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Abstract
Document-level relation extraction is a challenging task in information extraction, as it involves identifying semantic relations
between entities that are dispersed throughout a document. Existing graph-based approaches often rely on simplistic methods
to construct text graphs, which do not provide enough lexical and semantic information to accurately predict the relations
between entity pairs. In this paper, we introduce a document-level relation extraction method called SKAMRR (Sememe
Knowledge-enhancedAbstractMeaningRepresentation andReasoning). First, we generate document-level abstract meaning
representation graphs using rules and acquire entity nodes’ features through sufficient information propagation. Next, we
construct inference graphs for entity pairs and utilize graph neural networks to obtain their representations for relation
classification. Additionally, we propose the global adaptive loss to address the issue of long-tailed data. We conduct extensive
experiments on four datasets DocRE, CDR, GDA, and HacRED. Our model achieves competitive results and its performance
outperforms previous state-of-the-art methods on four datasets.

Keywords Document-level relation extraction · Graph neural networks · Sememe computation · Abstract meaning
representation · Long-tailed task

Introduction

Information extraction is a fundamental task in natural
language processing (NLP) and relation extraction is an
important sub-task in information extraction [1, 2]. An early
application scenario is to extract the relation between two
entities in a single sentence, and this kind of work has
been successful [3–5]. In recent years, the more challeng-
ing document-level relation extraction (DRE) has attracted
the attention of scholars, and more work has started to focus
on this task [6]. DRE plays a crucial role in knowledge acqui-
sition of unstructured documents, facilitating many NLP
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down-stream tasks such as knowledge graphs, recommen-
dation systems, and semantic search (Fig. 1).

Many previous document-level relation extraction meth-
ods use dependencies and basic rules to generate document
graphs and then use graph neural networks to make the
inference, such as EoG [7], GAIN [8], DRN [9], and LSR
[10]. However, these approaches have drawbacks. For exam-
ple, the graph structure they exploit suffers from inadequate
extraction of semantic information. Some works try to solve
the task directly using language models (transformer, etc.)
[11, 12]. These works usually take an equal view of the men-
tion of different entities and suffer from the problem of over
simplicity in the way they fuse features of the same enti-
ties. A few works focus on the distinction between positive
and negative samples but not on the problem of category
imbalance. Finally, only very little work currently considers
the problem of lexical confusion which is a crucial issue in
semantic-based NLP tasks.

The differences between document-level relation extrac-
tion and sentence-level relation extraction are mainly the
following three points. (1) The first point is that entities are
richer and distributed in long texts, and the same entities may
appear in different sentences.We needmore efficient ways to
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Fig. 1 An example of DocRED

model the entities in a document that need to determine rela-
tionships. (2) The second point is that the long text increases
the difficulty of reasoning about the relations between enti-
ties. For example, some relations must be extracted across
five or more sentences for reasoning. Therefore, we need to
usemoreprecise reasoning to infer the corresponding relation
labels. (3) The third point is that the data distribution is very
uneven. For example, each document inDocRED [6] is anno-
tated with named entity mentions, co-reference information,
intra- and inter-sentence relations, and supporting evidence.
There are about 10% of the relation types occupy nearly 60%
of the total sample size. How to alleviate the uneven sample
distribution is a key point for improving performance on this
task.

To solve the above three problems, we propose a novel
document-level relation extraction method, dubbed
SKAMRR (sememe knowledge-enhanced abstract mean-
ing representation and reasoning), as illustrated in Fig. 2.
The model builds on PLM, constructs document-level AMR
graphs, and models effective semantic associations. The
model also constructs a document-level entity graph to reason
correctly about the entity-pair belonging relations. Further-
more, the approach in this paper devises new loss functions
to mitigate the problem of uneven distribution of data in
the dataset. Intuitively, the document-level AMR graph is a
core information extraction graph in which document nodes,
sentence nodes, AMR nodes, and entity mention nodes are
connected by different types of edges to simulate cluster-
ing information. Relation inference is an operation built on
the entity mention graph (where entity mentions nodes are
obtained from the document-level AMR graph) and is a
semantically active graph designed to model the information
about the relations that exist between different entity pairs.

First, we fuse the sememe information into word repre-
sentation including entity mentions which can alleviate the
problem of lexical confusion and generate sentence-level
abstract meaning representation (AMR) graphs based on
the sentences in a document and then generate document-
level AMR graphs based on the rules. Document-level AMR
graphs are rooted, annotated, directed, and acyclic graphs that
represent high-level semantic relationships between abstract
concepts of unstructured concrete natural text. AMR is a
high-level semantic abstraction. In particular, different sen-
tences that are semantically similarmay share the sameAMR
parse output, whichmay also automatically filter and exclude
some information that is unnecessary to the model to some
degree.

Second, we build entity-pair graphs and use graph neu-
ral networks (GNN) to obtain vector representations of the
nodes in the graph. Specifically, we obtain the representa-
tion of entity mention nodes from the document-level AMR
graph and construct the entity pair graph, which is the core
inference graph of thismethod. As part of the inference graph
construction process, in this paper, the same entity nodes in
pairs of entity nodes are connected to realize the document-
level inference graph (multi-hop inference). Then, SKAMRR
obtains entity representations enhanced by core inference
with contextual feature information through graph isomor-
phism network [13], which facilitates capturing long-range
relation information.

