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Abstract

We present a new method for blind document bleed through
removal based on separate Markov Random Field (MRF) reg-
ularization for the recto and for the verso side, where separate
priors are derived from the full graph. The segmentation al-
gorithm is based on Bayesian Maximum a Posteriori (MAP)
estimation. The advantages of this separate approach are the
adaptation of the prior to the contents creation process (e.g.
superimposing two hand written pages), and the improve-
ment of the estimation of the verso pixels through an estima-
tion of the verso pixels covered by recto pixels. Optimization
is carried out with the simulated annealing algorithm. The
labels of the initial recto and verso clusters are recognized
without using any color or gray value information. The pro-
posed method is evaluated on synthetic images as well as
scanned document images. The results on real scanned data
have been evaluated using statistical evaluation on an empir-
ical test performed by 16 people.

Keywords
Markov Random Fields, Bayesian estimation, Document Im-
age Restoration, Bleed-Through Removal

1 Introduction

General image restoration methods which do not deal with
document image analysis have mostly been designed to cope
with sensor noise, quantization noise and optical degrada-
tions as blur, defocussing etc. (see [22] for a survey). Docu-
ment images, however, are often additionally subject to fur-
ther and stronger degradations:

1. non stationary noise due to illumination changes.

2. curvature of the document.

3. ink and coffee stains and holes in the document.

4. ink bleed through : the appearance of the verso side
text or graphics on the scanned image of the recto side.
This is an important problem when very old historical
documents are processed.

5. low print contrast.

6. errors in the alignment of multiple printing or imaging
stages.

In this paper we concentrate on the problem of ink bleed
through removal, i.e. the separation of a single scanned doc-
ument image into a recto side and a verso side. We assume
that a scan of the verso side is not available (blind sepa-
ration). In this case, the task is equivalent to a segmenta-
tion problem: classify each pixel as either recto, verso, back

ground, or eventually recto-and-verso (simultaneously). This
means that the vast collection of widely known segmentation
techniques can be applied directly. On the other hand, doc-
ument images are a specific type of images with their own
properties and their own specific problems. It is desirable to
design algorithms which exploit their specific properties in
order to improve the segmentation performance.

At first thought it might be a good idea to interpret the
task as a blind source separation problem similar to the
“cocktail party” problems successfully dealt with by the (au-
dio) signal processing community. Independent components
analysis (ICA) is one of the techniques which are most widely
used and so it is no surprise that it also has been applied to
document bleed through removal [25]. However, the issue
which makes this formulation questionable is that ICA as-
sumes a linear model:

ds = Afs

where ds is the observation vector, fs is the source vector and
A is the mixing matrix. In the case of documents, each vector
corresponds to a pixel at site s. The source vector is mostly
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chosen to be three dimensional, the dimensions corresponding
to the recto signal, the verso signal and an additional signal
adding the background color [25]. In this case, the column
vectors of the mixing matrix become the color vectors for,
respectively, recto pixels, verso pixels and background pixels,
as can be seen easily by setting fs = [ 1 0 0 ]T , [ 0 1 0 ]T and
[ 0 0 1 ]T and ds to the respective color vector and solving
for A.

We can easily verify that the linear hypothesis cannot be
justified for ink bleed through by calculating the color of an
observed pixel created by a source pixel which contains over-
lapping recto and verso pixels (fs = [ 1 1 0 ]T ) : according
to the model the observed color vector is the sum of the color
vectors for the recto and the verso pixel, which cannot be
true in reality.

Sharma presents a non-blind restoration algorithm, i.e. a
method which requires a scan of the recto as well as the verso
side of the document [23]. The two images are aligned using
image registration techniques. A reflectance model taking
into account a bleed-through spread function is created, ap-
proximated and corrected with an adaptive linear filter.

Another non-blind method is proposed by Dubois and
Pathak [10]. The emphasis is set to the image registration
part, the restoration itself is performed using a thresholding-
like heuristic.

Tan et al. propose a non-blind method where the alignment
is done manually [24]. Foreground strokes are detected using
both images and enhanced using a wavelet decomposition and
restoration. The same authors also present a blind method,
which is based on the hypothesis that the handwriting is
(very) slanted, and therefore that the strokes of the recto
and the verso side are oriented differently [27]. A directional
wavelet transform is employed to identify the origin of each
stroke.

Nishida and Suzuki describe a method based on the as-
sumption that high frequency components of the verso side
are cut off in the bleeding process [21]. Their restoration pro-
cess uses a multi-scale analysis and edge magnitude thresh-
olding. Leydier et al. propose a serialized (i.e. adaptive)
version of the k-means algorithm[19]. Drira et al. propose
an iterative algorithm which recursively applies the k-means
algorithm to the image reduced with principal components
analysis [9]. The recursive calls produce a tree of image lay-
ers corresponding to different color clusters in the image. The
leaf containing the verso layer is chosen by histogram analy-
sis.

The method presented by Don [7] is justified by a noise
spot model with Gaussian spatial distributions and Gaus-
sian gray value distributions. Under this assumption, thresh-
olds near the class means produce spurious connected compo-
nents. A histogram of connected component counts is created
and thresholded using standard techniques.

MRF regularization has already been used for this kind of
problem. For instance, Tonazzini et al. present a document
recognition system which restores selected difficult parts of
the document image with MRF regularization [26]. As prior
model they chose an Ising model with non-zero clique types of
1, 2, 3, and 9 pixels. The observation model contains a con-
volution term with an unknown parameter. The optimiza-

tion procedure alternates between the segmentation proce-
dure and the estimation of the parameter of the observation
model. The authors do not specify how they estimate the
parameters of the prior model.

