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Abstract

Document level sentiment classification

remains a challenge: encoding the intrin-

sic relations between sentences in the se-

mantic meaning of a document. To ad-

dress this, we introduce a neural network

model to learn vector-based document rep-

resentation in a unified, bottom-up fash-

ion. The model first learns sentence rep-

resentation with convolutional neural net-

work or long short-term memory. After-

wards, semantics of sentences and their

relations are adaptively encoded in docu-

ment representation with gated recurren-

t neural network. We conduct documen-

t level sentiment classification on four

large-scale review datasets from IMDB

and Yelp Dataset Challenge. Experimen-

tal results show that: (1) our neural mod-

el shows superior performances over sev-

eral state-of-the-art algorithms; (2) gat-

ed recurrent neural network dramatically

outperforms standard recurrent neural net-

work in document modeling for sentiment

classification.1

1 Introduction

Document level sentiment classification is a fun-

damental task in sentiment analysis, and is cru-

cial to understand user generated content in so-

cial networks or product reviews (Manning and

Schütze, 1999; Jurafsky and Martin, 2000; Pang

and Lee, 2008; Liu, 2012). The task calls for iden-

tifying the overall sentiment polarity (e.g. thumbs

up or thumbs down, 1-5 stars on review sites) of a

document. In literature, dominant approaches fol-

low (Pang et al., 2002) and exploit machine learn-

∗Corresponding author.
1 Codes and datasets are publicly available at

http://ir.hit.edu.cn/˜dytang.

ing algorithm to build sentiment classifier. Many

of them focus on designing hand-crafted features

(Qu et al., 2010; Paltoglou and Thelwall, 2010) or

learning discriminate features from data, since the

performance of a machine learner is heavily de-

pendent on the choice of data representation (Ben-

gio et al., 2015).

Document level sentiment classification re-

mains a significant challenge: how to encode the

intrinsic (semantic or syntactic) relations between

sentences in the semantic meaning of documen-

t. This is crucial for sentiment classification be-

cause relations like “contrast” and “cause” have

great influences on determining the meaning and

the overall polarity of a document. However, ex-

isting studies typically fail to effectively capture

such information. For example, Pang et al. (2002)

and Wang and Manning (2012) represent docu-

ments with bag-of-ngrams features and build SVM

classifier upon that. Although such feature-driven

SVM is an extremely strong performer and hardly

to be transcended, its “sparse” and “discrete” char-

acteristics make it clumsy in taking into account of

side information like relations between sentences.

Recently, Le and Mikolov (2014) exploit neural

networks to learn continuous document represen-

tation from data. Essentially, they use local ngram

information and do not capture semantic relations

between sentences. Furthermore, a person asked

to do this task will naturally carry it out in a se-

quential, bottom-up fashion, analyze the meanings

of sentences before considering semantic relation-

s between them. This motivates us to develop an

end-to-end and bottom-up algorithm to effectively

model document representation.

In this paper, we introduce a neural network ap-

proach to learn continuous document representa-

tion for sentiment classification. The method is

on the basis of the principle of compositionality

(Frege, 1892), which states that the meaning of

a longer expression (e.g. a sentence or a docu-
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Figure 1: The neural network model for document level sentiment classification. wn
i stands for the i-th

word in the n-th sentence, ln is sentence length.

ment) depends on the meanings of its constituents.

Specifically, the approach models document rep-

resentation in two steps. In the first step, it us-

es convolutional neural network (CNN) or long

short-term memory (LSTM) to produce sentence

representations from word representations. After-

wards, gated recurrent neural network is exploit-

ed to adaptively encode semantics of sentences

and their inherent relations in document represen-

tations. These representations are naturally used

as features to classify the sentiment label of each

document. The entire model is trained end-to-end

with stochastic gradient descent, where the loss

function is the cross-entropy error of supervised

sentiment classification2.

We conduct document level sentiment classi-

fication on four large-scale review datasets from

IMDB3 and Yelp Dataset Challenge4. We com-

pare to neural network models such as paragraph

vector (Le and Mikolov, 2014), convolutional neu-

ral network, and baselines such as feature-based

SVM (Pang et al., 2002), recommendation algo-

rithm JMARS (Diao et al., 2014). Experimental

results show that: (1) the proposed neural model

shows superior performances over all baseline al-

gorithms; (2) gated recurrent neural network dra-

matically outperforms standard recurrent neural

2A similar work can be found at: http:

//deeplearning.net/tutorial/lstm.html
3http://www.imdb.com/
4http://www.yelp.com/dataset_challenge

network in document modeling. The main con-

tributions of this work are as follows:

• We present a neural network approach to en-

code relations between sentences in document rep-

resentation for sentiment classification.

