
ED 063 007

AUTHOR

TITLE
INSTITUTION

SPONS AGENCY

REPORT NO

PUB DATE

NOTE

DOCUMENT RESUME

LI 003 689

Murray, Daniel McClure
Document Retrieval Based on Clustered Files.
Cornell Univ., Ithaca, N.Y. Dept. of Computer

Science.
National Library of Medicine (DHEW), Bethesda, Md.;
National Science Foundation, Washington, D.C.

ISR-20
May 72
357p.; 97 References; A Thesis Presented to the
Faculty of the Graduate School of Cornell University
for the Degree of Doctor of Philosophy

EDRS PRICE MF-$0.65 HC-$13.16

DESCRIPTORS *Cluster Grouping; Doctoral Theses; *Documentation;
*Information Retrieval; *Information Storage;

Information Systems

ABSTRACT
A retrieval system is considered An which document

descriptions are stored and accessed in groups called clusters. All
items in a cluster meet common similarity criteria and are
represented by a composite entity called a profile. In large
collections, profiles themselves are clustered and additional levels
of profiles are generated. This entire process establishes a file
organization for the system in that records are composed with a
logical structure with a directory (profile hierarchy) to facilitate
searching. Clustered files have the following advantages over other
organizatiors: complete document information is stored in the same

location; storage overhead is low; and flexible, economical searches

can be realized. The problems investigated in clustered file

organization are: profile definition, updating, hierarchy storage,
and secondary profile uses. A comparison with an inverted file is
included. Nearly all work has an experimental base and uses the SMART
retrieval system. The proposed organization compares favorably in

terms of speed and storage economy. Various request-document matching
procedures, and feedback schemes are easily implemented. Search
precision is less, but compensated by a flexible level of recall--low

or high. (AultiDT)

U.S. DEPARTMENT OF HEALTH.
EDUCATION & WELFARE
OFFICE OF EDUCATION

THIS DOCUMENT HAS BEEH REPRO-
DUCED EXACTLY AS RECEIVED FROM
THE PERSON OR ORGANIZATION ORIG.
INA rING IT. POINTS OF VIEW OR OPIN-
IONS STATED DO NOT NECESSARILY
REPRESENT OFFICIAL OFFICE OF EDU-
CATION POSITIPN OR POLICY.

Department of Computer Science,

Cornell'University

Ithaca, New York 14850

FILMED FROM BEST AVAILABLE COPY

Scientific Report No. ISR-20

INFORMATION STORAGE AND RETRIEVAL

to

The National Science Foundation

and to

The National Library of Medicine

Document Retrieval Based on Clustered Files

Ithaca, New York

Cra
May 1972

00

Gerard Salton

Project Director

Copyright, 1972

by Cornell University

Use, reproduction, or publication, in whole or in part, is permitted

for any purpose of the United States Government.

DOCUMENT RETRIEVAL BASED ON CLUSTERED FILES

A, Thesis

Presented to the Faculty of the Graduate School

of Cornell University for the Degree of

Doctor of Philosophy

by

Daniel McClure Murray

June, 1972

;,?

The author, Daniel McClure Murray, was born in Anderson, Indiana

on MaY 28, 19144. After attending public schools, he entered Purdue

University and subsequently received his Bachelor of Science in mathe-

matics in 1966. At Cornell University, he earned his Master of Science

(1968) and Doctor of Philosophy (1972) degrees in computer science, the

latter degree with specialization in information retrieval. While at

Cornell, he published articles in the Journal of Library Automation

(September, 1970) and in the Information Storage and Retrieval (ISR)

series of the Computer Science Department. Since October 1970, the

author has been employed in Research and Engineering Division of the

Xerox Corporation in Rochester, New York. He is a member of the

Association for Computing Machinery. In 1968, he married the former

Pamela Richeson of Anderson, Indiana.

To my wife Pam

whose support and encouragement

made it possitae to complete this thesis

5
lii

Acknowledgments.

The author would like to thank Professor G. Salton for chairing

his Special Committee, directing this thesis, and giving time and advice

as needed. This association has been most rewarding. Professors A. C.

Shaw and W. Me,xwell are acknowledged as the other members of the Special

Committee; Professor J. Williams helped with the final thesis review.

The guidance of Professors D. M. Jackson and K. Needham was most helpful

for the work on term-substitutes (Chapter VIII). The entire staff of

the SMART Retrieval System is commended for providing a test vehicle

for some of these experiments; of paxticular note are Messrs. Zumoff,

.Worona, Crawford, and Williamson. 'Thanks to Mr. R. T. Dattola for the

use of his clustering.program.

The National Science Foundation is recognized for the support of

the author's education including summer programs at /ndiamUniversity

(1961) and the University of California San Diego (1962) and support

for graduate work at Cornell University (1966-1970).