Donaldson and Myers apply MRF regularization with two
priors to the problem of estimating a super-resolution image
from several low-resolution observations [8]. However, as op-
posed to our solution, there is only one field : the first prior
measures smoothness, whereas the second prior measures a
bi-modality criterion of the histogram.

In this approach we ignore degradations no. 1 and 3 and
propose an approach based on a stationary model. Non ho-
mogeneous models will be developed in further publications.
This restriction allows us to choose the well known MRF-
MAP Framework (Bayesian maximum a posteriori estimation
with a MRF prior) and to formulate the problem in terms of
two different models:

- the a priori knowledge on the segmented document is
included in the prior model. In our case, the prior model
consists of two MRFs, one for each side of the document.

- the knowledge on the document degradation process is
included in the observation model.

In a previous paper, we described a MRF model for document
image segmentation [28]. The goal, however, was to learn
the spatial properties of text in document images in order to
improve the binarization performance. The clique potentials
of large 4 × 4 cliques were determined by strict supervised
learning from training images. In this paper, however, the
emphasis is set to regularization. Therefore, a parametric
prior model has been chosen.

The contribution of this paper is threefold:

1. Creation of a double MRF model with a single observa-
tion field and the corresponding inference algorithm.

2. Design of an algorithm for the initial recognition of recto
and verso labels without using any color or gray value
information.

3. Design of a hierarchical algorithm for the calculation of
the background gray value replacing the verso pixel.

This paper is organized as follows. Section 2 proposes a de-
pendency graph for the joint probability density of the full
set of variables (the hidden recto and verso variables as well
as the observed variables) and derives the prior probabil-
ity. Section 3 proposes the observation model. Section 4
describes the posterior probability and its optimization (the
Gibbs sampler of the model). Section 5 outlines the estima-
tion procedure for the prior parameters and the parameters of
the observation model. Section 6 illustrates the initialization
of the different fields as well as the recognition of the lables
of the initial clusters and section 7 describes the restoration
process. Section 8 presents the experiments we performed
on synthetic and real scanned document images in order to
evaluate the performance of the proposed method. Section 9
finally concludes.
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2 The prior model

MRFs capture the spatial distribution of the pixels of an im-
age by assigning a probability (or an energy) to a given con-
figuration, i.e. a given segmentation result. This is normally
used to regularize the segmentation process, i.e. to favor cer-
tain configurations which are considered more probable. One
of the most widely used assumptions is the smoothness crite-
rion - homogeneous areas are considered more probable then
frequent label changes.

This assumption is normally justified1 considering that
very often high frequencies in the image content correspond
to noise and assuming that the MRF model has been adapted
to the prior knowledge on image content. However, this
changes when the observed image is the result of the superpo-
sition of two or more “source” images, which is the situation
dealt with in this work. In this case, a priori knowledge may
be available for each of the source images, but not for the
mixture of these images. Applying a simple regularization
on the combined image may over-smooth areas which should
actually contain high frequency edges due to the superposi-
tion process.

We therefore propose to create a prior model with two
different label fields : one for the recto side (F 1) and one for
the verso side (F 2). Instead of a segmentation problem with
a configuration space of 3 or eventually 4 labels for each site
(recto, verso, back ground, and eventually recto-and-verso),
we get a segmentation problem where each pixel corresponds
to two different hidden labels, one for each field, and where
each label is chosen from a space of two labels: text and back

ground. The advantages of this formulation are two-fold:

- the separation into two different label fields creates a sit-
uation where the priors regularize fields which directly
correspond to the natural process “creating” the con-
tents (e.g. hand writing letters), as opposed to the sin-
gle field case, where the prior tries to regularize a field
which is the result of overlapping two content fields.

- Correctly estimating verso pixels which are shadowed
by recto pixels, which is only possible with two sepa-
rate fields, is not just desirable in the case where the
verso field is needed. More so, a correct estimation of
the covered verso pixels, through the spatial interactions
encoded in the MRF, helps to correctly estimate verso
pixels which are not covered by a recto pixel, thus in-
creasing the performance of the algorithm.

Note, that the same result could be achieved with a single
hidden label field and by adapting the prior model such that
its regularization handles different label interactions differ-
ently. In general this produces rather complicated energy
functions equivalent to rather simple interactions in the re-
spective fields.

In the following and as usual, uppercase letters denote ran-
dom variables or fields of random variables and lower case
letters denote realizations of values of random variables or

1Label changes on the borders of regions can be ignored, dealt with
by a separate line processes[12] or directly in the main process [5].

of fields of random values. In particular, P (F = f) will be
abbreviated as P (f) when it is convenient.

Markov Random Fields have a long history, we refer the
reader to the seminal work and very often cited paper by
Geman and Geman [12] and to the book written by Li for
a large yet profound overview of the theory [20]. MRFs are
non causal models on undirected graphs which treat images
as stochastic processes. A field F of random variables Fs1

,
Fs2

, .... FsN
is a MRF if and only if

P (F=f) > 0 ∀f ∈ Ω and

P (Fs=fs|Fr=fr, r 6= s) = P (Fs=fs|Fr=fr, r ∈ Ns)

where f is a configuration of the random field, Ω is the space
of all possible configurations and Ns is the neighborhood of
the site s. In other words, the conditional probability for a
pixel of the image depends only on the pixels of a pre-defined
neighborhood around this pixel.