• We report empirical results on four large-scale

datasets, and show that the approach outperforms

state-of-the-art methods for document level senti-

ment classification.

• We report empirical results that traditional re-

current neural network is weak in modeling docu-

ment composition, while adding neural gates dra-

matically improves the classification performance.

2 The Approach

We introduce the proposed neural model in this

section, which computes continuous vector repre-

sentations for documents of variable length. These

representations are further used as features to clas-

sify the sentiment label of each document. An

overview of the approach is displayed in Figure 1.

Our approach models document semantics

based on the principle of compositionality (Frege,

1892), which states that the meaning of a longer

expression (e.g. a sentence or a document) comes

from the meanings of its constituents and the rules

used to combine them. Since a document consist-

s of a list of sentences and each sentence is made

up of a list of words, the approach models docu-

ment representation in two stages. It first produces

continuous sentence vectors from word represen-
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tations with sentence composition (Section 2.1).

Afterwards, sentence vectors are treated as inputs

of document composition to get document repre-

sentation (Section 2.2). Document representations

are then used as features for document level senti-

ment classification (Section 2.3).

2.1 Sentence Composition

We first describe word vector representation, be-

fore presenting a convolutional neural network

with multiple filters for sentence composition.

Each word is represented as a low dimension-

al, continuous and real-valued vector, also known

as word embedding (Bengio et al., 2003). Al-

l the word vectors are stacked in a word embed-

ding matrix Lw ∈ R
d×|V |, where d is the dimen-

sion of word vector and |V | is vocabulary size.

These word vectors can be randomly initialized

from a uniform distribution (Socher et al., 2013b),

or be pre-trained from text corpus with embedding

learning algorithms (Mikolov et al., 2013; Pen-

nington et al., 2014; Tang et al., 2014). We adopt

the latter strategy to make better use of semantic

and grammatical associations of words.

We use convolutional neural network (CNN)

and long short-term memory (LSTM) to compute

continuous representations of sentences with se-

mantic composition. CNN and LSTM are state-

of-the-art semantic composition models for senti-

ment classification (Kim, 2014; Kalchbrenner et

al., 2014; Johnson and Zhang, 2015; Li et al.,

2015a). They learn fixed-length vectors for sen-

tences of varying length, captures words order in

a sentence and does not depend on external de-

pendency or constituency parse results. One could

also use tree-based composition method such as

Recursive Neural Tensor Network (Socher et al.,

2013b) or Tree-Structured LSTM (Tai et al., 2015;

Zhu et al., 2015) as alternatives.

Specifically, we try CNN with multiple con-

volutional filters of different widths (Tang et al.,

2015) to produce sentence representation. Fig-

ure 2 displays the method. We use multiple con-

volutional filters in order to capture local seman-

tics of n-grams of various granularities, which

have been proven effective for sentiment classifi-

cation. For example, a convolutional filter with a

width of 2 essentially captures the semantics of bi-

grams in a sentence. In this work, we use three

convolutional filters whose widths are 1, 2 and

3 to encode the semantics of unigrams, bigram-

Average
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Figure 2: Sentence composition with convolution-

al neural network.

s and trigrams in a sentence. Each filter consists

of a list of linear layers with shared parameter-

s. Formally, let us denote a sentence consisting

of n words as {w1, w2, ...wi, ...wn}, let lc be the

width of a convolutional filter, and let Wc, bc be

the shared parameters of linear layers in the fil-

ter. Each word wi is mapped to its embedding

representation ei ∈ R
d. The input of a linear lay-

er is the concatenation of word embeddings in a

fixed-length window size lc, which is denoted as

Ic = [ei; ei+1; ...; ei+lc−1] ∈ R
d·lc . The output of

a linear layer is calculated as

Oc = Wc · Ic + bc (1)

where Wc ∈ R
loc×d·lc , bc ∈ R

loc , loc is the output

length of linear layer. To capture global semantics

of a sentence, we feed the outputs of linear layers

to an average pooling layer, resulting in an output

vector with fixed-length. We further add hyperbol-

ic tangent (tanh) to incorporate pointwise nonlin-

earity, and average the outputs of multiple filters

to get sentence representation.

