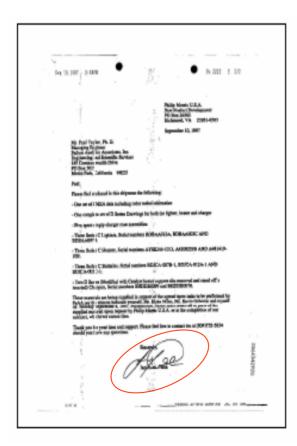
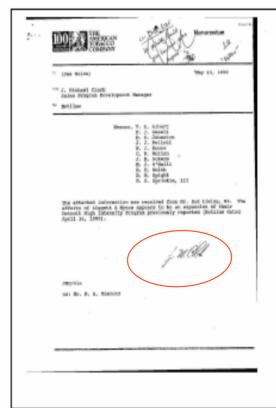
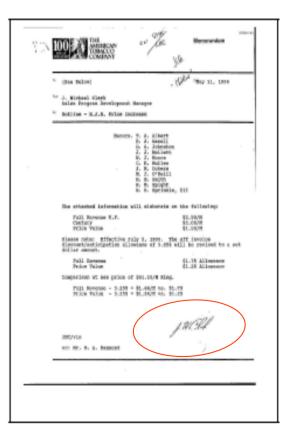
Document Image Retrieval using Signatures as Queries

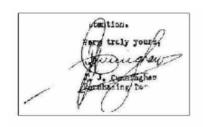

Sargur Srihari, Shravya Shetty, Harish Srinivasan, Siyuan Chen, Chen Huang

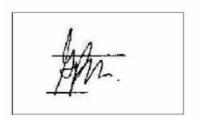

CEDAR, Department of Computer Science and Engineering University at Buffalo, State University of New York

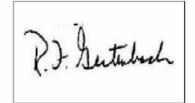

Gady Agam, Ophir Frieder
Illinois Institute of Technology
USA

Signature-based Document Retrieval

Search business document archive based on signature image queries






Sample Queries: Cropped Signatures

Samples for different writers

Samples for same writer

Horday L. Timber

Janley L Tempo

Stuly L Forko

f

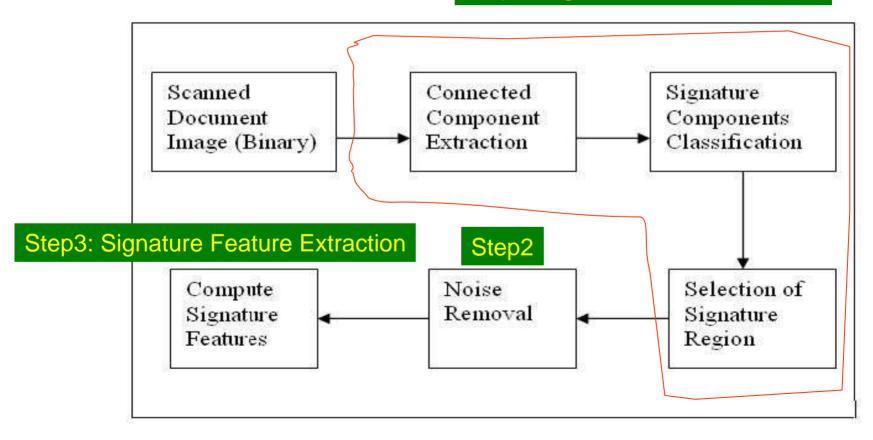
Holdy L Traker

g

h

i

Signature Retrieval


Retrieval

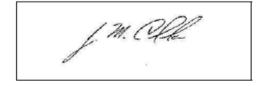
- Rank documents based on similarity to query signature

	RETRIEVAL				
	Signature Snippets Very truly yours.	<u>Dissimilarity</u> <u>Measure</u>	Document ID		
	Vigo G. Nielsen, Jr.	0.26	N_3		
QUERY IMAGE	Vary bruly yours, (hop fill- Vigo 3 Bielein, cc. Treasurar	0.29	N_5		
Chip Nail	Jeff Jal.	0.39	I_5		
	Siboeralys Meyer 6. Noplow	0.43	K_2		
	Atthyan	0.49	L_1		

Indexing Documents

Step1: Signature Block Extraction

Step 1: Signature Block Extraction


- Connected component analysis
- Component Feature Extraction
 - to identify logos, noise Horizontal Run, Horizontal & Vertical Profile, Density, Size
 - to distinguish handwriting from print
 - Slope, Stroke Orientation (Gabor Filter), Density, Size
 - to distinguish handwritten text from signatures
 - Maxima and Minima count, Height variation,
 Slope, Size
- Classification using SVM
- Signature Block Identification
 - Large signature components are merged with other neighboring possible signature components
 - Overlapping blocks are merged