On a graph, each neighborhood defines a set of cliques,
where a clique is fully connected sub graph. According to
the Hammersley-Cifford theorem [13] [2], the joint probabil-
ity density functions of MRFs are equivalent to Gibbs distri-
butions defined on the maxima cliques, i.e. are of the form

P (f) =
1

Z
exp {−U(f)/T} (1)

where Z =
∑

f e−U(f)/T is a normalization constant, T is a
temperature factor which can be assumed to be 1 for simplic-
ity, U(f) =

∑

c∈C Vc(f) is a user defined energy function, C
is the set of all possible cliques of the field and Vc(f) is the
energy potential for the realization f defined on the single
clique c.

Given the nature of the problem, the three different label
fields (two hidden and one observed) should be considered in
a holistic way in order to precisely describe the interactions
between the two fields and to define a joint probability dis-
tribution on the full set of labels. In the rest of this paper we
therefore consider a full graph G = {V,E} with a set of nodes
V and a set of edges E. V is partitioned into three subsets:
the two fields of hidden variables F 1 and F 2 and the field
of observed variables D. The three fields are indexed by the
same indices corresponding to the pixels of the image, i.e.
F 1

s , F 2
s and Ds denote, respectively, the hidden recto label,

the hidden verso label and the observation for the same pixel
s. The set of edges E defines the neighborhood on the graph,
i.e. there is an edge between to nodes r and s if and only if
r ∈ Ns and s ∈ Nr.

The model described in this work is generative, i.e. it tries
to explain the process of creating the observed variables from
the hidden ones. Normally, when one creates contents for a
page consisting of a recto and a verso page, one considers the
recto content to be “independent” of the verso content since
the two different pages do not necessarily influence each other
— they may even be created by different authors. Statisti-
cally speaking, however, the two fields are not independent.
More so, they are not even conditionally independent given
the observed field, since, given the observed field, knowledge
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Figure 1: A site s ∈ F 1 and its neighborhood Ns and the
non zero clique types: “intra-field” single site (c ∈ C1), pair
site (c ∈ C2) and “inter-field” three-node cliques (c ∈ C3).

of the recto field influences inference of the verso field and
vice versa.

Considering the relationships between the observed vari-
ables and the hidden variables, i.e. the degradation pro-
cesses, we assume a first-order MRF, which means that the
following two conditions hold (a common assumption in the
MAP-MRF framework):

1. The random variables Ds are independent conditional to
the hidden label fields F 1 and F 2.

2. P (Ds|F
1, F 2) = P (Ds|F

1
s , F 2

s )

As a consequence, the dependency graph (see figure 2) con-
tains the following cliques types: first order and second order
“intra-field”2 cliques in the subgraph F 1, first order and sec-
ond order “intra-field” cliques in the subgraph F 2 (we will
assume the 3-node clique potentials to be zero) and finally
the “inter-field” cliques between F 1, F 2 and D. For reasons
which will become clear in section 3, we will set the potentials
for the pairwise inter-field cliques to zero, i.e. the second or-
der cliques with one node ∈ F 1 and one node ∈ D as well as
the second order cliques with one node in ∈ F 2 and one node
∈ D. The only contributing cliques are therefore three-node
cliques with one node of each respective field (F 1, F 2 and D);
see figure 1.

The joint probability distribution of the whole graph can
therefore be given as follows:

2The reader may have noticed that we frequently denote the subsets
of sites F

1, F
2 and D as “fields” and will excuse the slight ambiguity

with the “full” Markov random field which consists of all three fields.
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F 1

D

F 1

s ∈ [0, 1]
Ds ∈ [0, 255]

F 2

F 2

s ∈ [0, 1]

Figure 2: The dependency graph of the model consisting of
the two label fields F 1 and F 2 (“empty” nodes) and the single
observation field D (shaded nodes).

P (f1, f2, d)

=
1

Z
exp

{

−
(

U(f1) + U(f2) + U(f1, f2, d)
)

/T
}

=
1

Z
exp

{

−
(

U(f1) + U(f2)
)

/T
}

·

exp
{

−
(

U(f1, f2, d)
)

/T
}

=
1

P (d)
P (f1, f2)P (d|f1, f2)

(2)
The last equality indicates the Bayesian interpretation of the
problem: the first factor corresponds to the prior knowledge
and the second factor corresponds to the data likelihood de-
termined by the observation/degradation model. Infering the
set of hidden labels from the observed labels corresponds to
a maximizaton of the posterior probability (see section 4).

Following (2) we can see that the prior probability is actu-
ally the product of the two probabilities of the two fields F 1

and F 2:

P (f1, f2) = P (f1)P (f2)

This can also directly be seen in the dependency graph: the
two hidden label fields F 1 and F 2 do not share any common
nodes nor edges.

In image processing applications, a widely used prior model
for MRFs on rectangular grids is the logistic model [20],
which we slightly adapted:

U(fs, fNs
) =

∑

{s}∈C1

αfs +
∑

{s,s′}∈C2

βs,s′γ(fs, fs′) (3)

where U(fs, fNs
) is the local evidence for s, i.e. the potential

calculated on the subset of cliques which contain s, C1 is the

4



set of single site cliques, C2 is the set of pair site cliques (see
figure 1) and γ is defined as follows:

γ(L1, L2) =

{

+1 if L1 = L2

−1 else

The labels fs may take values from L = {0, 1}. We chose
a stationary and anisotropic model, therefore the single site
parameter α depends on the label fs of the corresponding
site s whereas the pair site parameters βs,s′ depend on the
direction of the clique (horizontal, vertical, right-diagonal,
left-diagonal) and its labeling.