We also try lstm as the sentence level semantic

calculator, the performance comparison between

these two variations is given in Section 3.

2.2 Document Composition with Gated

Recurrent Neural Network

The obtained sentence vectors are fed to a docu-

ment composition component to calculate the doc-

ument representation. We present a gated recur-

rent neural network approach for document com-

position in this part.

Given the vectors of sentences of variable

length as input, document composition produces

a fixed-length document vector as output. To this

end, a simple strategy is ignoring the order of sen-
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Figure 3: Document modeling with gated recurrent neural network. GNN stands for the basic computa-

tional unit of gated recurrent neural network.

tences and averaging sentence vectors as docu-

ment vector. Despite its computational efficiency,

it fails to capture complex linguistic relations (e.g.

“cause” and “contrast”) between sentences. Con-

volutional neural network (Denil et al., 2014) is an

alternative for document composition, which mod-

els local sentence relations with shared parameters

of linear layers.

Standard recurrent neural network (RNN) can

map vectors of sentences of variable length to

a fixed-length vector by recursively transforming

current sentence vector st with the output vector

of the previous step ht−1. The transition function

is typically a linear layer followed by pointwise

non-linearity layer such as tanh.

ht = tanh(Wr · [ht−1; st] + br) (2)

where Wr ∈ R
lh×(lh+loc), br ∈ R

lh , lh and loc are

dimensions of hidden vector and sentence vector,

respectively. Unfortunately, standard RNN suffer-

s the problem of gradient vanishing or exploding

(Bengio et al., 1994; Hochreiter and Schmidhu-

ber, 1997), where gradients may grow or decay

exponentially over long sequences. This makes

it difficult to model long-distance correlations in

a sequence. To address this problem, we devel-

op a gated recurrent neural network for documen-

t composition, which works in a sequential way

and adaptively encodes sentence semantics in doc-

ument representations. The approach is analo-

gous to the recently emerged LSTM (Graves et

al., 2013; Zaremba and Sutskever, 2014; Sutskev-

er et al., 2014; Xu et al., 2015) and gated neural

network (Cho et al., 2014; Chung et al., 2015).

Specifically, the transition function of the gated

RNN used in this work is calculated as follows.

it = sigmoid(Wi · [ht−1; st] + bi) (3)

ft = sigmoid(Wf · [ht−1; st] + bf ) (4)

gt = tanh(Wr · [ht−1; st] + br) (5)

ht = tanh(it ⊙ gt + ft ⊙ ht−1) (6)

where ⊙ stands for element-wise multiplication,

Wi, Wf , bi, bf adaptively select and remove histo-

ry vector and input vector for semantic composi-

tion. The model can be viewed as a LSTM whose

output gate is alway on, since we prefer not to dis-

carding any part of the semantics of sentences to

get a better document representation. Figure 3 (a)

displays a standard sequential way where the last

hidden vector is regarded as the document rep-

resentation for sentiment classification. We can

make further extensions such as averaging hidden

vectors as document representation, which takes

considerations of a hierarchy of historical seman-

tics with different granularities. The method is il-

lustrated in Figure 3 (b), which shares some char-

acteristics with (Zhao et al., 2015). We can go

one step further to use preceding histories and fol-

lowing evidences in the same way, and exploit bi-

directional (Graves et al., 2013) gated RNN as the

calculator. The model is embedded in Figure 1.

2.3 Sentiment Classification

The composed document representations can be

naturally regarded as features of documents for

sentiment classification without feature engineer-

ing. Specifically, we first add a linear layer to

transform document vector to real-valued vector

whose length is class number C. Afterwards, we

add a softmax layer to convert real values to con-

ditional probabilities, which is calculated as fol-

lows.