A. special acknowledgment is given to the author's wife for her

never ending patience, financial and moral support, and preparation

of the thesis draft.

Table of Contents

Abstract

Synopsis

Chapter I. Introduction

1. Automated Information Systems

A. General System Types

B. Document Retrieval Systems

File Organizations

A. General Purpose and Definition

B. File Organization in a Document Retrieval System

3. The Document Retrieval Environment

A. Characteristics of a Document File

B. User Factors

C. Software Services

D. Storage Devices

4. Clustered File Organizations

A. Overall Concepts

B. Areas for Investigation

5. Outline

ChaptwrII. Survey of File Organizations

1. Introductial

2. Methods of Logical Organization

A. Sequential Files

B. Chained Files

C. Inverted Files

Calculated Access Files

Clustered Files

3. Methods of Physical Organization

Summary

Chapter III. Clustered Files

1. Introduction

2. Classification Methods

3. Hierarchy Formation

A. General Structure

B. Linkage Among Nodes

C. Profile Definition

4, Search Strategies

5. Updating

6. Hierarchy Storage

A. General

B. A Disk Storage Algorithm

C. Orders for Hierarchy Storage

Query Clustering

8. Alternate Uses of the Hierarchy

A. Suggested Uses

B. Query Alteration

9. Summary

II-5

11-18

11-23

I1-26

11-30

III-1

111-5

111-7

111-18

111-27

111-27

111-28

111-30

111-31

111-32

111-33

111-35

111-39

Chapter IV. The Experimental Environment.

1. Introduction to the SMART System IV-1

2. The Data Collections IV-4-

3. The Generated Hierarchies IV-8

4. Evaluation IV-11

A. SMART Evaluation IV-12

B. Cluster-Oriented Evaluation IV-20

Chapter V. Profile Experiments

.1. Introduction V-1

2. Standard Profile Performance V-2

3. Rank Value Profiles V-7 .

A. Base Value Selection V-8

B. Weight Origins and Apexes V-13

C. Weight Range V-16

D. Summucry V-22

4, Search Bias

A. An Algorithm for Detecting Bias

V-24

V-24

B. Investigation of Biased Searches
V-31

5. Profile lient3th V-42

6. Frequency Considerations V-53

7. Unveighted and Partially Weighted Profiles V-61

8. Summary of Results for Hierarchy 1 V-73

9. Confirmation Tests V-76

10. Discussion V-82

vii 9

Chapter VI. File Maintenance Experiments

1. Introduction VI-1

2. Method VI-3

3. Profile Maintenance Procedures VI-10

4. Degeneration :of the Hierarchy VIr19

5. Summary VI-30

Chapter VII. Experiments with Hierarchy Storage

1. Introduction

2. Procedure

3. Test Results

it. Summary

Chapter VIII. Experiments with a Query Alteration Scheme

Based on a Cluster Hierarchy

Introduction VIII71

2. Deriving Base-Substitute Pairs VIII-2

3. Term Substitutes as Precision and Recall Devices VIII-10

Sunuaary VIII-18

Chapter IX. Comparison of Inverted and Clustered Document Files

1. Introduction

2. The Inverted Directory--Storage and Search

3. Comparison of Inverted and Clustered Document Files

II, Summary

10
viii

rr.

Chapter X. Summary, Conclusions, Discussion, and Suggestions

for Future Work

Appendix A. Common Word List

Appendix B. Subcollections for*the Updating Experiments

Appendix C. Confirmation Test Evaluation Curves

11
i.x

A- 1

B-1

C- 1.
.4

List of Tables

Chapter I

Storage Capacity and Retrieval Time for the IBM 2314

Chapter II

II-1

Chapter IV

IV-1

Direct Access Storage Facility

Evaluation Summary for Logical Access Methods

Ptyperties of the Experimental Hierarchies

I1-2 SMART Search Parameters for Cluster Searches

Chapter V

V-1 Properties of P1,P2,P3 'Profiles for Hierarchy 1

V-2 Profile Term Deletion Strategies

V-3 Profile Length Reduction Resulting from Term Deletion

Strategy 3, Hierarchy 1, P* Prtdiles
3

-4 Summary of Hierarchy Properties

V-5 Relative Merit of Selected Profiles in Confirmation

Tests

Chapter VI

VI-1 Properties of the Original Clustered Collections

Before Updating

VI-2 Properties of the Updated Collections

Chapter: y-11

-1 Parameters Related to Management of Disk Storage

VII 2 Hierarchy Storage in Level and Heir-filial Order

. x

j,

1

VII-3 Average Expansion Characteristics cf SMART Searches,

3
Hierarchy 1, P(ff 6 = -1) Profiles

VII -4 Average Expansion Characteristics of Simulated

Searches Using the Cranfield Query Set

VII 5 Average Expansion Chartcteristics of Simulated

Searches Using Random Selection of Expanded Nodes

(Simulated Queries)