The whole prior energy defined on both hidden fields is
given as the product (sum) of two (adapted) logistic models:

U(f1
s , f1

Ns
, f2

s , f2
Ns

)

=
∑

{s}∈C1

α1f1
s +

∑

{s,s′}∈C2

β1
s,s′γ(f1

s , f1
s′)

+
∑

{s}∈C1

α2f2
s +

∑

{s,s′}∈C2

β2
s,s′γ(f2

s , f2
s′)

Note that only the intra-field cliques from the sets C1 and C2
are used in the prior model, the clique potentials from the
set C3 are part of the observation model and will be defined
in the next section.

This choice results in a prior parameter vector θp which
consists of 10 parameters (5 for the recto field and 5 for the
verso field):

θp = [α1, β1
1 , . . . , β1

4 α2, β2
1 , . . . , β2

4 ]T

3 The observation model

The document degradation model can be seen as a two step
process: first the two sides (recto and verso) are subject to
separate degradation processes φ1 and φ2, possibly with dif-
ferent parameters, and then they are combined in a second
stage:

D = φc(φ1(F
1), φ2(F

2))

where D is the observation field and F 1 and F 2 are the two
hidden label fields.

As already mentioned in section 2, we assume a first-order
MRF for the first stage degradation processes (φi, i = 1..2).
In particular, we assume additive Gaussian noise with differ-
ent parameters for each class (text and background). The
Gaussian assumption may seem to be an over simplification
of the complex process involved in the degradation of historic
documents which very often have been stored for centuries in
not optimal conditions. However, the choice is motivated
by several reasons : the simplicity of the Gaussian function
makes the mathematical formulation of the model easy and
very often the oversimplifications of the observation model
are compensated by the regularizing effect of the prior.

Degradation models designed for document images do exist
and are widely used in the document image community. Un-
fortunately most of them have been developed for the evalua-
tion of document analysis algorithms and therefore have been

designed as binary operations, e.g. a series of morphological
operations [1] [30]. In [14], Kanungo et al. propose a degra-
dation model which takes into a account the page bending
process as well as the perspective distortion and the illumina-
tion change which results from it. These formulations make it
impossible to use them in a statistical estimation framework.

For the second stage degradation (φc), we assume ink
which is 100% opaque, i.e. that in the observation field a
recto text pixel totally covers the corresponding verso pixel,
whereas a recto background pixel does not. Combining the
two, we can write the likelihood as follows:

P (d|f1, f2) =
∏

s

G(ds; µs,Σs)

=
∏

s

1

(2π)N/2|Σs|1/2

exp

{

−
1

2
(ds − µs)

T Σ−1
s (ds − µs)

}

(4)

where µs is the mean for class fs and Σs is the covariance
matrix for class fs given as follows:

µs =







µr if f1
s = text

µv if f1
s = background and f2

s = text

µbg else

Σs =







Σr if f1
s = text

Σv if f1
s = background and f2

s = text

Σbg else

where µr,µv and µbg are, respectively, the means for the
recto class, the verso class and the background class, and the
covariances are denoted equivalently.

4 The posterior probability and its

maximization

Applying the Bayes rule to (2) we get the posterior probabil-
ity of the two label fields:

P (f1, f2|d) =
1

Z
P (f1, f2)P (d|f1, f2)

=
1

Z
P (f1)P (f2)P (d|f1, f2)

(5)

Combining (3), (4) and (5) we can see that the posterior
probability is a MRF on the same neighborhood as the prior
MRF and with the following energy potential function:

UP (f1
s , f1

Ns
, f2

s , f2
Ns

)

=
∑

{s}∈C1

α1f1
s +

∑

{s,s′}∈C2

β1
s,s′γ(f1

s , f1
s′)

+
∑

{s}∈C1

α2f2
s +

∑

{s,s′}∈C2

β2
s,s′γ(f2

s , f2
s′)

+
1

2
(ds − µs)

T Σ−1
s (ds − µs)

(6)
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To estimate the binary image, equation (5) must be maxi-
mized. Unfortunately, the function is not convex and stan-
dard gradient descent methods will most likely return a non
global solution. Simulated Annealing has been proven to re-
turn the global optimum under certain conditions [12].

Simulated Annealing received its name from physical pro-
cesses, which decrease temperatures to allow particles (e.g.
atoms in an alloy) to relax into a low energy configuration.
Similarly, for the optimization of a non-convex function, the
simulated annealing process lowers a — virtual — tempera-
ture factor. During the annealing process, pixels of the es-
timated binary fields are flipped in order to bring the esti-
mations closer to the model. However, a certain amount of
randomness is included in the optimization process, which
allows the system to flip to more unfavorable estimates at
certain times. This amount of randomness depends on the
temperature factor: it is set relatively high at the beginning
to allow the system to “jump” out of local minima, and is
gradually lowered together with the temperature factor.