Finally, we design a global adaptive loss function to solve
the problem of long-tail data. In addition, the problem of
uneven distribution of data in the document-level relation
extraction dataset is particularly apparent in DocRED, the
dataset often used for this task.
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Fig. 2 The overall architecture of SKAMRR. First, the input document
is subsequently encoded through BERT. Then, the sememe knowledge-
enhanced AMR graph generates the head and tail entity representation.

Next, we construct a entity-pair graph and use GIN to model the graph
interaction. Finally, the classifier predicts relations of all the entity pairs
and calculate model loss by GAL we proposed

The main contributions of this paper are summarized as
follows:

• We construct a document-level AMR heterogeneous
graph. This graph structure can well model the abstract
semantic information at the document level. Because of
its own advantages, it can automatically assist the model
in performing the filtering of repetitive information.

• We introduce sememe knowledge in the document-level
graph to improve the lexical representation of words
at a finer level by merging different lexical senses and
sememe information.

• We design a novel loss function named global adaptive
loss (GAL). This function can mitigate the impact of
long-tail effect on the model performance in the dataset
and can improve the generalization ability of the model.

• SKAMRR outperforms the baseline models on four
document-level relation extraction datasets (DocRED,
CDR, GDA, and HacRed). Our experimental results
demonstrate the efficacy of our method achieving com-
petitive performance.

Organization. The rest of this paper is organized as fol-
lows. In the section “RelatedWork”, we introduce the related
work including document-level relation extraction, graph
neural networks and abstract meaning representation. In the

section “Our Method”, we describe our proposed method
in detail. The section “Experiments” gives the experimental
setup and results. In the section “Conclusion”, we conclude
the entire paper.

Related work

Document-level relation extraction

Document-level relation extraction can generally be classi-
fied into twocategories: document graph-based and sequence-
based approaches. The graph-based approaches mainly use
words or entities as graph nodes, construct the document
graph by learning the latent graph structure of the docu-
ment, and continue to infer using graph neural networks.
Reference [14] first proposes the use of constructing doc-
ument graphs to solve relation extraction across sentences.
Reference [7] constructs heterogeneous graphs with three
kinds of nodes and five kinds of edges. Reference [10] uses
the matrix tree principle for heterogeneous networks to con-
struct the same expression using the interaction of attention
and iteratively updates the matrix by inducing structure.
Reference [15] performs the DRE by learning a pronoun–
mention graph representation, from which the derived graph
canmodel the relation among pronouns andmentions to infer
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the relations. References [8, 9, 16–21] all predict relations
by constructing document graphs and devising a way to rea-
son based on graph representations. There is another class
of methods that mainly take a sequence-based model [19,
22]. As the transformer model has been used in the NLP
field in recent years, more relation extraction methods have
been applied to this model. Since the sequence-based trans-
former can model long-range sequences, such methods do
not introduce graph structure. Reference [11] incorporates
structural dependencies into the encoder network and can
perform both context reasoning and structure reasoning. Ref-
erence [23] introduces a localized context pooling technique
to solve the problem of using the same entity embedding
for all entity pairs and proposes adaptive threshold Loss for
long-tail data. Reference [24] proposes an entity knowledge
injection framework to enhance DRE task by introducing
co-reference distillation and representation reconciliation.
Reference [25] proposes densely connected criss-cross atten-
tion network, which can collect contextual information in
horizontal and vertical directions on the entity-pair matrix to
enhance the corresponding entity-pair representation. Ref-
erence [26] builds upon co-reference resolution and gathers
relevant signals via multi-instance learning. There has also
been some recent work based on contrastive learning which
focuses on issues of long tails and data noise in data sets. In
this paper [27, 28], we use a graph structure-based approach,
because graph structured data has a natural advantage for
performing inference, both to accurately model documents
and to capture semantic relationships between long-distance
entities in more detail. To the best of our knowledge, we are
the first to apply the AMR graph to the task of DRE.

Graph neural networks

The graph neural networks (GNN) have attracted increas-
ing attention recently. While traditional neural networks are
more suitable for data in Euclidean space, GNN can use neu-
ral networks in graph structures. There are many types of
graph neural networks, including graph convolutional net-
works (GCN) [29], graph attention networks (GAT) [30],
GIN [13], etc. GNN can be utilized in non-structural data
where the graph structure is latent including the tasks of com-
puter vision and natural language processing. In recent years,
many works in NLP have applied for GNN techniques, such
as text classification [31, 32], question answering [33, 34],
text generation [35, 36], abnormal text detection [37, 38], etc.
We employ three kinds of GNN to accomplish document-
level relation extraction in our works. In this paper, we use
graph neural networks to perform relational entity pair infer-
ence and fusion operations of sememe information.