VII -6,7 I/0 Activity in Simulated Cluster Searches

VII -8 Relation of Performance and I/0 Activity for Cluster

and Full Searches

Chapter IX

IX-2

IX-3

Appendix C

Parameters for the Management of the Inverted

Document File

Results of Storing the Inverted Directory

Comparison or I/0 Requirements in Inverted and

Clustered rae Searches

C-1 Notation for the Confirmation Tests

. 13

List of Illustrations

Chapter I

I-1 Typical Search Negotiation in an On-Line Document

Retrieval System

1-2 Sample Hierarchy Resulting from Document Clustering

Chapter II

II-1 Structure and Search of a Document File Using a

Chained Organization

11-2 Structure and Search of a Document File Using Lists

of Accession Numbers Inverted tor Index Term

11-3 Sample Correlation Calculation Using an Inverted

File with Contributions Stored in the Directory Lists

11-4 File Organization Based on Query and Document Code

Words

11-5 Indexed Sequential Access

Chapter III

III-1

111-2

111-3

111-4

111-5

111-6

Chapter IV

IV-1 Model Document Vector

Storage of a Cluster Hierarchy

Profiles Resulting from Unweighted Document Vectors

Profiles Resulting from Weighted Document Vectors

Rank Value Weighting Applied to Standard Profiles

Updating a Clustered File

Use of Term Substitutes in Cluster Searching

1V-2 Properties of the Cranfield Document and Query

Collection

1V-3 Distribution of Relevant Documents

1V-4 Example of Precision-Recall Evaluation

1V-5 Sample Precision-Recall Curve for Hierarchy 1

1V-6 Example of Cluster-Oriented Evaluation

1V-7 Sample Precision Floor-Recall Ceiling Omrves

1V-8 Best Achievable Performance Curves

Chapter V

V4,2 Evaluation of the Standard Profile Definitions,

Hierarchy 1

V-3,4 Evaluation of Search Performance as a Function of

.Base Value, Rank Value P2 Profiles, Hierarchy 1

.V-5,6 Comparison of Fixed and Variatae Weight Origins,

Rank Value P
2

Profiles, Hierarchy 1

V-7,8 Comparison of Profile Term Weights Based on Frequency

Counts and Frequency Ranks, Hierarchy 1

V-9 Cosine Correlation Contritution Ratios, Hierarchy 1

11-10 Construction of P* and P* Profiles
2 3

V-11 Examples of the Analysis of Search Results for Bias

V-12,13, Behavioral Characteristics of profiles, Rank Value
14,15

Weights Based on Document Frequencies (P2), Hierarchy 1

V-16,17 Behavioral Characteristics of Standard and Modified
18,19

Profiles, Hierarchy 1

V-20 Distribution of Profile Terms by Frequency

V-21,22 Search Performance After Deletion of Profile Terms,

Pit

3
Profiles, Hierarchy 1

V-23 Performance Loss Due to Deletion of High Weight

Profile Terms Hierarchy 1

V-24 Luhn's Hypothetical Relationship Between Significance

and Term Frequency

V-25,26 Contribution Ratios Resulting From Bending, Hierarchy 1

V-27,28 Search Performance Resulting From Profiles with

Increasing-Decreasing Contribution Curves, Hierarchy 1

V-29 Performance of Unweighted Profiles Using a Size

Dependent Cosine Function, Hierarchy 1

V-30 Behavioral Characteristics of Unweighted Profiles

Using a Size Dependent Cosine Function, Hierarchy 1

V-31,32 Performance of Unweighted Profiles with Term Deletion,

Hierarchy 1

V-33,34 Behavioral Characteristics of Unweighted Profiles

with Term Deletion, Hierarchy 1

V-35 Performance of Profiles with Full, Partial, and No

Weights, Hierarchy 1, P3(6 -1) Profiles

Chapter VI

VI-1,2, CompariSon of Profile Maintenance Procedures,

3045
Hierarchies 4,5,6

VI-6,7,8, Hierarchy Degeneration Resulting From Updating

9,10,11

xiv

Chapter VIII

VIII-1

VIII-2,3

VIII-4

VIII-5,6

Chapter IX

IX-2

Computation of a Term-Term Association Matrix

Flowchart for Deriving Base-Substitute Pairs

Relative Merit of Using Substitutes as Precision

Devices, Hierarchy 1

Relative Merit of Using Substitutes as Recall

Devices, Hierarchy 1

Inverted Directory I/0 (Disk Accesses) as a

FUnction of Query Length

Comparison of Precision-Recall Data, From Inverted

and Clustered File Searches

Appendix C

2,3,4 Confirmation Tests, Hierarchy 1

C-5,6,708 Confirmation Tests, Hierarchy 2

0-9,10,11, Confirmation Tests, Hierarchy 3

12

DOCUMENT RETRIEVAL BASED ON CLUSTERED FILE

Daniel. McClure Murray, Ph.D.