More precisely, during the annealing process, for each pixel
the energy potential is calculated before and after chosing a
new state. The decision whether to keep the new state or not
is based on the value

q = e−∆/T (7)

where ∆ is the difference of the posterior energy potentials
(6) before and after the change. If q > 1 then the change
is favorable and accepted. If q < 1 then it is accepted with
probability q, which depends on the global temperature factor
T . For the cooling schedule we used the suggestions in [11]
(page 356), where the temperature T is set to

T (k) = T (1) · ck−1

where c is a constant controlling the speed of the cooling
process and k denotes the current iteration. The start tem-
perature must be sufficiently high to switch to energetically
very unfavorable states with a certain probability.

In our case, a concurrent estimation of two fields is nec-
essary, therefore there is not one but several possible state
changes for each pixel:

- change pixel f1
s

- change pixel f2
s

- change pixels f1
s and f2

s

At each iteration, a random state change is chosen and its en-
ergy change is evaluated by (7). A summary of the annealing
algorithm is given in figure 3.

5 Parameter estimation

Since realizations of the label fields F 1 and F 2 are not avail-
able, the parameters of the prior model and the observation
model must be estimated from the observed data or from in-
termediate estimations of the label fields. In this work we
chose to estimate the parameters in a supervised manner on
the median filtered label fields. Alternatives would be, for

Figure 3: Simulated annealing and Gibbs sampler for two
label fields.

Input: f1, f2 (initialized label fields), T (1) (start
temperature), C (cooling speed), kmax (number
of iterations)

Output: f1, f2 (estimated label fields)

for k ← 1 to kmax do
T ← T (1) · Ck−1

for s← 1 to m do
Eb ← UP (f1

s , f1
Ns

, f2
s , f2

Ns
)

E1 ← UP (f ′1
s , f1

Ns
, f2

s , f2
Ns

)

E2 ← UP (f1
s , f1

Ns
, f ′2

s , f2
Ns

)

E12 ← UP (f ′1
s , f1

Ns
, f ′2

s , f2
Ns

)
Ea ← random choice among {E1, E2, E12}
q ← e−(Ea−Eb)/T

if q > 1 then
flip pixel s according to the choice of Ea

else
flip pixel s according to the choice of Ea with
probability q

end

end

end

instance, iterated conditional estimation [4] or the mean field
theory [29].

5.1 The MRF parameters

For the supervised estimation of the MRF parameters we use
least squares estimation, which was first proposed by Derin
et al. [6]. For a single MRF the estimation procedure may
be described as follows.

The potential function for a single site s may be given as

U(fs, fNs
, θp) = θT

p N(fs, fNs
) (8)

where Ns are the intra-field neighbors of s: Ns =
{fwe, fea, fno, fso, fnw, fne, fsw, fse} (see figure 1), θp is the
prior parameter vector and N(fs, fNs

) can be derived from
(3) as follows:

N(fs, fNs
) = [ δfs,1,

γ(fs, fwe) + γ(fs, fea)
γ(fs, fno) + γ(fs, fso)
γ(fs, fne) + γ(fs, fsw)
γ(fs, fnw) + γ(fs, fse) ]T

where δi,j is the Kronecker delta given as

δi,j =

{

1 if i = j
0 else

From (8) and the basic definition of conditional probabilities
on MRFs:

P (fs|Ns) =
e−U(fs,fNs ,θp)

∑

fs∈L e−U(fs,fNs ,θp)
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the following relationship can be derived [6]:

θT
p [N(f ′

s, fNs
)−N(fs, fNs

)] = ln

(

P (fs, fNs
)

P (f ′
s, fNs

)

)

(9)

where f ′
s and is a label different of fs. The RHS of (9) can

be estimated using histogram techniques [6], counting the
number of occurrences of the clique labellings in the label
field. Considering all possible combinations of fs, f ′

s and fNs
,

(9) represents an over determined system of linear equations
which can be rewritten in matrix form as follows:

Nθp = p (10)

where N is a M × 6 matrix, M being the number of
data points, i.e. the number of combinations of L1, L2

and fNs
. The rows of N contain the transposed vectors

[N(L1, fNs
)−N(L2, fNs

)]T . The rows of the vector p contain
the corresponding values from the RHS of (9). The system
(10) can be solved using standard least squares techniques,
as for instance the pseudo inverse.

For practical purposes, note that labeling pairs with one
or both of the probabilities P (fs, fNs

) and P (f ′
s, fNs

) equal
zero cannot be used. Furthermore, Derin et al. suggest to
discard equations with low labeling counts in order to make
the estimation more robust.

5.2 Stability issues

In the case of document images we noticed an additional
problem: the resulting clique sample is not representative
enough. In particular the first order statistics seem to be
skewed which severely affects the estimation of the single
clique parameter α. We therefore decided to estimate this
parameter directly from the histogram. Assuming second or-
der cliques with zero energy and from (3) we can write the
energy for a single site fs:

U(fs) = αfs

From (1) we can estimate the potential corresponding to a
given probability for site s having label 1:

α = − lnP (fs) = − ln

[

n.o. set pixels

n.o. pixels

]

The other parameters are estimated with Derin et al.’s proce-
dure. The already estimated parameters for the single clique
cliques are injected into the system. Instead of solving (10),
the following system is solved:

Nuθu = p−Nkθk

where Nu, θu, Nk and θk are, respectively, the known (al-
ready estimated) and unknown parts of N , θp:

θp =

[

θk

θu

]

Nk = [ Nk Nu ]

5.3 The double MRF case

Adapting the estimation procedure for a double MRF is
straight forward. We estimate the parameters on the recto
field only, since this field is more stable — all its labels are
directly related to the observation field. The parameters of
the verso field are directly calculated from the parameters
of the recto field based on the assumption that, statistically
speaking, the verso field is a flipped version of the recto field.
In this case the first order statistics stay the same, while some
second order statistics are affected:

α2 = α1

β2
1 = β1

1

β2
2 = β1

2

β2
3 = β1

4

β2
4 = β1

3

where the βi, i = 1..4 are, respectively, the pairwise clique
parameters for horizontal, vertical, right-diagonal and left-
diagonal cliques. Basically the two diagonal clique param-
eters are exchanged. This operation mostly concerns docu-
ments containing cursive handwriting and skewed lines.