HowNet and abstract meaning representation

HowNet is one of themost famous sememe knowledge bases,
constructed in more than 20 years. A sememe is the min-
imum semantic unit in linguistics, and some linguists hold
that the meanings of all words in a language can be repre-
sented by a limited set of sememes [39]. Hownet contains
many Chinese and English words with word meanings and
sememe information. The sememes of senses in HowNet
are annotated with various relations and form hierarchical
graph structures. In our work, we only consider all annotated
sememes sets of each sense without considering their inter-
nal relations. HowNet proposes that annotated sememes can
represent senses and words well in a real-world scenario.
Sememes are helpful for many NLP tasks [40–42]. Open-
HowNet API [43] is developed by THUNLP, which provides
a convenient way to search information in HowNet, display
sememe trees, calculate word similarity via sememes, etc.
In our paper, we get words’ senses and sememes by Open-
HowNet API.

Abstract meaning representation (AMR) [44] is a graph-
based semantic representation that captures the sentence’s
semantics of “who is doing what to whom”. Each sentence
is represented as an acyclic graph with labels on nodes
(e.g., concepts) and edges (e.g., relations). Every node and
edge of the graph are labeled according to the sense of the
words in a sentence. An ID names each node in AMR. It
contains the semantic concept, which can be a word (e.g.,
man) or a PropBank frameset (e.g., want-01) or a special
keyword. The keywords have type (e.g., date-entity), quan-
tities (e.g., distance-quantity), and logical conjunction (e.g.,
and). The edge between two nodes is annotated using more
than 100 relations including frameset argument index (e.g.,
“:ARG0”), semantic relations (e.g., “:location”), etc. Several
recent works in natural language processing use AMR [45–
47]. In this paper, we have extended the sentence-level AMR
to the document level for better adaptation to the task.

Ourmethod

Research objective

The objective of this paper is to solve three RE problems at
the document level: (1) the phenomenon of multiple mean-
ings of a word plays an important role in the understanding
of semantics, and the same problem exists in the dataset of
document-level relation extraction. (2) There aremany cross-
sentence relations of entity pairs leading to long-distance
dependencies. Accurate relation classification often requires
strong graph modeling at the document level and a com-
prehensive reasoning approach. (3) Long-tail effect exists in
the dataset leading to degraded model performance. We then
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describe how to resolve these issues and present experimental
analysis.

General framework of SKAMRR

In this section, we describe our model (SKAMRR) in detail.
As shown in Fig. 2, the approach in this paper consists of
four parts, (1) text encoding module: using a text encoder to
obtain the initial word embedding. (2) Sememe knowledge-
enhanced Abstract meaning representation (AMR) module:
constructing document-level AMR graphs with Sememe-
enhanced word representations and obtaining fully interact-
ing word and entity nodes’ representations. (3) Reasoning
module: building entity-pair graph and performing relation
reasoning. (4) Classification module: outputting relation by
classification function and proposing global adaptive loss
(GAL) to alleviate imbalance of the data.

Background and notation

We formulate the document-level RE as follows:
Document D: The document D is the raw text that con-

tains multiple sentences. In addition, it makes use of a
sequence of word tokens, {x1, x2, .., xn}, to represent the
input of word embedding.

Entity E andMentionm: The entity set E consists of the
entities that appear in the document D. The mention repre-
sents the expression that does not have an explicit entity to
refer to in a document, and each mention is defined to be a
span of words. For each entity ei , it is represented by a set of
mentions: ei = {m1,m2, . . . ,mn} in the document D.

Formally, a document-level relation extraction task can
be denoted as T = {X ,Y }, where X is the instance set and
Y is the relation labels set. For each instance, it consists of
several tokens {x1, x2, . . . , xn}. The task aims to predict the
relation labels between entities, namely rh,t = f (hhe , h

t
e),

where hhe , h
t
e are the representations of head entity and tail

entity in E , rh,t is a relation label.

Text encodingmodule

The pre-trained language model (PrLM) as the text encoder,
such as BERT [48], is used in our work. BERT has achieved
amazing results on several natural language processing tasks,
demonstrating its powerful modeling ability for text data.
Denoting a document D of length l as the input and D =
[xt ]l , where xt means aword at position t . Following previous
work, we add the special markers < /S-category > and
< /E-category > before and after each entity mentions.
Then, we can obtain the content embedding H

H = PrLM([x1, . . . , xn]) = [h1, . . . , hn], (1)

Fig. 3 The word “apple” have three senses: apple company, apple
fruit, and apple tree. “Apple Company” have three sememe informa-
tion, including “PatternValue”, “IspeBrand”, and “Computer”. “Apple
Fruit” has “Fruit” and “Apple Tree” has “Reproduce”

where n is the length of the document after adding the special
markers, and we concatenate the start and end markers of
each entity mentions as its embedded representation. We use
dynamic windows for long text (n > 512).

