sweep remains linear.

We contrast our linear efficiency with alternative models such as

the Mixed-Membership Stochastic Block Model (MMSB [2]) and

Pairwise Link-LDA [29]. The published inference techniques for

these models are quadratic in the number of nodes, so it would be

very difficult for serial implementations to scale to the 104 node

datasets that we handle in this paper.

5. DATA
We evaluate our system on two corpora: Wikipedia and the ACL

Anthology. The Wikipedia dataset is meant to capture familiar con-

cepts which are easily comprehended by non-experts; the ACL An-

thology dataset tests the ability of our model to build reasonable

taxonomies for more technical datasets. We expect different net-

work behavior for the two datasets: a Wikipedia page can contain

an arbitrary number of citations, while research articles may be

space-limited, and can only cite articles which have already been

published. Thus, the ACL dataset may fail to include many links

which would seem to be demanded by the text, but were omitted

due to space constraints or simply because the relevant article had

not yet been published. The Wikipedia dataset poses its own chal-

lenges, as some links are almost completely unrelated to document

topical content. For example, the article on DNA contains a link

to the article on Switzerland, because DNA was first isolated by a

Swiss scientist.

5.1 Simple English Wikipedia
Our first dataset is built from Wikipedia; our goal is to use the

text and hyperlinks in this dataset to induce a hierarchical structure

that reflects the underlying content and connections. We chose this

dataset because the content is written at a non-technical level, al-

lowing easy inspection for non-experts. The dataset supports the

evaluation of link resolution (defined in Section 6.3).

There is previous work on modeling the topics underlying Wikipedia

data [14, 32]. Gruber et al. [14] constructed a small corpus of

text and links by crawling 105 pages starting from the page for the

NIPS conference, capturing 799 in-collection links. Our goal was a

much larger-scale evaluation; in addition, we were concerned that

a crawl-based approach would bias the resulting network to implic-

itly reflect a hierarchical structure (centered on the seed node) and

an unusually dense network of links.

Instead of building a dataset by crawling, we downloaded the en-

tire “Simple English” Wikipedia, a set of 133,462 articles written

in easy-to-read English. Many of these documents are very short,

including placeholders for future articles. We limited our corpus to

documents that were at least 100 tokens in length (using the Ling-

Pipe tokenizer [3]), and considered only articles (ignoring discus-

sion pages, templates, etc.). This resulted in a corpus of 14675

documents. The link data includes all 152,674 in-collection hyper-

links; the text data consists of the first 100 tokens of each document,

resulting in a total of 1,467,500 tokens. We limited the vocabulary

to all words appearing at least as frequently as the 10,000th most

frequent word, resulting in a total vocabulary of 10,013. We apply

a standard filter to remove stopwords [24].

5.2 ACL Anthology
Our second dataset is based on the scientific literature, which

contains both text and citations between documents. The ACL

anthology is a curated collection of papers published in computa-

tional lingusitics venues, dating back to 1965 [5]. We downloaded

the 2009 release of this dataset, including papers up to that year,

for a total of 15,032 documents. Taxonomy induction on research

corpora can serve an important function, as manually-curated tax-

onomies always risk falling behind new developments which may

splinter new fields or unite disparate ones. As noted above, we use

the entire ACL Anthology dataset from 1965 to 2009. We limit the

vocabulary to 2,500 terms, and limit each document to the first 200

tokens — roughly equivalent to the title and abstract — and remove

stopwords [24].

There is substantial previous work on the ACL Anthology, in-

cluding temporal and bibliometric analysis [16, 33], citation pre-

diction [4], and recognition of latent themes [15] and influence [12,

30]. However, none of this work has considered the problem of

inducing hierarchical structure of the discipline of computational

linguistics.

Our quantitative evaluation addresses the citation-prediction task

considered by Bethard and Jurafsky [4]. Following their method-

ology, we restrict our quantitative analysis to the 1,739 journal and

conference papers from 2000 to 2009. Our version of the corpus

is a more recent release, so our data subset is very similar but not

identical to their evaluation set.

6. QUANTITATIVE ANALYSIS
We present a series of quantitative and qualitative evalutions of

TopicBlock’s ability to learn accurate and interpretable models of

networked text. Our main evaluations (sections 6.2 and 6.3) test

the ability of TopicBlock to predict and resolve ambiguous links

involving heldout documents.