5.4 The parameters of the observation

model

The parameters of the observation model are estimated using
the classical maximum likelihood estimators (the empirical
means and covariances):

µ̂i = 1
N

∑

s∈Si

ds

i ∈ {r, v, bg}

Σ̂i = 1
N

∑

s∈Si

(ds − µi)(ds − µi)
T

where Si is the set of sites which has label i. Note that for
the label of a site the information of both label fields is used.

6 Initialisation of the label fields

The iterative algorithm described in the previous sections
needs to be initialized. More specifically, an initial estima-
tion of the two label fields f1 and f2 is needed. A natural
choice is to apply a segmentation technique without regular-
ization, e.g. a k-means segmentation, in order to classify the
pixels into three clusters. Then we determine for each clus-
ter whether it is background, recto or verso. For most images
that could be done using gray level information only, back-
ground being the lightest cluster and recto being the darkest
one. However, this fails for some images, e.g. the ones where
the text on the verso side is printed in very much darker color
than the one on the recto side. We therefore developed a clus-
ter labeling method which does not use the gray level of the
pixels. Instead, it is based on the following two assumptions,
in our opinion much more justified than assumptions on the
color or gray values of the clusters:
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A B

(a) (b)

Figure 4: (a) an input image; (b) the result of the k-means
clustering. As described by assumption 2, the word in the
upper part of the image, which belongs to the verso side of the
document, has been cut into several connected components
by a letter written on the recto side.

Assumption 1 Most space on the document page is occupied

by background.

Assumption 2 The ink is 100% opaque and therefore a

recto text pixel completely covers a verso pixel.

The first assumption is used to determine the background
cluster as the one having most pixels, which is rather straight-
forward and very efficient. The second assumption is used to
determine which one of the two remaining cluster labels —
henceforth denoted label a and label b — is the recto label.
The basic idea is the following: since recto pixels cover verso
pixels, connected components in the (unobservable) verso la-
bel field are often cut into several connected components in
the observation field when they interact with connected com-
ponents from the (unobservable) recto label field. Since we do
not have the unobservable label fields — which would make
the task trivial — we use histogram statistics on the initial
segmentation to exploit this fact.

First we perform a connected components analysis on the
k-means clustered observation image. Then we search for all
the places in the image where the two labels interact, i.e.
where there are two neighboring pixels (pa, pb), one having
label a and the other having label b. We then get the corre-
sponding connected component for each the two neighboring
pixels. If label a corresponds to the recto label, then the
corresponding connected component tends to be a whole let-
ter or even a whole word, whereas the connected component
corresponding to label b — the verso label — is very often
only a part of a letter or a word, which has been cut into
several components by the recto component (see figure 4).
We can exploit this fact by numerating all connected com-
ponents and collecting them in two different sets, Sa for the
components of label a and Sb for the components of label b.
The id of a connected component is inserted in a set for each
transition which involves the connected component and the
label of the corresponding set. Note, that these are sets in
the mathematical meaning, i.e. they do not contain multiple
elements.

As an example, consider the two transitions indicated by
the two points A and B in figure 4. For these two transitions,
2 connected components are inserted into the set correspond-
ing to the gray-ish label, while only one connected component
is inserted into the set corresponding to the darker label.

In order to make the algorithm more robust against spu-
rious noise, we perform the operations on a median filtered

Figure 5: Scanline algorithm for the recognition of the
recto and verso cluster labels.

Input: z (the k-means clustered observation field), a, b
(the two non-background cluster labels), T (a
threshold)

Output: lr (the label of the recto cluster)

Sa, Sb ← {}
Connected component analysis(z)
foreach scanline in z do

foreach pixel in scanline do
if label change from a to b or from b to a then

Ca ← component with label a
Cb ← component with label b
if |Ca| > T and |Cb| > T then

Sa ← Sa ∪ Ca

Sb ← Sb ∪ Cb

end

end

end

end

lr ← arg min
i=a,b

|Si|

version on the image and we only take into account label
transitions where the size of each involved connected compo-
nent exceeds a certain threshold T . Setting T to around 20
pixels assures that only characters and parts of characters are
considered. After a full traversal of the image, the recto label
can be determined as the label having the minimum number
of component ids. A summary of the algorithm in a scanline
order version is found in figure 5.

7 Restoration

The principle of the restoration algorithm is simple: replace
the color or gray value of the pixels classified as verso by the
color or gray value of the background. Directly using the
mean of the background class will produce visible artifacts
due to the noise in the image. A better solution is to use the
mean of the neighboring pixels classified as background.