Sememe knowledge-enhanced abstract meaning
representationmodule

Sememe-enhanced word representation

We introduce sememe knowledge to enhance the lexical
representation of words at a more fine-grained level by fus-
ing different lexical meanings and sememe information. As
shown in Fig. 3, a word contains multiple senses, and a sense
contains multiple sememes. The structure of the sememes
of one sense is available to form a graph structure. First,
we employ HowNet [39, 43] to get all words’ sememes and
senses information. Then,we construct the sememe graph for
each word sense. We use the graph attention network (GAT)
to pass and aggregate features on the sememe graph as the
following equation:

hsem1 , . . . , hsemM = GAT (vsem1 , . . . , vsemM ), (2)

where sem1, . . . , semM denote all the sememes belonging
to one sense sen, vsem indicates the words embedding of
sememe information, and hsem represents the output of GAT.

We then calculate the representation of the sense by the
averaging all sememe representations it have

hsen =
∑K

k=1 hsemk

K
. (3)

Afterward, all sense vectors are aggregated by global
attention [49] to obtain new word representations

a j = exp(tanh(ws[h j ; hsenj]))
∑C

c=1 exp(tanh(ws[hi ; hsenc]))
(4)
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Fig. 4 An example of a
document-level AMR graph,
where S1, S2, and S3 are virtual
sentence nodes; See-01,
chase-01, call out-01 are root
nodes; and the others are
concept nodes

hsemi =
C∑

j=1

a jhsen j , (5)

where sen1, . . . , senC denote the set of sense representa-
tions for the word i and C is the senses number of word
i , ws are trainable parameters, and Hsem = hsem1 , . . . , hsemn
are the sememe-enhanced representations and we use those
as embedding vectors instead of the initial BERT out-
puts.

Building document-level AMR

AMR is an effective semantic formalism in nature language
and can abstract the semantics of sentences to words that
contain key information. Some recent works have demon-
strated that AMR can assist in natural language processing
tasks [47]. To obtain adequate and critical information for
relation classification, we construct a document-level AMR
graph GD = (V D, ED) for each document. The standard
AMR graph is sentence-based, but the task is document-
based and requires reasoning about the relationships between
entities in different sentences across a document. First, we
select all sentences in the document that contain entity men-
tions, and we use the AMR parsing model [50] to get
the corresponding sentence-level AMR graph. The initial
embedding of the node in the graph is the representa-
tion with the Sememe information fused in the previous
step. For each sentence, we construct a virtual sentence
node that is connected to the root node of the sentence-
level AMR graph and all virtual sentence nodes are con-
nected. A document-level AMR graph contains three types
of nodes: root nodes, virtual sentence nodes, and concept
(word) nodes; four types of edges: root node-virtual sen-
tence nodes, virtual sentence node-virtual sentence node,
concept node-concept node, and concept node-root node.
The root nodes’ embedding is average embedding of its
sentence. The concept nodes’ embedding is getting from
sememe-enhanced word representation. The virtual sen-

tence node embedding is calculated by the attention score
of the last layer of BERT, which is calculated as fol-
lows:

a(h,t)
i = Ah

i · At
i

1�(Ah
i · At

i )
(6)

hsnodey = Hsem
y a(h,t)

i , (7)

where At
i , A

h
i is the attention matrix for i th mention of

head and tail entity tokens in one sentence. hsnodey is the

representation of yth virtual sentence node and Hsnode =
hsnode1 , . . . , hsnodeY . In addition, the mentions of the same
entity are also connected with edges. For the few entity men-
tions that do not appear in the AMR graph, we construct
additional entity nodes and connect them to the virtual sen-
tence nodes of the sentences where they are in. Figure4 is
an example of the document-level AMR graph constructed
in this paper.

Then, we use R-GCN [51] to perform feature extraction
on each document-level AMR graphs

h(l+1)
u = ReLU

⎛

⎝
∑

t∈T

∑

v∈N t
u∪{u}

1

cu,t
W (l)

t hsem(l)
v

⎞

⎠ , (8)

where hsemv ∈ {Hsnode, Hsem}. T is an edge of different
types and Wl

t ∈ R
d∗d is a trainable parameter. N t

u is the
set of neighboring nodes of node u at an edge of type t .
cu,t = |Nt

u | is a constant. Then, for the final representation
of the node u, we use the following equation for calculation:

mu = RELU(Wu · [h(0)
u ; . . . ; h(N )

u ]) + Max(h(0)
u , . . . h(N )

u ),

(9)

whereWu ∈ R
d∗Nd is the trainable parameter.mu is the node

u representation.
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Reasoningmodule

Our approach fully interacts with the beneficial information
in the document-level AMR in the previous module. In the
inference module, we consider the multi-hop phenomenon
(E.g., a document has four entities A, B, C, D, where (A, C)
has relation a, (C, D) has relation b, and (D, B) has relation c.
Then, it can be inferred that (A, B) has relation d.) of entities
and entity mentions for document-level relation extraction.
We employ connecting the first-order neighbors of entity
mentions and generating inference graphs, and then use the
GNN to obtain relation representations between multi-hop
neighbors. We fuse multiple entity mentions of one entity,
which is implemented using LogSumExp pooling [23] with
the following equation:

hei = log

Nei∑

j=1

exp(m j ), (10)

wherem j denotes representation of j th mention of i th entity.
We construct the entity pairs graph for one document. In

particular, one entities pair (head and tail entity) is regarded
as a node. If one of the two entities contained in an entity-
pair node is the same, then these two entity-pair nodes are
connected. The formula for the feature representation of the
entity-pair nodes is as follows:

hh(h,t) = tanh
(
Whhhe + bh

)
(11)

ht(h,t) = tanh
(
Wthte + bt

)
(12)

hr(h,t) = hh(h,t)
T
Wpht(h,t), (13)

where Wh ∈ R
d∗d , Wt ∈ R

d∗d , and Wi
p ∈ R

d2 are learnable
parameters. hr(h,t) is the vector representation of entity-pair
node.