Cornell University, 1972

A retrieval system is considered in which document descriptions

are stored and accessed in groups called clusters. All items in a

cluster meet common similarity criteria and are represented by a

composite entity called a profile. Pis large collections, profiles

themselves are clustered and additional levels of profiles are generated.

This entire process estalaishes a file organization for the system in

that records are composed into a logical structure with a directory

(profile hierarchy) to facilitate searching. Clustered files have

the following advantages over other organizations: complete document

information is stored in the same location, storage overhead is low,

and flexible and economical searches can be realized.

The problems investigated in clustered file organizations ares

profile definition, updating, hierarchy storage, and secondary profile

uses. A comparison with an inverted file is inclwied also. Nearly

all work has an experimental base and uses the SMART retrieval system

or facilities built around it. In this report, the initial chapters

cover concepts in document retrieval, file organization, and clustered

files, Chavber IV describes the experimental environment and a new

evaluation scheme for cluster searches based on precision f2oor and

recall ceiling, Chapter V deals with the preparation of unbiased,

economical profiles. Several types (standard, rank value, rank,

shortened.) and weighting schemes (none, partial, full) are studied.

A reasonable profile can be constructed by using term weights based

on frequency ranks and deleting a large percentage of low weight texas.

Chapter VI indicates that profiles require only minor weight adjustments

to incorporate new documents; however, some re-clustering should occur

after 2507-50% growth. Chapter VII develops a model of a disk storage

algorithm and suggests storing the hierarchy by levels for most effi-

cient access. Chapter VIII del:writes a scheme for query alteration

during searches which uses term-term relationships in profiles. Chapter

,

IX indicates that a clustered file uses no more space than an inverted

file and provides more flexible search criteria, Chapter X is a.

summary of findings,

In total, this thesis attempts to answer the question "Is a

clustered file organization suitable for on-line document retrieval?",

The proposed organisation compares favorably in terms of speed and

storage econopy; various request-document matching procedures, search

strategies, and feedback schemes are easily implemented. Search preci-

sion is less, but compensated by a flexible level of recall (low or

high). Furthermore, arbitrary accesses for individual records are not

required since those records with a high probability of satisfying a

request are concentrated in a few disk locations. Therein lies the

greatest value of a clustered file.

xvii

d

Synopsis

This dissertation examines the file organization problem in an

on-line, computerized document retrieval system. Its 4.im is to demon-

strate the utility of a clustered file in such an environment. The

clustered scheme uses a classification algorithm to partition a docu-

ment collection into overlapping sets of related items. The documents

in each cluster are stored contiguously and accessed through a hierarchy

of profile vectors which "summarize" cluster content. There are

several reasons why this approach is superior to conventional file

organizations based on chains or inverted indices. First, all data for

each document are stored only once and in the same location. This

allows the use of any query-document match function and the implementa-

tion of advanced features such as relevance feedtack searching and

dynamic document space modification. Second, since there are no

pointers or lists, the storage overhead promises to be low. Third,

and finally, searches are economical and flexible since most clusters

are eliminated during query-profile matching. Once a cluster is chosen

for detailed examination, its contents are accessed rapidly since they

reside in contiguous locations. Consequently, it is not the case that

retrieval times and costs increase linearly with the number of documents

examined nor with the query length.

The experiments in this thesis are concerned with the profile

hierarchy--its construction use, and maintenance. These topics are

imIpmarr

important since without accurate, economical profiles, cluster genera-

tion is much more costly and. the file cannot be searched properly,

Chapter I contains an introduction to document retrieval, file

organization, and the problems to be investigated. It is argued that

an on-line retrieval system is required in order to overcome incomplete

and inaccurate text analysis and to allow users to probe data bases,

refine their requests, and. control searches. Concerning implementa-

tion, the choice of file organization is the primary factor in deter-

mining how information is accessed and how the costs are distributed.

A clustered file is suggested as being flexible and powerful enough to

handle the diverse document search criteria and. requirements for

information displays, while having favorable cost-performance

characteristics,

Chapter II surveys current file organizations, particularly the

manner in which they partition the file and provide linkage among re-

lated records. Five general schemes are compared--sequential, chained,

inverted, computer-access, and clustered. The results indicate that

only the inverted. and clustered organizations provide the speed

necessary for on-line document searches. Both allow implementation

of relevance feedback and document space modifications however these

options require additional .storage space in inverted files. Generally,

clustered, files support more fleri.ble search strategies, but retrieve

with somewhat less precision. These tradeoffs are explored fully in

later sections,

1

Chapter III contains a thorough discussion of clustered files

and. background information for the experiments. Classification methods,

search strategies, and query clustering are considered briefly. The

main topics are the construction, use, and maintenance of profiles.