(a) Original Document

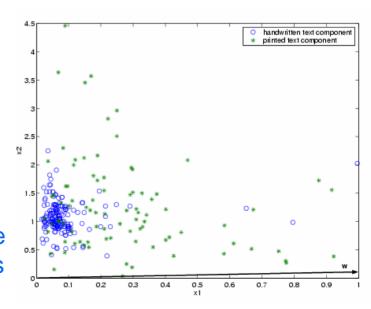
(b) Processed Document after Classification of Signature Components

(c) Extracted Signature

In 92%(276/300) of cases resulting block contained most of the signature

Step 2: Noise Removal

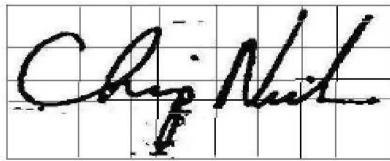
Connected Components



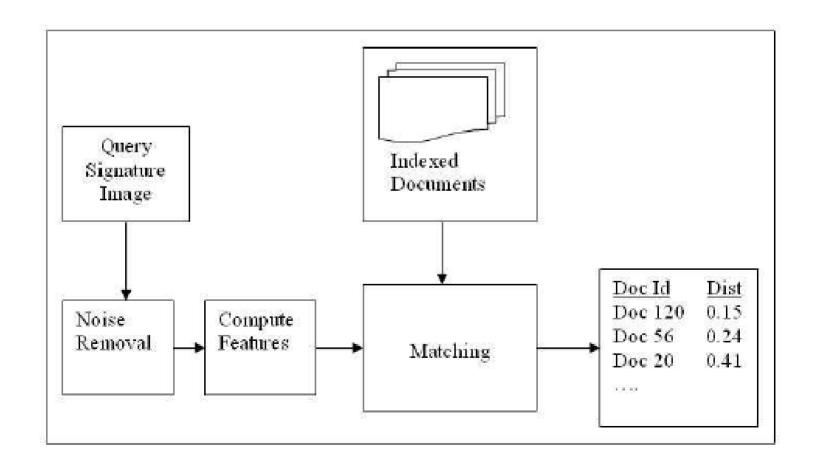
Feature 1 = relative contour size = $(h_1+w_1)/(h_m+w_m) = 0.4034$ Feature 2 = aspect ratio= $h_1/w_1 = 0.9355$

After projection
Samples are 1-D
A Bayes classifier
is designed for the
projected samples

Fisher Linear Discriminant


Sample images before and after noise removal

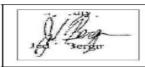
Step 3: Signature Feature Extraction


Signature Image under a 4 x 8 Division

1024 bit Feature Vector

81088008801111118088101111110081108811110888081111

Document Retrieval

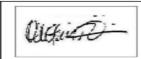

Matching algorithm

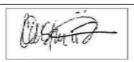
Distance between query and each indexed document in database is calculated using normalized correlation distance

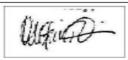
$$S(X,Y) = \frac{1}{2} + \frac{S_{11}S_{00} - S_{10}S_{01}}{2((S_{10} + S_{11})(S_{01} + S_{00})(S_{11} + S_{01})(S_{00} + S_{10}))^{1/2}}$$

Example of Distance Values

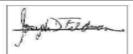
Writer 1






(a)

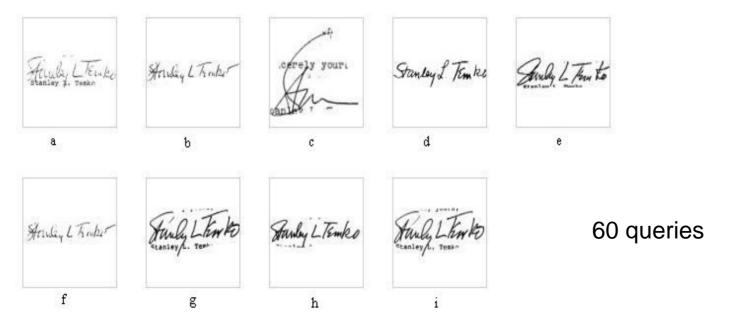
Writer 2



(b)

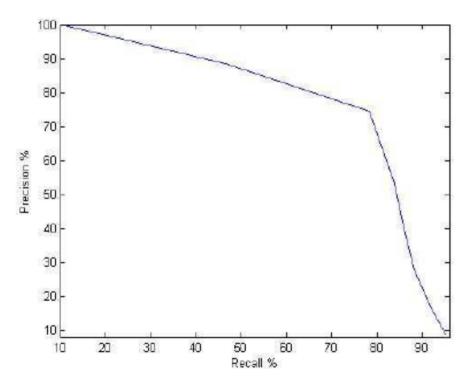
Writer 3

(c)