6.1 System Details
For all experiments, we use an L = 2 hierarchy (root plus two

levels) unless otherwise stated. We initialize TopicBlock’s docu-

ment paths r by using a Dirichlet Process Mixture Model (essen-

tially a one-level, text-only TopicBlock with no shared root) in a

recursive clustering fashion, which provides a good starting hier-

archy. From there, we ran our Gibbs sampler cum Metropolis-

Hastings algorithm for 2,500 passes through the data or for 7 days,

whichever came first; our slowest experiments completed at least

1,000 passes. All experiments were run with 10 repeat trials, and



results were always obtained from the most recent sample. We se-

lected the best trial according to experimentally-relevant criteria:

for the qualitative analyses (Section 7), we selected according to

sample log-likelihood; in the citation prediction task we employed

a development set; in the link resolution task we show the results

of all trials.

6.2 Citation Prediction
Our citation prediction evaluation uses the induced TopicBlock

hierarchy to predict outgoing citation links from documents which

were not seen during training time. For this evaluation, we use the

1,739-paper ACL subset described earlier. Citation prediction has

been considered in prior research; for example, Bethard and Ju-

rafsky present a supervised algorithm that considers a broad range

of features, including both content and citation information [4]. We

view our approach as complementary; our hierarchical model could

provide features for such a discriminative approach. He et al. attack

the related problem of recommending citations in the context of a

snippet of text describing the purpose of the citation [18], focusing

on concept-based relevance between citing and cited documents.

Again, one might combine these approaches by mining the local

context to determine which part of the induced hierarchy is most

likely to contain the desired citation.

Metric.
We evaluate using mean average precision, an information re-

trieval metric designed for ranking tasks [26]. The average preci-

sion is the mean of the precisions at the ranks of all the relevant ex-

amples; mean average precision takes the mean of the average pre-

cisions across all queries (heldout documents). This metric can be

viewed as an approximation to the area under the precision-recall

curve.

Systems.
We divided the 1,739-paper ACL subset into a training set (pa-

pers from 2000-2006), a development set (2006-2007), and a held-

out set (2008-2009). For each experiment we conducted 10 trials,

using the following procedure:

1. build a topic hierarchy from the training set using TOPICBLOCK,

2. fit the development set text to the learnt hierarchy, and predict

development links,

3. retrieve the trial with the highest mean average precision over

development set links,

4. fit the heldout set text to that trial’s hierarchy, and predict

heldout links,

5. compute mean average precision over heldout set links.

In essence, the development set is being used to select the best-

trained model with respect to the citation prediction task. The final

predictions were obtained by inferring each test document’s most

appropriate hierarchy path r given only its text, and then using the

path r to predict links to training documents according to our net-

work model.

Baselines.
To evaluate the contribution of jointly modeling text with net-

work structure, we compare against hierarchical latent Dirichlet al-

location (HLDA) [7], a closely-related model which ignores net-

work structure. We use our own implementation, which is based on

the TOPICBLOCK codebase. As HLDA does not explicitly model

links, we postfit a hierarchical blockmodel to the induced hierarchy

over the training data; this hierarchy is learnt only from the text.

Thus, the comparison with HLDA directly tests the contribution of

network information to the quality of the hierarchy, over what the

System Text? Network? Hierarchical? MAP

TOPICBLOCK x x x 0.137

HLDA x x 0.117
HSBM x x 0.112
IN-DEGREE x 0.0731
TF-IDF x 0.0144

Table 3: Results on the citation prediction task for the ACL

Anthology data. Higher scores are better. Note that HLDA is

equivalent to TOPICBLOCK without the network component,

while HSBM is equivalent to TOPICBLOCK without text.

text already provides. After postfitting the blockmodel, we fit the

development and heldout sets as described earlier.

We can also isolate the contribution of network information to

the hierarchy, by learning the shape of the hierarchy based on net-

work contributions but not text. After learning the hierarchy’s shape

(which is defined by the paths r) this way, we postfit text topics to

this hierarchy by running hLDA while keeping the paths r fixed.

Then we fit the development and heldout sets as usual. This ap-

proach can be viewed as a hierarchical stochastic blockmodel, so

we name the system HSBM.

Next, we consider a simpler text-only baseline, predicting links

based on the term similarity between the query and each possible

target document; specifically, we use the TF-IDF measure consid-

ered by Bethard and Jurafsky [4]. For a fair comparison, we use the

same text which was available to TopicBlock and hLDA, which is

the first 200 words of each document.