Three types of standard profiles are presentedi P1, having no term

weights; P2 having weights based on document frequencies; and P3 having

weights based on total term frequencies. These are compared to Doyle's

rank value profiles, Pr. When additions are made to the file, main-

tenance is viewed in terms of small adjustments to keep profiles in

the "center" of their clusters. However, ultimately, the collection

must be re-classified; the frequency of this operation is to be de-

termined. Other important matters include limitations on profile

length and the order of storage (level, subtree, hier-filial). Both

of these help determine search times and storage overhead.

The experimental environment is described in Chapter IV, in-

cluding the characteristics of the SMART system, the Cranfield document

collection (WO abstracts, 22.5 requests), and the three clustered

files. Two evaluation schemes axe presented.' One is the regular

SMART procedure based on precision and. recall data for fixed search

strategies. The second is a new, economical method which is independent

of search strategy and accounts for system effort more accurately. It

is based on measurements of recall ceiling (percent of relevant that

are recoverable) and precision floor (percent of total recoverable that

are relevant) taken before each cluster is expanded. Naturally

clusters are expanded in order of decreasing similarity with the request

vector. Jkrth Methods are used in Chapters V to IX.

Chapter V reports on an extensive set of experiments with profiles,

in particular, standard and rank value vectors, biased search results,

vector length, and frequency and weighting considerations. The best

profiles axe those with term weights based on fiequency ranks and hence

are a compromise of the standard (P2 or P3) and rank value types. The

use of ranks keeps the range of weights small and reduces correlation

domination. KeelAng the weight origin at a minimum eliminates bias

and maintains maximum distinction among terms. The success with ranks

indicates that the importance of terms does not increase linearly

with frequency, but in a more gradual way (approximately logarithmically).

This accounts for the success observed with profiles using categories

of weights and the partial success of unweighted rwofiles with deletion

of "noise" terms. The tests also indicate that a large portion (8(Y)

of low weighted terms can be eliminated with only small degradations

in search performance. High frequency significant terms cannot be

deleted, movvA:upgard in the profile hierarchy, or assigned smaller

weights than less frequent terms. Overall, the results indicate methods

for constructing reasonable and economical profiles, but indicate

that further improvements can be made.

The file maintenance experiments in Chapter VI are summarized in

two findings. First, if reasonatae profiles are used such as those

described in Chapter V, then a clustered file may increase its size

xxi

25%-50% before the degradation in search performance is such that re-

classification is required. These percentages are calculated as the

ratio of additions to the current file size. Second, adjustments to

profiles during updating are of only slight benefit. The most reason-

able scheme is to adjust the weights of only existing terms and not to

introduce new terms (ALTER option). Since the adjusted profiles keep

the same size, they can overwrite their predecessors without destroy-

ing any.storage orgartzation in the profile hierarchy.

Chapter. VII describes experiments involving the use of indexed

sequential access for managing a disk resident clustered file. For

forward search strategies, storing the hierarchy by levels is found to

provide the most rapid response, Furthermore, it is shown that cluster

searching can retrieve mmury of the relevant documents obtained in a

full search, but at much less cost. For example, cluster searches

requiring 10-16 disk accesses achieve about 70% of the precision and

recall values of a full search requiring 65 accesses.

The basic idea of the query alteration procedure'in Chapter VIII

is to associate a small thesaurus with each profile and to expand

selected request terms during searches. Each mini-thesaurus reflects

the pecularities of the vomtulary in its cluster. Consequently,

there is a unique opportunity to comtdne the use of broad, general

term relationships on uppow hierarchy levels and specific, local

relationships on lower levels. Unfortunately, for the options tested,

query alteration is of d.oubtful value when employed automatically.

I

However, it might be used profitably as part of a negative feedback

procedure.

Chapter IX compares the storage requirements, speed, and effective-

ness of clustered and inverted files. The inverted organization re-

quires twice as much storage space as a clustered file in order to

provide equivalent retrieval services. For a specific number of disk

accesses, the inverted search retrieves a fixed numter of documents

and generally achieves high precision at a specific recall level. With

the same effort, a cluster search provides many or few documents.

Although its precision is less, the search may have a recall level

which is higher or lower depending on the number of retrieved documents.

Ttis flexibility within searches of a single cost figure is considered

a genuine advantage.

The final chapter summarizes the work. The clustered file

organization is considered more advantageous than other file organiza

tions since it allows greater flexibility inmatching and searching

without increased retrieval time or storage costs.

25

I-1

Chapter I

Introduction

1. Automated Information Systems

A. General System Types

Information management is of increasing concern in the modern world.

Commertial, scientific, educational, and governmental institutions produce

and distribute such large quantities of reports, research data, and other

literature that it is difficult to keep abreast of almost any field using

manual processes. Automated information systems--combining high-speed

computing equipment, mass storage devices, and sophisticated programming

systems--appear to be one way of containing this information explosion.