Searching these pixels might be laborious in cases where
we need to fill larger areas of verso pixels. We therefore pro-
pose a hierarchical pyramid structure for the calculation of
the replacement values. The pyramid is characterized by a
2×2 reduction function and a receptive field of 3×3 children
for each parent site (see figure 6). Each site s of the hierar-
chical structure contains 2 values: Os is an estimation of the
background color at this site and Ms is the count of observed
background pixels used for the calculation of Ms. The base
level of the pyramid is initialized as follows:

Ms =

{

1 f1
s = background and f2

s = background

0 else

Os = ds

The parent levels are calculated from their child levels:
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Figure 6: The pyramid structure for the calculation of the
replacement color or gray value.

Ms =
∑

s′∈s−

Ms′

Os = (
∑

s′∈s−

Ms′)−1
∑

s′∈s−

Ms′Os′

where s− is the set of children of site s. In other words,
Ms is the weighted mean of the available observation sites
where each value Os is weighted by the number Ms of source
observation pixels which influenced it. Consequently, at a
given site, Os is an approximation of the mean of the observed
background pixels included in it’s support at the base of the
pyramid, since the calculation of Ms is an approximation of
the true number of pixels.

The aim of the restoration process is to set the verso pixel
to a color or gray value which is calculated using a minimum
of T values, where setting the parameter T to 4-5 pixels is
sufficient for a robust estimation. Intuitively speaking, after
building the pyramid, the segmented image (i.e. the base
level of the pyramid) is traversed and the replacement value
for each verso pixel can be taken from the parent site or
going up even further in the pyramid if the parent site does
not contain enough background pixels.

More precisely, depending on its position on the grid, each
site s may have 1, 2 or 4 parents, as can be seen at the
example points A, B and C, respectively, in figure 6. In
the following, we denote the set of parents of a site s by
s−. Instead of simply climbing the pyramid and chosing a
value, we will need to combine the values of the parents,
e.g. calculating the mean. If the combined number of used
observation pixels does not fulfill the requirement of being
greater than T , then we continue to the climb the pyramid.
The algorithm is given in figure 7.

8 Experimental results

Evaluating document restoration algorithms is a non trivial
task since ground truth is very hard to come by. Short of
manually classifying each pixel in a scanned image, the only

Figure 7: Calculation of the gray value or color replacing
a verso pixel.

Input: M,O (the restoration pyramid), s (the site of
the pixel to replace)

Output: V (the gray value or color of the replacement)

F ← {s−} {F is a queue}
while

∑

s′∈F Ms′ < T do
s′ ← first element in F
F ← F \ s′

F ← F ∪ s′− {add at the end}
end

V = (
∑

s′∈F Ms′)−1
∑

s′∈F Ms′Os′

way to get reliable ground truth data is to test the algorithm
on synthetic data. These tests, on the other hand, may not
be realistic enough to capture all the subtleties of a real en-
vironment. To evaluate our algorithm we therefore decided
to perform tests on synthetic data with ground truth as well
as real data. The results on the latter have been evaluated
applying a statistical test on empirical evaluation results.

In all cases we performed the experiments on gray scale
images only. If the images were available in color, we trans-
formed them to gray scale first.

8.1 Experiments on synthetic images

We created synthetic images according to the degradation
model described in section 3. Two perfect images have been
superimposed and Gaussian noise with different variances has
been added (see figure 8a).

Table 1 shows the results of our algorithm as well as set
of other algorithms : a simple k-means algorithm, a MRF
segmentation with a single label field, a double MRF seg-
mentation with normal least squares estimation and the dou-
ble MRF segmentation where the parameter α has been es-
timated directly from the histogram (see section 5.2). The
methods are tested against 2 different types of ground truth
:

4 classes GT the four classes are: recto, verso, back-

ground and recto-and-verso

3 classes GT the three classes are: recto, verso and
background.

Only the double MRF methods can be evaluated against the
4 class ground truth as the other methods are not capable of
estimating the recto-and-verso class. On the other hand, the
double MRF methods can’t be evaluated directly against the
3 class ground truth. However, an estimation is possible if
the segmentation output is transformed into a 3 class output
by replacing all recto-and-verso pixels with recto pixels (c.f.
the third column of table 1). Note that this evaluation is the
most relevant one, since it measures the performance of the
restoration process, during which recto-and-verso pixels are
treated just as recto pixels.

In a direct (that is, “unfair”) comparison the the per-
formance of the 4 class double MRF method is lower than
the ones of the two three class methods. This is expected,
since the task of estimating 4 classes is much more difficult,
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(a)

(b)

Figure 8: (a) the synthetic input images used in the experiments, created with Gaussian noise and respective variances of
σ = 10, 15, 20; (b) segmentation (left) and restoration results (right) on the synthetic image with σ = 20. From top to
bottom: k-means, single MRF, double MRF, double MRF with partial Derin et al.
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Nr. of classes gt:4 gt:3 gt:3 seg→3

K-Means (k=3) n.a. 0.25 0.25
Single MRF n.a. 0.03 0.03
Double MRF 2.00 n.a. 0.01
Double MRF-ParD 2.13 n.a. 0.01

(a)

Nr. of classes gt:4 gt:3 gt:3 seg→3

K-Means (k=3) n.a. 1.40 1.40
Single MRF n.a. 0.23 0.23
Double MRF 2.04 n.a. 0.10
Double MRF-ParD 2.25 n.a. 0.08

(b)

Nr. of classes gt:4 gt:3 gt:3 seg→3

K-Means (k=3) n.a. 3.56 3.56
Single MRF n.a. 0.73 0.73
Double MRF 2.60 n.a. 0.46
Double MRF-ParD 2.46 n.a. 0.31

(c)

Table 1: Classification error (in %) against ground truth with
different numbers of classes and on synthetic images with
different amount of noise: (a) σ = 10; (b) σ = 15; (c) σ = 20.

especially since the recto-and-verso class is unobserved and
can only be estimated through the spatial interaction, thus
through the Markov prior. However, looking at the “fair”
comparison shown in the third column of table 1, where all
methods are evaluated against the same 3 class ground truth,
we see that the double MRF method outperforms the other
methods.