Finally, we consider a network-only baseline, where we rank

potential documents in descending order of IN-DEGREE. In other

words, we simply predict highly cited documents first.

Results.
As shown in Table 3, TOPICBLOCK achieves the highest MAP

score of all methods, besting the hierarchies trained using only text

(HLDA) or only the network (HSBM). This demonstrates that in-

ducing hierarchies from text and network modalities jointly yields

quantitatively better performance than post-hoc fitting of one modal-

ity to a hierarchy trained on the other. In addition, all hierarchy-

based methods beat the TF-IDF and IN-DEGREE baselines by a

strong margin, validating the use of hierarchies over simpler, non-

hierarchical alternatives.

6.3 Link Resolution
Wikipedia contains a substantial amount of name ambiguity, as

multiple articles can share the same title. For example, the term

“mac” may refer to the Media Access Control address, the luxury

brand of personal computers, or the flagship sandwich from Mc-

Donalds. The link resolution task is to determine which possible

reference article was intended by an ambiguous text string. In our

Wikipedia data, there were 88 documents with the same base name,

such as “scale_(music)" and “scale_(map)", and there were 435 ref-

erences to such articles. These references were initially unambigu-

ous, but we removed the bracketed disambiguation information in

order to evaluate TOPICBLOCK’s ability to resolve ambiguous ref-

erences.

Systems.
We run TOPICBLOCK to induce a hierarchy over the training

documents, and then learn the best paths r for each of the 88 am-

biguous documents according to just their text. Then, for each of

the 435 ambiguous references to the 88 target documents, we se-
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Figure 3: Wikipedia link resolution accuracy, plotted against

proportion of links which could be resolved by the hierarchy.

lect the target with the highest link probability to the query docu-

ment. If two targets are equally probable, we select the one with

the highest text similarity according to TF-IDF. This experiment

was conducted 10 times, and all results are shown in Figure 3. We

also compare against HLDA, which is run in the same way as TOP-

ICBLOCK but trained without network information, using hierarchy

path similarity instead of link probability to rank query documents.

Finally, as a baseline we consider simply choosing the target with

the highest TEXT SIMILARITY.

Metric.
The evaluation metric for this task is accuracy: the proportion of

ambiguous links which were resolved correctly. In most cases the

ambiguity set included only two documents, so more complicated

ranking metrics are unnecessary.

Results.
We performed ten different runs of TOPICBLOCK and HLDA.

In each run, a certain number of links could not be resolved by

the hierarchy, because the target nodes were equally probable with

respect to the query node — in these cases, we use the TF-IDF tie-

breaker described above. Figure 3 plots the accuracy against the

proportion of links which could be resolved by the hierarchy. As

shown in the figure, TOPICBLOCK is superior to the TEXT SIMI-

LARITY baseline on all ten runs. Moreover, the accuracy increases

with the specificity of the hierarchy with regard to the ambiguous

links — in other words, the added detail in these hierarchies co-

heres with the hidden hyperlinks. In contrast, HLDA is rarely better

than the cosine similarity baseline, and does not improve in accu-

racy as the hierarchy specificity increases. This demonstrates that

training from text alone will not yield a hierarchy that coheres with

network information, while training from both modalities improves

link disambiguation.

7. QUALITATIVE ANALYSIS
We perform a manual analysis to reveal the implications of our

modeling decisions and inference procedure for the induced hierar-

chies, showcasing our model’s successes while highlighting areas

for future improvement. Note that while the quantitative experi-

ments in the previous section required holding out portions of the

data, here we report topic hierarchies obtained by training on the

entire dataset.

7.1 Wikipedia
Figure 1 shows a fragment of the hierarchy induced from the

Figure 4: The network block matrix for the Simple English

Wikipedia data.

Simple English Wikipedia Dataset. Unlike our other experiments,

we have used an L = 3 (root plus 3 levels) hierarchy here to

capture more detail. We have provided the topic labels manu-

ally; overall we can characterize the top level as comprised of:

history (W1), culture (W2), geography (W3), sports (W4), biology

(W5), physical sciences (W6), technology (W7), and weapons (W8).