Finally, we utilize a GNN to encode the entity pairs graphs
to extract the relation information. Given a entity pairs graph
g, representation after the graph encoder is as below

h1(h,t) f
, . . . , hS

(h,t) f
= G(h1(h,t), . . . , h

S
(h,t)), (14)

where G() is the graph encoder, and here, we use a state-
of-the-art graph isomorphism network [13] for its strong
representation ability. hS

(h,t) denotes the initial node repre-
sentations which are calculated above.

Classificationmodule

We first concatenate the entity-pair representation and the
two entity representations to generate the final representation
for relation classification

r(h,t) =
[
hhe ; hte; h(h,t) f

]
, (15)

where hhe and hte are computed by Eq. (10). h(h,t) f is getting
from Eq. (15).

Then, we adapt a linear layer for predicting relations

l(h,t)
f = W f r(h,t) + b f , (16)

where l f ∈ R
c denotes the output logits for all relations,

W f ∈ R
d×c is the weight matrix that maps the relation

embedding to the each class, and c is the number of label
categories.

Document-level relation extraction is essentially a multi-
label classification problem, and [23] proposes adaptive
thresholding loss (ATL) to solve the multi-label problem.
ATL is designed with a special category T H as the adap-
tive threshold, with positive cases above T H and negative
cases below or equal to T H . The original version of the loss
function is formulated as follows:

P (ri | eh, et ) =
exp

(
l(h,t)
f

)

∑
r ′∈PT ∪{T H} exp

(
l(h,t)′
f

) (17)

L1 = −
∑

r∈PT

log(P (ri | eh, et ) (18)

L2 = − log

⎛

⎜
⎝

exp
(
l(h,t)T H

f

))

∑
r ′∈NT ∪{T H} exp

(
l(h,t)′
f

)

⎞

⎟
⎠ (19)

L = L1 + L2, (20)

where positive classes PT ⊆ R are the relations that exist
between the entities in T . If T does not express any relation,
PT is empty. Negative classesNT ⊆ R are the relations that
do not exist between the entities. If T does not express any
relation, NT = R.

We use the idea of gradient harmonizing mechanism
(GHM) [52] to balance the possibility of positive examples
and propose gradient adaptive loss (GAL) to enhance the
effect of ATL. Our loss function’s design intuition is to keep
the model from focusing more on hard-to-classify (outliers)
and hard-to-classify samples. Gradient density is introduced
to measure the number of samples appearing in a specific
gradient range, so that the update of samples per gradient
becomes more balanced

L′ = α1 · L1 + L2 (21)

α1 = N

GD(gr )
, (22)

where L′
is our loss named GAL. GD(g) = 1

lε(g)

∑N
k=1 δε

(gk, g), denotes the gradient density. δε (gk, g) denotes N
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samples in each batch’s slicing. The parameter α1 enables to
transform the adjustment of the gradient to the loss function.
We can achieve the optimization for loss by adjusting the
value of α1.

Experiments

The goal of our experiments is to show that (1) our model
can capture important sentence-level features as well as
document-level features of relevant entity pairs and combine
these features for inference to obtain document-level rela-
tion extraction results, and (2) our proposed loss function
can mitigate the impact of the imbalanced sample distribu-
tion on the performance of the model. In this section, we first
introduce four document-level relation extraction datasets.
We then give some model parameters in this paper as well
as the baseline model used for experimental comparison. We
conclude by evaluating the model and using ablation experi-
ments to illustrate the robustness and efficiency of the model
architecture in this paper.

Dataset statistics

DocRED is a large-scalemanually annotated document-level
RE dataset constructed from Wikipedia and Wikidata with
two features. (1) It contains 132,375 entities and 56,354 rela-
tionship facts annotated on 5,053 Wikipedia documents. (2)
Since at least 40.7% of the relations in DocRED can only be
extracted from multiple sentences, DocRED needs to read
multiple sentences in a document to identify entities and rea-
son about their relations. The dataset contains 3053, 1000,
and 1000 instances as the training set, validation set, and
test set, respectively. Reference [53] creates the Chemical-
Disease Reactions dataset (CDR). It contains one kind of
relation: Chemical-Induced Disease between chemical and
disease entities. The dataset contains 500 documents for
training, 500 for development, and 500 for testing. TheGene-
Disease-Associations dataset (GDA) is created by [54]. It
has one kind of relation which is “Gene-Induced-Disease”
between gene and disease. We split the dataset in a normal
method, 23,353 documents for training, 5839 for develop-
ment, and 1000 for testing.HacRED is a large-scale dataset
with reasonable data distribution which focus on the hard
cases of relation extraction. We also select 6231 samples as
the training set, 1500 as the validation set, and 1500 as the
test set (Table 1).