Hayes (1) distinguishes three types of systems based on their scope

of activities--data base, reference, and text processing. Data base

systems manipulate files of fixed-format records and generally provide

capabilities for adding-deleting records, changing the contents of select-

ed fields, and retrieving items with specified properties. A familiar

example is that of an airline reservation system in which passenger records

contain the name, flight.number, destination, time of departure, and so

forth. In the course of a day's activity, many records are created,

deleted, and changed in order to reflect current business conditions.

Queries to the file are expressed as logical combinations of special key-

words and commands which the system is designed to interpret. In this

respect, the operations are oriented toward experienced personnel rather

than a general public. Data base systems have wide use currently, and a

number of generalized software packages are available to meet most

commercial needs.

I- 2

Reference systems deal with more complex data structures such as

printed text or pictures, and retrieve references to items rather than

actual articles or photographs. The information content of a text or,

picture is contained in a set of manually assigned descriptors or keywords;

sometimes automatic dictionary procedures are used as indexing aids. The

same record processing facilities are available as in data base systems,

although retrieval conditions may be relaxed from the strict criteria of

a Boolean search formulation. In particular, a simple function of the

number of matching request descriptors could determine which file items

are closely related to a request. Suteequently only the highest scoring

records are actually obtained for user inspection. Since highly structured

queries are not needed, requestors should find reference systems easier

to use than data base systems. The NASA, Medlars, and Chemical Abstracts

retrieval services are examples of reference systems dealing with aero-

nautical, medical, and chemical literature.

Full text processing systems include automatic statistical, syntactic,

and semantic procedures to format intricate data structures containing

the implicit and explicit information in the original text. The search

process is complex also, including correlation measures and linguistic

processing, as well as man-machine interaction, data displays, and itera-

tive searching. If complete text is stored, fact retrieval may be possible

so that answers to questions are given rather than lists of references.

At this time, information systems which approach full text processing--

SMART, SIR, and STUDENT- -are still in their experimental stages.

1-3

B. Document Retrieval Systems

A document retrievalsystm is a combination of reference and text

processing systems usually limited to simplified content analysis (diction-

axy or thesaurus), but containing complex search negotiation procedures.

Syntactic and linguistic methods are often avoided for cost-effectiveness

reasons. As in reference systems, document identification numbers are

retrieved although citations, abstracts, or even full text could be

printed if storage provisions allow. In the particular model used for

this study, the subject content of a document is reflected in a set of

weighted keywords derived automatically from the original text. Natural

language queries are indexed in the same fashion and matched with file

items using a correlation fnnction. Those documents with the highest

correlations have their accession numbers returned to the user. If more

precise or complete information is desired, the search is continued using

a feedback or other strategy. Additional information about the experi-

mental system is given in Section 3 of this chapter and Section 1 of

Chapter IV.

The application of computer systems to document retrieval raises

many intellectual and technical probaems. Automated processing obviously

substitutes software logic for the human intellect available in a good

reference library. Regardless of their complexity, all programs operate

without a genuine understanding of text and therefore are inaccurate by

human standards. Undoubtedly, the overall goal of information retrieval .

is the development of methods which are equal to human ingenuity with

respect to retrieving relevant documents; however, research aimed at

obtaining good procedures is complicated not only by the difficulty of text

4

analysis, but also by the nature of relevance itself. Since each user

is the judge of whether a document is relevant to his request, it is

difficult to find measureable properties that always discriminate among

documents properly. Moreover, users often do not have well. defined

information needs, but still require the system to retrieve specific

data in answer to vague questions. Lastly, even if a query.statement is

precise, it may not correspond to the stored text in any reasonable way.

To overcome these problems, a great many automated systems operate on an

interactive basis. The system supplies tutorial instruction, information

displays, file statistics, and iterative processing ;tile users clarify

ambiguous terms, expand or refine queries, and identify relevant or non-

relevant documents in feedback processes. This combination of computer

hardware for rapid processing and user supplied semantic inputs forms an

integral part of the system design considered here.

The most important implementation matter associated with automatic

document retrieval systems is the selection of a file organization. In

nearly all instances the size of the data collection requires the file to

be structured so that only part of it is manipulated for any operation.

While the previous problems deal with semantic and human factors, file

organization is the primary technical issue, involving interactions

among file characteristics (size, complexity), user satisfaction (response

time), software complexity (search, interaction, maintenance), and hard-

ware (processors, storage media). This thesis examines the file problem

in an on-line document retrieval s stem with respect to uer in the file

by subject content rather than bibliographic keys such as tuthor 'ournal,

I- 5

etc. Its aim is to demonstrate the feasitdlity and utility of a _particular

organization- -a clustered file - -in this environment.