This positive result confirms the objectives of the dou-
ble MRF prior described in section 2, namely the increase
of the regularization performance due to two different facts:
the adaptation of the prior to the contents creation process,
and the improvement of the estimation of the verso pixels
through an estimation of the verso pixels covered by recto
pixels, which is only possible with two different label fields.

8.2 Experiments on scanned document im-

ages

The method has also been tested on real document images
as shown in figures 9 and 10. As can be seen, the MRF
regularization is capable of removing many artifacts present
in the k-means segmented image. The double MRF method
further decreases the number of artifacts. There is no ground
truth for these kind of images, so we presented the images
in figures 9 and 10 to 16 different people (of course after
randomly shuffling the result images) and let them rank the
3 result images by perceived quality. The results of these
N = 64 tests (16 people evaluated 4 images each) is shown in
table 2a. Our method has been ranked first 33 times against
18 times and 13 times for the K-Means and the single MRF,
respectively.

It might be surprising that the K-Means algorithm has
been ranked first more often than the single MRF algorithm

Method Ranked 1 Ranked 2 Ranked 3

K-Means 18 10 36
Single-MRF 13 39 12
Double-MRF 33 15 16
Total 64 64 64

(a)
Method Ranked 1 Ranked 2 Ranked 3

K-Means 21 43 0
Double-MRF 43 21 0
Total 64 64 0

(b)

Table 2: Results of the emperical tests on real data: (a) the
complete results; (b) the results ignoring the method Single-

MRF.

since its output is visibly more noisy than the images pro-
duced by the regularized methods. However, apparently the
good ranking is due to the fact, that the K-Means algorithm
tends to keep more recto pixels than the single MRF one.
To test the statistical significance of this result, more partic-
ularly of the result “The method Double MRF is ranked first
33 times, therefore it outperforms the other methods”, let us
assume the following hypothesis:

H0 (null hypothesis) The method Double MRF is
as efficient as the other two
methods.

HA (alternative)] The method Double MRF is
either more or less efficient as
one or both other two meth-
ods.

We can conclude from the data that the method is not less ef-
ficient, it suffices therefore to reject the null hypothesis. Our
test statistics will be U = the number of times the method
Double MRF is ranked first. Assuming H0, the probability
for a given method to be ranked first for a given image is
π = 1

3 , U is therefore distributed Binomial, more precisely
U ∼ B(N,π). The probability of the actual value of U = 33
is given as:

P (U = 33) =

(

N
33

)

πp(1− π)N−3 = 0.00111

Given a standard significance level of α = 0.05, the null hy-
pothesis is therefore rejected.

This only proves that the method is better than one or
both of the alternatives, not that the method is better than
the second ranked one. This can be examined by looking at
the results after ignoring the method ranked as third, shown
in figure 2b, and creating a new null hypothesis:

H0 (null hypothesis) The method Double MRF is
as efficient as the method K-

means.
HA (alternative)] The method Double MRF is

either more or less efficient as
the method K-means.

Again, our test statistics U will be the number of times the
method Double MRF has been ranked first, the actual value
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Figure 9: Restoration results on real data. From top to bottom: input image, k-means, single MRF, double MRF.
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Figure 10: Restoration results on real data. From top to bottom: input image, k-means, single MRF, double MRF.
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being U = 43. Again U is distributed Binomial, this time
with parameters N = 64 and p = 0.5. The probability of the
actual value is P (U = 43) = 0.00222, which means that the
null hypothesis is again rejected. The Double MRF is thus
more efficient than the K-Means.

9 Conclusion and Outlook

In this paper we presented a method to separate the verso side
from the recto side of a single scan of document images. The
novelty of the method is the separation of the MRF prior into
two different label fields, each of which regularizes one of the
two sides of the document. This separation allows to estimate
the verso pixels of the document which are covered by the
recto pixels, which, again through the MRF prior, improves
the estimation of the verso pixels not covered by recto pixels,
thus increasing the performance of the regularization.

The performance of the method has been evaluated using
synthetic images with known ground truth as well as scanned
document images. The latter experiments have been evalu-
ated using empirical tests performed by 16 different people.
Statistical tests have been carried out to check the signifi-
cance of the results.

Involved in several digitization projects around the world,
our team is currently looking into the following perspectives
of this work:

- Creation of a homogeneous (into document analysis
terms: adaptive) observation model, which increases the
performance on larger images. This model needs to take
into account several text colors, as well as the page bend-
ing process and other different kinds of degradation (see
section 1).

- Creation of a hierarchical Markov model which is able
to take into account larger neighborhood structures. Hi-
erarchical models do exist and are widely used (e.g.
[3][17][15]), the description of their various shortcomings
is beyond the scope of this work.

- Creation of a discriminative model, as for instance a con-
ditional random field [18][16] adapted to the nature of
the problem.
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