Experiment settings and evaluationmetrics

We use PyTorch [55] and DGL [56] frameworks to imple-
ment the model in this paper. For the DocRed dataset, we
utilize BERT-large [48] and RoBERTa-large [57] as the ini-

Table 1 Dataset details

Dataset DocRED CDR GAD HacRED

Training set cases 3053 500 23,353 6231

Dev set cases 1000 500 5839 1500

Test set cases 1000 500 1000 1500

Relations 96 2 2 26

Avg. #Ents per Doc 19.5 7.6 2.4 10.8

Avg. #Ment. per Ent 1.4 2.7 3.3 1.2

Avg. #rel. per Doc 12.5 2.1 1.5 7.4

tial encoders for the documents, and Xu’s model [50] as
the AMR generator, respectively. For the CDR dataset, we
use BioBERT-Base v1.1 as the encoder, and We employ the
transformer-based AMR parser [58] that is pre-trained on the
Biomedical AMR corpus. The model parameter optimizer
we use is AdamW [59]. We set the initial learning rate for
all encoder modules to 2e−5, other modules to 1e−4. We
make the embedding dimension and the hidden dimension to
768. Our method’s GNNs encoders have three layers and the
hidden size of node embedding is 768. Our model is exper-
imented with NVIDIA RTX 3090 GPU. Following previous
work [6, 8], we take micro F1 and micro Ign F1 as the eval-
uation metrics for experimental performance. Ign F1 is the
F1 metric after excluding the effect of the presence of the
same entity relation pairs in the development/test set and the
training set.

Comparedmethods

We compare multiple models, which can be classified into
graph-based and non-graph-based approaches. We label
Bert-base as Bb, Bert-large as Bl, and Roberta-large as Rol.

Graph-based methods:
LSR [10] is an end-to-end document-level relation extraction
approach that treats the graph structure as a potential variable
and corrects that graph at each iteration step.

GEDA [17] considers the attention between sentences and
potential relation instances as a many-to-many relationship
and therefore introduces a bi-attentionmechanism, including
the attention of sentence-to-relation and relation-to-sentence.

GCGCN-BERT [60] proposes a novel graph convo-
lutional networks, which have two hierarchical blocks:
context-aware attention guided graph convolution for par-
tially connected graphs and multi-head attention guided
graph convolution for fully connected graphs.

GLRE [16] models entity pairs by encoding document
information into global and local representations as well as
contextual relation representations.

HeterGSAN [19] manages to reconstruct path dependen-
cies from graph representations to ensure that the proposed
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DocREmodel is more concernedwith encoding pairs of enti-
ties with relations in training.

SIRE [21] represents intra- and inter-sentential relations
differently and designs a straightforward form of logical rea-
soning that can cover more logical reasoning chains.

DRE [9] designs a discriminative inference network for
estimating the relation probability distributions of different
inference paths and then models the inference method for the
relation between each entity pair in the document.

CGM2IR [61] proposes context-guided coreferential
mentions integration in a weighted sum manner and inter-
pair reasoning.

Non-graph-based methods:
BERT [62] solves the DRE task in phases that can improve
performance, the first step is to predict whether two entities
are related, and the second is to predict the specific relation.

HINBERT [63] proposes a hierarchical inference net-
work (HIN) for document-level inference, which can aggre-
gate inference information from entity level to sentence level
and then document level.

CorefBERT [22] adds a mention reference prediction
(MRP) pre-training task to achieve the purpose of fusing
co-reference information in the pre-trained model.

SSAN [11] argues that structural dependencies should be
incorporatedwithin the encoding network and throughout the
system, leading to the proposal of structured self-attention
network, which can effectively model these dependencies
within its construction blocks and in all network layers from
the bottom up.

ATLOP [23] proposes localized context pooling structure
and adaptive thresholding to solve the multi-label and multi-
entity problem.

MRN [20] offers a mention-based reasoning network to
distinguish the impacts of close and distant entity mentions
in relation extraction and consider the interactions between
local and global contexts.

DocuNet [12] analogize theDRE to the semantic segmen-
tation task in computer vision, and use the U-shaped module
to capture the global interdependencies between the triples
on the image-style feature graph.

In CDR and GDA dataset, we compare our SKAMRR
modelwith six baselines, includingEoG [7],DHG[18], LSR,
MRN, ATLOP, and CGM2IR.