File Organization

A. General Purpose and Definition

The purpose of a file organization is to provide convenient and

efficient use of stored data. Convenience relates to the ease of retriev-

ing records, implementing desired software, and maintaining the file.

Other factors include the ability to extend to future applications and to

take advantage of natural structures within the data, patterns of usage,

and special features of operating systems. Measures of efficiency

generally pertain to memory space (amount of waste, overhead, and redun-

dant storage) and access time (overhead computations and I/0 operations).

User satisfaction may or may not be an evaluation criterion because of its

subjective nature and close relation to the convenience of providing

software services. Document retrieval systems, however, often measure

user satisfaction by the quality of the retrieved material. Lefkovitz (2)

draws the following distinction between file structure (organization) and

information structure. File structure denotes the record layout, directory

setups, and file partitions necessary to meet specifications for access

times, storage economy, and maintenance effort. Information structure is

an inherent property of the data that exists by design or by the way the

data appear in the collection. This structure, whether natural or imposed,

can be used as a basis for partitioning file items into groups. For

example, items with a hierarchical.information structure exhibit superior-

inferior relationships and can be grouped accordingly; records in an

36

associative structure might be grouped if *they share common properties.

The file structure may or may not take advantage of the information

structure.

Another way of viewing file organization examines only its major

purpose--data access. With respect to retrieval programs--search, display,

maintenance--the information structure divides the file into groups of

items which are logically related and processed together. The method of

logical access determines how these related items are associated with

each other. For example, associations might be implemented by chains,

lists, naming conventions, physical adjacency, or functional relation-

ships among record identifiers. With respect to the operating system, a

file organization includes a method of pAysical access to facilitate

locating records on actual storage devices. For example, if absolute

addresses are used, records are located by direct access. However, if

names, reference numbers, or relative positions are used, then sequential,

indexed sequential, or partitioned access may be applicable (3). Con-

sequently a file organization specifies two interfaces:

1) between retrieval programs and. the supervisor's

I/0 system (logical access) and

2) between the If0 system ancIstorme devices

(physical access).

The first interface is equivalent to establishing a file directory

for use in search negotiation, It .is of primary interest in this research

because of the rich supply of data structures applicable to such direct-

ories and because of the challenging nature of access by subject content.

The second interface is given less attention because its options are

generally limited to those supported by a manufacturer's software.

B. File Organization in a Document Retrieval System

In all, a document retrieval system manipulates a variety of data

including dictionaries, thesauri, search vectors, citations, and

abstracts. Each of these may exist as a separate file or several may

be combined in an integrated file with a single access method and multi-

ple directories. In particular, dictionaries and thesauri are often

combined for use by content analysis routines and search vectors and

retrieval data may be integrated for search negotiation. In either case,

processing generally proceeds through the files one at a time starting

with a dictionary lookup of query terms and ending with the display of

retrieved document citations. However because of interactive processing,

a file may be accessed several times in succession to display informa-

tion, process an altered query, or enter new data. Part or all of this

cycle may be repeated during iterated searches. In an on-line environ-

ment, all processing must occur fast enough to satisfy user impatience;

only file maintenance is considered an off-line operation because of its

non-critical nature.

Far this study, a document file is defined as containing,

1) the searchable descriptions of texts (document

vectors)

2) initial retrieval data (reference numbers or

short citations), and

3) whatever directories are necessary.

Primary attention is given to the problem of logical file organization

with respect to subject searches, that is, logical access. queries in-

volving only bibliographic information are assumed to be processed through

separate directories. Even limited to subject access, the organization

task is complicated by adverse file characteristics (enormous size,

rapid growth, and variable length records), the demands of sophisticated

;comas operating on4ine, and the elusive nature of relevancy. It may

be reled that relevancy is a user defined property and is not neces-

sarily limited to records having the same descriptors as the query. As

a result, logical access includes defining connections among items with

loose semantic relations (imposing an information structure) as well as

providing a directory for accessing them.

The previous section sets forth the purpose of file organization in

terms of convenience and efficiency. With regard to on-line document

retrieval, a few design criteria must be emphasized or added. First,

the absolute prerequisite is real-time response. Although, it may be

possible to process several requests simultaneously (hitching), the

system must be prepared to treat users independently since it is unlikely

that any two requests in a batch pertain to the same portion of the

file. Second, user-machine interaction is definitely necessary to

clarify and satisfy information needs. This includes presentation of

data and. processing sensitive to user responses; examples are tutorial

instruction, query formulation aids, browsing, query alteration processes,

and feedback (iterated) searching. Third, query-document matching is to

be based on a correlation function rather than satisfying a logical

predicate or simple coordinate !latching. Either of the latter methods

33

I- 9

could be tided; however, correlation ninctions provide greater flex-.

ibility in their treatment of both queries and documents. Specifically,

a change in the function or its parameters may allow more strict or

lenient scoring, different emphasis on vector properties, or the addi-

tion of new factors to the entire procedure. Fourth, an appropriate

costperformance tradeoff is desirable to satisfy users wanting small

amounts of information at low cost and those willing to pay for compre-

hensive searches. Finally, evaluation standards must include not only

time and space, but user satisfaction, The standard measures of 'precision

and. recall* are used to evaluate the quality of retrieved material and

thereby judge user satisfaction.