Pi =
exp(xi)∑C

i′=1 exp(xi′)
(7)

We conduct experiments in a supervised learn-

ing setting, where each document in the training

data is accompanied with its gold sentiment label.
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Corpus #docs #s/d #w/d |V | #class Class Distribution

Yelp 2013 335,018 8.90 151.6 211,245 5 .09/.09/.14/.33/.36

Yelp 2014 1,125,457 9.22 156.9 476,191 5 .10/.09/.15/.30/.36

Yelp 2015 1,569,264 8.97 151.9 612,636 5 .10/.09/.14/.30/.37

IMDB 348,415 14.02 325.6 115,831 10 .07/.04/.05/.05/.08/.11/.15/.17/.12/.18

Table 1: Statistical information of Yelp 2013/2014/2015 and IMDB datasets. #docs is the number of

documents, #s/d and #w/d represent average number of sentences and average number of words contained

in per document, |V | is the vocabulary size of words, #class is the number of classes.

For model training, we use the cross-entropy er-

ror between gold sentiment distribution P g(d) and

predicted sentiment distribution P (d) as the loss

function.

loss = −
∑

d∈T

C∑

i=1

P
g
i (d) · log(Pi(d)) (8)

where T is the training data, C is the number

of classes, d represents a document. P g(d) has

a 1-of-K coding scheme, which has the same

dimension as the number of classes, and only the

dimension corresponding to the ground truth is

1, with all others being 0. We take the deriva-

tive of loss function through back-propagation

with respect to the whole set of parameters θ =
[Wc; bc;Wi; bi;Wf ; bf ;Wr; br;Wsoftmax, bsoftmax],
and update parameters with stochastic gradient

descent. We set the widths of three convolutional

filters as 1, 2 and 3, output length of convolutional

filter as 50. We learn 200-dimensional word em-

beddings with SkipGram (Mikolov et al., 2013)

on each dataset separately, randomly initialize

other parameters from a uniform distribution

U(−0.01, 0.01), and set learning rate as 0.03.

3 Experiment

We conduct experiments to empirically evaluate

our method by applying it to document level senti-

ment classification. We describe experimental set-

tings and report empirical results in this section.

3.1 Experimental Setting

We conduct experiments on large-scale datasets

consisting of document reviews. Specifically, we

use one movie review dataset from IMDB (Diao

et al., 2014) and three restaurant review dataset-

s from Yelp Dataset Challenge in 2013, 2014 and

2015. Human labeled review ratings are regarded

as gold standard sentiment labels, so that we do

not need to manually annotate sentiment labels of

documents. We do not consider the cases that rat-

ing does not match with review texts (Zhang et al.,

2014).

Statistical information of these datasets are giv-

en in Table 1. We use the same dataset split as

in (Diao et al., 2014) on IMDB dataset, and split

Yelp datasets into training, development and test-

ing sets with 80/10/10. We run tokenization and

sentence splitting with Stanford CoreNLP (Man-

ning et al., 2014) on all these datasets. We use

accuracy (Manning and Schütze, 1999; Jurafsky

and Martin, 2000) and MSE (Diao et al., 2014)

as evaluation metrics, where accuracy is a stan-

dard metric to measure the overall sentiment clas-

sification performance. We use MSE to measure

the divergences between predicted sentiment la-

bels and ground truth sentiment labels because re-

view labels reflect sentiment strengths (e.g. one

star means strong negative and five star means

strong positive).

MSE =

∑N
i (goldi − predictedi)

2

N
(9)

3.2 Baseline Methods

We compare our methods (Conv-GRNN and

LSTM-GRNN) with the following baseline meth-

ods for document level sentiment classification.

(1) Majority is a heuristic baseline, which as-

signs the majority sentiment label in training set

to each document in test set.

(2) In SVM+Ngrams, we use bag-of-unigrams

and bag-of-bigrams as features and train SVM

classifier with LibLinear (Fan et al., 2008)5.

(3) In TextFeatures, we implement sophisticated

features (Kiritchenko et al., 2014) including word

ngrams, character ngrams, sentiment lexicon fea-

tures, cluster features, et al.