Main results

Results onDocRED:Wehave conductedmany experiments,
and the results are presented in Tables 2, 3 and Figs. 5, 6. In
DocRED, we can find that our model SKAMRR is better
on both Dev and test with the baseline model. In the doc-
ument graph-based approach, SKAMRR outperforms the
best-performing model SIRE in both F1 and Ign F1 met-

Table 2 Results on the development and test set of DocRED

Models Dev Test
Ign F1 F1 Ign F1 F1

LSR-Bb [10] 52.43 59.00 56.97 59.05

GEDA-Bb [17] 54.52 56.16 53.71 55.74

GCGCN-BERT-Bb [60] 55.43 57.35 54.53 56.67

GLRE-Bb [16] – – 55.40 57.40

GAIN-Bb [8] 59.14 61.22 59.00 61.24

HeterGSAN-Bb [19] 58.13 60.18 57.12 59.45

SIRE-Bb [21] 59.82 61.60 60.18 62.05

DRE-Bb [9] 59.33 61.39 59.15 61.37

BERT-Bb [62] – 54.16 – 53.20

HINBERT-Bb [63] 54.29 56.31 53.70 55.60

CorefBERT-Bb [22] 55.32 57.51 54.54 56.96

SSAN-Bb [11] 57.03 59.19 55.84 58.16

ATLOP-Bb [23] 59.22 61.09 59.31 61.30

MRN-Bb [20] 59.74 61.61 59.52 61.74

DocuNet-Bb [12] 59.86 61.83 59.93 61.86

CGM2IR-Bb [61] 60.02 62.01 60.24 62.06

SKAMRR-Bb 62.08 64.05 62.27 64.16

CorefBERT-Rol [22] 57.84 59.93 57.68 59.91

SSAN-Rol [11] 60.25 62.08 59.47 61.42

ATLOP-Rol [23] 61.32 63.18 61.39 63.40

GAIN-Bl [8] 60.87 63.09 60.31 62.76

CGM2IR-Bl [61] 62.03 63.95 61.96 63.89

SKAMRR-Rol 64.06 66.97 64.96 67.14

We separate Bb-based and Rol/Bl-based methods. The results of base-
lines are from their original papers
Values in bolded font are the metrics corresponding to the best perform-
ing models

Table 3 Experimental results on HacRED

Model Precision Recall F1

LSR 70.12 68.94 69.45

GAIN 73.35 79.98 76.01

ATLOP 76.74 78.27 77.52

SKAMRR 77.94 78.89 78.29

All results are implemented by us and used RoBerta as the text encoder
Values in bolded font are the metrics corresponding to the best perform-
ing models

rics when using BERT-base as the document encoder, and
our model SKAMRR outperforms the GAIN model when
using RoBERTa-large as the document encoder. The best-
performing models in document-level relation extraction are
sequence-model-based approaches, represented by DocuNet
and ATLOP. Our model SKAMRR outperforms both BERT-
base and RoBERTa-large in comparison metrics F1 and Ign
F1when they are the document encoders, respectively.When
BERT-base is the encoder, SKAMRR outperforms DocuNet
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Fig. 5 Results on the test set of CDR. The results of baselines are from
their original papers

Fig. 6 Results on the test set of GDA. The results of baselines are from
their original papers

by 2.3% and 2.34% on F1 and Ign F1 in test, respectively.
When RoBERTa-large is the encoder, SKAMRR outper-
forms ATLOP by 4.38% and 4.65% on F1 and Ign F1 in
test, respectively. The gap between Ign F1 and F1 woes is
also smaller when document encoders are used in this paper’s
model, showing that SKAMRR has good generalization and
generality. Also, the performance when using RoBERTa-
large as the encoder is better than using Bert-base, which
shows the power of the pre-trained model, and the task will
gain with the development of the pre-trained model at a later
stage.

Results on CDR and GDA: The results on the CDR dataset
by F1 score are shown in Fig. 5. It can be observed that
among the methods, the graph-based methods (CGM2IR
and ours) perform better in extracting the relation. These
phenomena demonstrate that the graph structure can better
preserve the interaction between different elements in the
document, which can help the model to correctly classify
the cross-sentence relation. Furthermore, ourmethod achieve
the best performance on all the metrics, which demonstrates
the effectiveness of SKAMRR. In particular, it states that

not only can our method automatically learn multi-hop paths
for inter-sentence relationships, but also identify the seman-
tic path within the sentence for intra-sentence extraction.
As can be observed from the experimental results presented
in Fig. 6, our SKAMRR achieves 84.2 on the GDA, which
is also better than nearly all of the methods. On the other
hand, the SKAMRRmetric is slightly. smaller than CGM2IR
(−0.5%), which is primarily due to the presence of fewer
inter-sentence relations in the GDA dataset (only 13% com-
pared to 30% in the CDR dataset), which results in the under
learning of the SKAMRR model. The method is also effec-
tive for document-level relation extraction in the biomedical
domain.

Results on HacRED: The experimental results based on the
HacRED dataset are shown in Table 3. In this paper, we
have selected three baseline methods; ATLOP and GAIN,
which represent the best performance of the graph-free and
graph-based methods, respectively. We are decorrelating to
the open source code supplied in the original paper for this
experiment. Our proposed method is able to outperform the
ATLOP baseline in all metrics, higher than 1.2% in accu-
racy, 0.62% in recall, and 0.77% in F1 value, respectively.
Not only does themodel performwell, but for all themethods
compared, HacRED’s performance is clearly superior to its
performance on DocRED. Normally, because the HacRED
dataset focuses on hard relations, while the DocRED dataset
is more general, the model should be less effective. The rea-
sons for this phenomenon are as follows: (1) the HacRED
dataset has significantly more samples with annotations than
DocRED, which also makes the model more fully trained
and makes the model have better generalization. 2) There
are only 26 relation categories in HacRED and the data are
highly distributed, which significantly reduces the presence
of fewer sample data, also making the model more fully
trained.