The subcategories of the sports topic are shown in the figure, but

the other subcategories are generally reasonable as well: for ex-

ample biology (W5) divides into non-human and human subtopics;

history (W1) divides into modern (W1.1), religious (W1.2), medieval

(W1.3), and Japanese (W1.4). While a manually-created taxonomy

would likely favor parallel structure and thus avoid placing a re-

gion (Japan) and a genre (religion) alongside two temporal epochs

(modern and medieval), TopicBlock chooses an organization that

reflects the underlying word and link distributions.

Figure 4 shows the link structure for the Wikipedia data, with the

source of the link on the rows and the target on the columns. Doc-

uments are organized by their position in the induced hierarchy.

Topic 1 has a very high density of incoming links, reflecting the

generality of these concepts and their relation to many other doc-

uments. Overall, we see very high link density at the finest level

of detail (indicated by small dark blocks directly on the diagonal),

but we also see evidence of hierarchical link structure in the larger

shaded blocks such as culture (W2) and physical science (W6).

7.2 ACL Anthology
The full ACL anthology hierarchy is shown in Figure 5, which

gives the top words corresponding to each topic, by TF-IDF.3 As

before, the topic labels are provided by us; for simplicity we have

chosen to focus on an L = 2-level hierarchy. The top-level cate-

gories include both application areas (interactive systems (A1) and

information systems (A2)) as well as problem domains (discourse

and semantics (A4); parsing (A6); machine translation (A8)). These

areas are often close matches for the session titles of relevant con-

ferences such as ACL.4 At the second level, we again see coher-

ent topical groupings: for example, the children of information sys-

tems include popular shared tasks such as named-entity recogni-

tion (A2.1), summarization (A2.3), and question answering (A2.4);

the children of discourse and semantics (A4) include well-known

theoretical frameworks, such as centering theory and propositional

semantics (not shown here).

Occasionally, seemingly related topics are split into different

3Specifically, we multiplied the term frequency in the topic by the
log of the inverse average term frequency across all topics [6].
4http://www.acl2011.org/program.utf8.shtml



Figure 6: The network block matrix for the ACL Anthology

Data. Blocks corresponding to links within/between A3 and

A6.1 have been delineated by black rectangles. There are 2190

and 2331 citation links within A3 and A6.1 respectively, but

only 343 links between them.

parts of the tree. For example, the keywords for both topics A3

and A6.1 relate to syntactic parsing. Nonetheless, the citation links

between these two topics are relatively sparse (see Figure 6), re-

vealing a more subtle distinction: A3 focuses on representations

and rule-driven approaches, while A6.1 includes data-driven and

statistical approaches.

As in the Wikipedia data, the network diagram (Figure 6) reveals

evidence of hierarchical block structures. For example, A2 contains

4101 links out of 4.4 million possible, a density of 9.3∗10−4. This

is substantially larger than the background density 1.8 ∗ 10−4, but

less than subtopics such as A2.1, which has a density of 6.4∗10−3.

We observe similar multilevel density for most of the high-level

topics, except for interactive systems (A1), which seems to be more

fractured. One of the densest topics is machine translation (A8),

an area of computational linguistics which has become sufficiently

distinct as to host its own conferences.5

One could obtain more parallel structure by imposing a domain-

specific solution for research papers, such as Gupta and Manning’s

work on identifying the “focus, technique, and domain” of each

article [15]; of course, such a solution would not necessarily gen-

eralize to Wikipedia articles or other document collections. While

parallel structure is desirable, it is often lacking even in taxonomies

produced by human experts. For example, a similar critique might

be leveled at the sessions associated with a research conference, or

even the ACM taxonomy.6

8. CONCLUSION
We have presented TopicBlock, a hierarchical nonparametric model

for text and network data. By treating these two modalities jointly,

we not only obtain a more robust latent representation, but are also

able to better understand the relationship between the text and links.

Applications such as link prediction, document clustering, and link

ambiguity resolution demonstrate the strengths of our approach.

In the future we plan to consider richer structures, such as mul-

tiple hierarchies which capture alternative possible decompositions

of the document collection. We also plan to investigate dynamic

models, in which temporal changes in the hierarchy may reveal

high-level structural trends in the underlying data. Finally, in many

5http://www.amtaweb.org/
6http://www.computer.org/portal/web/
publications/acmtaxonomy

practical settings one may obtain a partially-complete initial taxon-

omy from human annotators. An interesting future direction would

be to apply techniques such as TopicBlock to refine existing tax-

onomies [40].
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