5We also try discretized regression (Pang and Lee, 2005)
with fixed decision thresholds (e.g. 0.5, 1.5, 2.5, ...). Howev-
er, its performance is obviously worse than SVM classifier.
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Yelp 2013 Yelp 2014 Yelp 2015 IMDB

Accuracy MSE Accuracy MSE Accuracy MSE Accuracy MSE

Majority 0.356 3.06 0.361 3.28 0.369 3.30 0.179 17.46

SVM + Unigrams 0.589 0.79 0.600 0.78 0.611 0.75 0.399 4.23

SVM + Bigrams 0.576 0.75 0.616 0.65 0.624 0.63 0.409 3.74

SVM + TextFeatures 0.598 0.68 0.618 0.63 0.624 0.60 0.405 3.56

SVM + AverageSG 0.543 1.11 0.557 1.08 0.568 1.04 0.319 5.57

SVM + SSWE 0.535 1.12 0.543 1.13 0.554 1.11 0.262 9.16

JMARS N/A – N/A – N/A – N/A 4.97

Paragraph Vector 0.577 0.86 0.592 0.70 0.605 0.61 0.341 4.69

Convolutional NN 0.597 0.76 0.610 0.68 0.615 0.68 0.376 3.30

Conv-GRNN 0.637 0.56 0.655 0.51 0.660 0.50 0.425 2.71

LSTM-GRNN 0.651 0.50 0.671 0.48 0.676 0.49 0.453 3.00

Table 2: Sentiment classification on Yelp 2013/2014/2015 and IMDB datasets. Evaluation metrics are

accuracy (higher is better) and MSE (lower is better). The best method in each setting is in bold.

(4) In AverageSG, we learn 200-dimensional

word vectors with word2vec6 (Mikolov et al.,

2013), average word embeddings to get document

representation, and train a SVM classifier.

(5) We learn sentiment-specific word embed-

dings (SSWE), and use max/min/average pooling

(Tang et al., 2014) to get document representation.

(6) We compare with a state-of-the-art recom-

mendation algorithm JMARS (Diao et al., 2014),

which utilizes user and aspects of a review with

collaborative filtering and topic modeling.

(7) We implement a convolutional neural net-

work (CNN) baseline as it is a state-of-the-art se-

mantic composition method for sentiment analysis

(Kim, 2014; Denil et al., 2014).

(8) We implement a state-of-the-art neural net-

work baseline Paragraph Vector (Le and Mikolov,

2014) because its codes are not officially provided.

Window size is tuned on the development set.

3.3 Comparison to Other Methods

Experimental results are given in Table 2. We e-

valuate each dataset with two metrics, namely ac-

curacy (higher is better) and MSE (lower is better).

The best method in each dataset and each evalua-

tion metric is in bold.

From Table 2, we can see that majority is the

worst method because it does not capture any tex-

tual semantics. SVM classifiers with unigram and

bigram features (Pang et al., 2002) are extremely

strong, which are almost the strongest performers

6We use Skipgram as it performs slightly better than
CBOW in the experiment. We also try off-the-shell word em-
beddings from Glove, but its performance is slightly worse
than tailored word embedding from each corpus.

among all baseline methods. Designing complex

features are also effective for document level sen-

timent classification, however, it does not surpass

the bag-of-ngram features significantly as on Twit-

ter corpora (Kiritchenko et al., 2014). Further-

more, the aforementioned bag-of-features are dis-

crete and sparse. For example, the feature dimen-

sion of bigrams and TextFeatures on Yelp 2015

dataset are 899K and 4.81M after we filter out low

frequent features. Based on them, we try to con-

catenate several discourse-driven features, but the

classification performances remain unchanged.

AverageSG is a straight forward way to com-

pose document representation without feature en-

gineering. Unfortunately, we can see that it does

not work in this scenario, which appeals for pow-

erful semantic composition models for documen-

t level sentiment classification. We try to make

better use of the sentiment information to learn

a better SSWE (Tang et al., 2014), e.g. setting

a large window size. However, its performance

is still worse than context-based word embedding.

This stems from the fact that there are many sen-

timent shifters (e.g. negation or contrast words) in

document level reviews, while Tang et al. (2014)

learn SSWE by assigning sentiment label of a tex-

t to each phrase it contains. How to learn SSWE

effectively with document level sentiment super-

vision remains as an interesting future work.