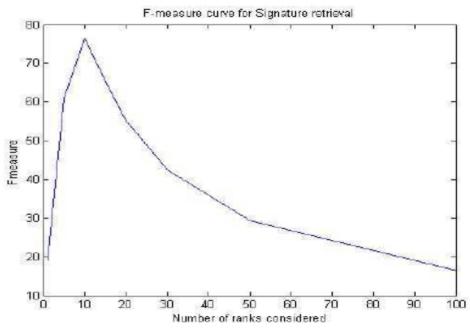

	Writer 1			Writer 2			Writer 3					
	1_a	1_b	1_c	1_d	2_a	2_b	2_c	2_d	3_a	3_b	3_c	3_d
1_a	0	0.22	0.26	0.25	0.36	0.37	0.4	0.32	0.33	0.35	0.32	0.35
1_b	0.22	0	0.25	0.27	0.34	0.36	0.38	0.31	0.3	0.34	0.3	0.36
1_c	0.26	0.25	0	0.25	0.31	0.38	0.36	0.34	0.34	0.35	0.35	0.39
1_d	0.25	0.27	0.25	0	0.35	0.36	0.36	0.35	0.35	0.37	0.36	0.4
2_a	0.36	0.34	0.31	0.35	0	0.27	0.24	0.28	0.33	0.33	0.35	0.4
2_b	0.37	0.36	0.38	0.36	0.27	0	0.25	0.27	0.36	0.38	0.34	0.38
2_c	0.4	0.38	0.36	0.36	0.24	0.25	0	0.22	0.35	0.37	0.38	0.43
2_d	0.32	0.31	0.34	0.35	0.28	0.27	0.22	0	0.31	0.35	0.33	0.39
3_a	0.33	0.3	0.34	0.35	0.33	0.36	0.35	0.31	0	0.26	0.24	0.29
3_b	0.35	0.34	0.35	0.37	0.33	0.38	0.37	0.35	0.26	0	0.27	0.28
3_c	0.32	0.3	0.35	0.36	0.35	0.34	0.38	0.33	0.24	0.27	0	0.17
3_d	0.35	0.36	0.39	0.4	0.4	0.38	0.43	0.39	0.29	0.28	0.17	0

Values are smaller within writer

Dataset for Manually Extracted Signatures


Total No of Signatures	447
Number of Writers	40
Number of Signatures With Printed Text	137
Avg Number of Signature Types per Writer	2
Max Number of Signature Types per Writer	6

All Samples for a Writer


Performance for Manual Extraction

Precision-Recall

A precision of 74.5% was obtained at a recall of 78.28%.

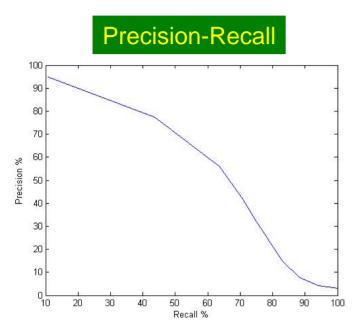
F Measure: Harmonic Mean Of Precision and Recall

On considering the Top 10 ranks, a F-measure value of 76.3 was obtained.

Dataset for Automatic Extraction (Entire Document)

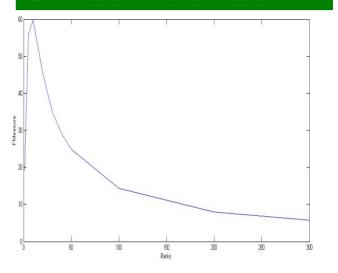
Automatic Signature Extraction was tested on a dataset of 300 documents, including documents with

- Printed Text
- Handwritten Text
- Logos
- Noise
- Scratches, Scribbles, Words Circled
- Lines and Black Borders
- Tables, Seals
- Poorly Scanned Documents


Tested on 80 queries

Performance Improvement using Query Expansion

Automatic Relevance Feedback


- A query expansion is done using the feedback (retrieval results) of the matching algorithm
- The signature image returned by the matching algorithm with the lowest score is added to the existing query to formulate an expanded query
- Retrieval is then performed using the expanded query

Performance for Automatic Extraction

Comparison of Precision-Recall Curves of signature retrieval results for 35 writers – Precision of 56% at a Recall of 63%

F Measure: Harmonic Mean Of Precision and Recall

On considering the Top 10 ranks, a F-measure value of 59.6 was obtained.

Conclusion and Future Work

- Method can be extended to several other document image retrieval applications
- Potential improvements:
 - increasing the feature set
 - using contextual information
 - handling multiple signature types
 - handling multiple signatures on same document