Furthermore, we utilize four models, namely LSR, GAIN,
ATLOP, and SKAMRR, to create the critical distance dia-
gram. Based on Fig. 7, it is evident that the SKAMRR, which
is introduced in this paper, outperforms the othermodels. The
model in this paper achieves competitive results in all the
four datasets. Experimental results show that the model of
this paper can explore feature information well both within
and across sentences, and accurately infer classes of rela-
tions between entities by the inference method devised in
this paper.

Ablation study

We design the corresponding ablation experiments for the
structure and contribution of ourmethod. Our ablation exper-
iments are divided into two parts. First, we perform the
experiment for model’s structure, involving the AMR mod-
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Fig. 7 Critical distance diagram for LSR, GAIN, ATLOP, and
SKAMRR

Table 4 Ablation study of SKAMRRon theDev set of DocRED,where
“w/o” indicates without

Model Ign F1 F1

SKAMRR-Bb 62.08 64.05

w/o AMR graph structure 60.71 (− 1.37) 62.65 (− 1.40)

w/o Sememe knowledge 60.97 (−1.11) 62.93 (−1.12)

w/o Global adaptive loss 60.94 (−1.14) 62.93 (−1.12)

w/o all 60.15 (−1.93) 61.98 (−2.07)

Bolded values indicate that each part of the proposed method high-
lighting this paper is effective, and if removed, the model performance
decreases more

Table 5 Results for long-tail type relationswhich contains ten relations,
where “w” indicates with

Model Long-tail F1

SKAMRR-Bb 63.08

w CE 62.17 (−0.91)

w Adaptive thresholding loss 62.43 (−0.65)

ule, the sememe knowledge, and the loss function (GAL).
Table 3 shows the results. First, we use the (GAIN) scheme
instead of AMR to construct the document graph, and we can
observe this leads to a 1.37% drop in Ign F1 and 1.4% in F1.
Then, we remove the Sememe information from the model,
and it also leads to a decrease of the model by 1.11% on Ign
F1 and 1.12% on F1. Afterwards, We replace the loss func-
tion with the conventional adaptive thresholding loss [19],
the F1 and Ign F1 decreased by 1.14% and 1.18%. Finally,
we remove all three components mentioned above, and the
experimental metrics dropped even more, with a 1.93% drop
in Ign F1 and a 2.07% drop in F1. The ablation experiments
can demonstrate that the building block of the AMR graph
structure used in this paper plays a key role, and the effect
of the model decreases the most if this part is removed. The
above experiments also show the effectiveness of sememe
knowledge fusion, and loss function (GAL) that we used, and
the experimental results depend on each part of the method.

In the second part, we create the long-tail data in the
dataset, containing 86 relations. The experiment is to ver-
ify the validity of GAL proposed in this paper. The results of
the experiment are shown in Table 4. We can see that the F1
value of our model decreases by 0.91% and 0.65% when we
use normal CE and ATL. This proves that the GAL proposed

Fig. 8 Results of different number of interactions on the test set of
DocRED

in this paper can improve the model’s performance on the
class sample imbalanced dataset and mitigate the impact of
the imbalanced sample distribution (Table 5).

Parameter sensitivity

Since we use GNN in sememe information fusion, AMR
graph modeling, and entity-pair graph inference, we need to
experimentally validate with respect to the key parameter in
GNN (the number of interaction steps). The performance of
our SKAMRR method is influenced by the number of inter-
action steps, so we can choose multiple numbers to verify
our approach. This part compares different numbers of inter-
action steps to analyze which number of interactions yields
the best performance. In particular, we compare numbers
{0, 1, 2, 3, 4, 5}. It can be seen from Fig. 8 that three times
of interaction step achieves the best performance among all
the compared numbers. In addition, the result of number 2 is
also satisfactory, indicating that we can consider 2 interac-
tions if our computational resources are limited. This result
demonstrates the robustness of our choice of the number 3
for the interaction step.

Conclusion

In this paper,we propose a document-level relation extraction
method-SKAMRR. Instead of simply using entities or words
to build graphs, we employ AMR as the basis for building
document graphs using sememe-enhanced word represen-
tation and interacting with helpful information through the
document-level AMR graphs. Afterward, we get the enti-
ties’ features and build the entity pairs graph for relation
reasoning. Finally, we design a global threshold adaptation
loss function that can alleviate the problem of unbalanced
category samples in the dataset. Experimental results show
that SKAMRR achieves very competitive performance in
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both real-world datasets, which verified its effectiveness. For
future work, (1) use graph comparison learning to improve
the performance of document-level relationship extraction
tasks based on AMR graphs; (2) design a unified framework
that unifies the graph interaction process at different stages,
so that both the interaction purpose and the computational
complexity can be achieved; (3) continue to explore new loss
functions to better solve the problem of uneven data distri-
bution that exists in the dataset (long-tail data).
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