Since JMARS outputs real-valued outputs, we

only evaluate it in terms of MSE. We can see that

sophisticated baseline methods such as JMARS,

paragraph vector and convolutional NN obtain sig-

nificant performance boosts over AverageSG by
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Yelp 2013 Yelp 2014 Yelp 2015 IMDB

Accuracy MSE Accuracy MSE Accuracy MSE Accuracy MSE

Average 0.598 0.65 0.605 0.75 0.614 0.67 0.366 3.91

Recurrent 0.377 1.37 0.306 1.75 0.383 1.67 0.176 12.29

Recurrent Avg 0.582 0.69 0.591 0.70 0.597 0.74 0.344 3.71

Bi Recurrent Avg 0.587 0.73 0.597 0.73 0.577 0.82 0.372 3.32

GatedNN 0.636 0.58 0.656 0.52 0.651 0.51 0.430 2.95

GatedNN Avg 0.635 0.57 0.659 0.52 0.657 0.56 0.416 2.78

Bi GatedNN Avg 0.637 0.56 0.655 0.51 0.660 0.50 0.425 2.71

Table 3: Sentiment classification on IMDB, Yelp 2013/2014/2015 datasets. Evaluation metrics are accu-

racy (higher is better) and MSE (lower is better). The best method in each setting is in bold.

capturing deeper semantics of texts. Comparing

between CNN and AverageSG, we can conclude

that deep semantic compositionality is crucial for

understanding the semantics and the sentiment of

documents. However, it is somewhat disappoint-

ing that these models do not significantly outper-

form discrete bag-of-ngrams and bag-of-features.

The reason might lie in that semantic meanings of

documents, e.g. relations between sentences, are

not well captured. We can see that the proposed

method Conv-GRNN and LSTM-GRNN yield the

best performance on all four datasets in two evalu-

ation metrics. Compared with CNN, Conv-GRNN

shows its superior power in document composi-

tion component, which encodes semantics of sen-

tences and their relations in document representa-

tion with gated recurrent neural network. We al-

so find that LSTM (almost) consistently performs

better than CNN in modeling the sentence repre-

sentation.

3.4 Model Analysis

As discussed before, document composition con-

tributes a lot to the superior performance of Conv-

GRNN and LSTM-GRNN. Therefore, we take

Conv-GRNN as an example and compare differen-

t neural models for document composition in this

part. Specifically, after obtaining sentence vectors

with convolutional neural network as described in

Section 2.1, we carry out experiments in following

settings.

(1) Average. Sentence vectors are averaged to

get the document vector.

(2) Recurrent / GatedNN. Sentence vectors are

fed to standard (or gated) recurrent neural network

in a sequential way from the beginning of the input

document. The last hidden vector is regarded as

document representation.

(3) Recurrent Avg / GatedNN Avg. We extend

setting (2) by averaging hidden vectors of recur-

rent neural network as document vector.

(4) Bi Recurrent Avg / Bi GatedNN Avg. We ex-

tend setting (3) by calculating hidden vectors from

both preceding histories and following contexts.

Bi-directional hidden vectors are averaged as doc-

ument representation.

Table 3 shows the experimental results. We can

see that standard recurrent neural network (RN-

N) is the worst method, even worse than the sim-

ple vector average. This is because RNN suf-

fers from the vanishing gradient problem, stating

that the influence of a given input on the hidden

layer decays exponentially over time on the net-

work output. In this paper, it means that doc-

ument representation encodes rare semantics of

the beginning sentences. This is further justified

by the great improvement of Recurrent Avg over

Recurrent. Bi Recurrent Avg and Recurrent Avg

perform comparably, but disappointingly both of

them fail to transcend Average. After adding neu-

ral gates, GatedNN obtains dramatic accuracy im-

provements over Recurrent and significantly out-

performs previous settings. The results indicate

that Gated RNN is capable of handling the van-

ishing gradient problem to some extend, and it is

practical to adaptively model sentence semantics

in document representation. GatedNN Avg and Bi

GatedNN Avg obtains comparable performances

with GatedNN.

4 Related Work

Document level sentiment classification is a fun-

damental problem in sentiment analysis (Pang and

Lee, 2008; Liu, 2012), which aims at identifying

the sentiment label of a document (Pang et al.,

2002; Turney, 2002). Pang and Lee (2002; 2005)
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cast this problem as a classification task, and use

machine learning method in a supervised learning

framework. Turney (2002) introduces an unsuper-

vised approach by using sentiment words/phrases

extracted from syntactic patterns to determine the

document polarity. Goldberg and Zhu (2006)

place this task in a semi-supervised setting, and

use unlabelled reviews with graph-based method.

Dominant studies in literature follow Pang et al.

(2002) and work on designing effective features

for building a powerful sentiment classifier. Rep-

resentative features include word ngrams (Wang

and Manning, 2012), text topic (Ganu et al., 2009),

bag-of-opinions (Qu et al., 2010), syntactic rela-

tions (Xia and Zong, 2010), sentiment lexicon fea-

tures (Kiritchenko et al., 2014).

Despite the effectiveness of feature engineering,

it is labor intensive and unable to extract and or-

ganize the discriminative information from data

(Bengio et al., 2015). Recently, neural network e-

merges as an effective way to learn continuous text

representation for sentiment classification. Exist-

ing studies in this direction can be divided into two

groups. One line of research focuses on learning

continuous word embedding. Traditional embed-

ding learning algorithms typically leverage con-

texts of words in a context-prediction way (Ben-

gio et al., 2003; Mikolov et al., 2013; Baroni et al.,

2014). Since these methods typically map word-

s with similar contexts but opposite polarity (e.g.

“good” and “bad”) to neighboring vectors, sever-

al studies (Maas et al., 2011; Labutov and Lipson,

2013; Tang et al., 2014) learn sentiment-specific

word embeddings by taking sentiment of texts in-

to account. Another line of research concentrates

on semantic composition (Mitchell and Lapata,

2010). Yessenalina and Cardie (2011) represent

each word as a matrix and use iterated matrix mul-

tiplication as phrase-level composition function.

Socher et al. (2013b) introduce a family of recur-

sive neural networks for sentence-level semantic

composition. Recursive neural network is extend-

ed with global feedbackward (Paulus et al., 2014),

feature weight tuning (Li, 2014), deep recursive

layer (Irsoy and Cardie, 2014), adaptive composi-

tion functions (Dong et al., 2014), combined with

Combinatory Categorial Grammar (Hermann and

Blunsom, 2013), and used for opinion relation de-

tection (Xu et al., 2014). Glorot et al. (2011) use s-

tacked denoising autoencoder. Convolutional neu-

ral networks are widely used for semantic compo-

sition (Kim, 2014; Kalchbrenner et al., 2014; De-

nil et al., 2014; Johnson and Zhang, 2015) by auto-

matically capturing local and global semantics. Le

and Mikolov (2014) introduce Paragraph Vector to

learn document representation from semantics of

words. Sequential model like recurrent neural net-

work or long short-term memory (LSTM) are also

verified as strong approaches for semantic compo-

sition (Li et al., 2015a).

In this work, we represent document with

convolutional-gated recurrent neural network,

which adaptively encodes semantics of sentences

and their relations. A recent work in (Li et al.,

2015b) also investigate LSTM to model document

meaning. They verify the effectiveness of LSTM

in text generation task.

5 Conclusion

We introduce neural network models (Conv-

GRNN and LSTM-GRNN) for document level

sentiment classification. The approach encodes

semantics of sentences and their relations in doc-

ument representation, and is effectively trained

end-to-end with supervised sentiment classifica-

tion objectives. We conduct extensive experiments

on four review datasets with two evaluation met-

rics. Empirical results show that our approaches

achieve state-of-the-art performances on all these

datasets. We also find that (1) traditional recurren-

t neural network is extremely weak in modeling

document composition, while adding neural gates

dramatically boosts the performance, (2) LSTM

performs better than a multi-filtered CNN in mod-

eling sentence representation.

We briefly discuss some future plans. How to

effectively compose sentence meanings to docu-

ment meaning is a central problem in natural lan-

guage processing. In this work, we develop neu-

ral models in a sequential way, and encode sen-

tence semantics and their relations automatically

without using external discourse analysis result-

s. From one perspective, one could carefully de-

fine a set of sentiment-sensitive discourse relation-

s (Zhou et al., 2011), such as “contrast”, “condi-

tion”, “cause”, etc. Afterwards, relation-specific

gated RNN can be developed to explicitly mod-

el semantic composition rules for each relation

(Socher et al., 2013a). However, defining such a

relation scheme is linguistic driven and time con-

suming, which we leave as future work. From an-

other perspective, one could compose document
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representation over discourse tree structures rather

than in a sequential way. Accordingly, Recursive

Neural Network (Socher et al., 2013b) and Struc-

tured LSTM (Tai et al., 2015; Zhu et al., 2015)

can be used as composition algorithms. Howev-

er, existing discourse structure learning algorithm-

s are difficult to scale to massive review texts on

the web. How to simultaneously learn document

structure and composition function is an interest-

ing future work.
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