A complete set of design characteristics and evaluation measures for

file organizations undoubtedly includes additional aspects of informa-

tion systems. However, those outlined so far are the most important and

serve as a basis for comparisons in this work,

3, The Document Retrieval Environment

In order to be explicit about the type of retrieval system envisaged,

the following sections contain descriptions of the document file, user

factors, software services, and disk storage devices,

A. Document File Characteristics

A document retrieval system operates on a collection of natural

language articles indexed in some fashion and stored as searchable

* Considering the documents retrieved by a search, precision is the

percent of retrieved which are relevant and recall is the percent of

relevant which are retrieved,

I- 10

vectors, The document file itself is characterized by its large size,

ramid growth,and variable lendi_ress_tst,

With respect to file size, it is noted that storage for the Library

of Congress catalogue would have required 1012 bits in 1962. Further, a

number of public and university libraries already contain in excess of

a million yolumes and the general trend is for holdings to double every

15 years (4), Even a modest system for handling journal articles in a

specialized field might expect several thousand additions per year (5).

These facts clearly indicate the need for mass storage devices and, for

really large files, several classes of storage media- -disk, data cellt

photostore, tape.

In addition, decreases in file size are rare because future editions

of texts or re-publications of articles are generally viewed as new items

rather than as replacements for old ones. In situations where current

literature is of primary importance, the document file may be segmented

into active and archive storage, However, this does not provide genuine

reduction in many cases since all data remains retrievable and directory

entries for older items are transferred in and out of memory during

general processing. In most information centers the files only increase

in size as new items are entered during periodic off-line maintenance

runs. Usually, there is no significant demand for a real time update

capability.

Texts obviously require variatae length records because of their own

variable lengths, the automatic indexing process, and the amount of

retrieval data. Usually a variety of standard access points are included

in the vector- -author, publication date, journal or call number, headings--

35

as well as the set of index terms for describing subject content. In

all, 200-300 characters are not unusual lengths for document records.

B. User Factors

Several user situations must be anticipated in the design of a

successful on-line retrieval system. First, at Icast two classes of

users must be treated; new or infreluent users demand simple, straight-

forward query submission, search, and retrieval functions while exper-

ienced persons need flexible and powerful procedures. Second, the

system must be able to cope with vague questions since in many cases

a user in either class is unable to state his information needs accurately.

Third, even if a precise query statement is given, it may not correspond

to the stored text in any reasonable way. This is especially true if t

important query terms have extremely high or low frequencies. In the

former case, the search may yield too many items and in the latter case

not enough items. Fourth, only some of the retrieved documents will

be relevant due to inaccuracies in the indexing process, matching func-

tions, etc. This condition necessitates some form of query alteration

and iterated search if more relevant information is to be obtained.

In an on-line environment, many of these problems are solved through

user responses to information displays. For example, during query formu-

lation, synonyms for the original query words might be presented along

mith.frequency infoxmation in order to facilitate selection of proper

terms. Or the search process might be interrupted before its completion

and early results examined to check that appropriate search paths are

followed, Once the search is completed, citations or text for the

I.- 12

retrieved documents can be viewed. If the results prove unsatisfactory,

new searches could begin immediately, (See Section I.3.C)

To summarize, the success of a document retrieval system requires on-

line operation to.overcome various user factors as well as incomplete

text analysis. For these reasons, this research investigates file

organizations which are suitable fur.. on-line systems with respect to

cost and. flexibility in the retrieval process.

C. Software Services

The most satisfactory way to accommodate users is through on-line

operation and options for selecting a wide variety of processing methods,

A typical search negotiation in such a system is described by the flow-

chart in Figure I-1. The overall requirements for query formulation

aids, document display or browsing, and simple query alteration have

been mentioned. The search, relevance feedback, and space modification

functions require additional explanation.

Subject searching involves several phases of activity. To start,

assume that a query has undergone dictionary, thesaurus, or other

analysis and that its content is represented by a vector of index terms

and associated weights. The next step is to calculate correlations be-

tween the query and the most promising documents, How this is accomplish-

ed depends on the file organization. Recalling that most file systems

partition records into logically related groups, the usual procedure is

to examine all the items in several groups, For example, consider a file

using chains to link documents having the same keyword, The chained

records form partitions whose elements are located by following sequences

37

Query

Fbrmulation

Query

Analysis--

dictionary,

thesaurds

Search

Process

010.

I-13

(:

Display

--- vocabulary,

. statistics

=1 rENI

--
Interrupt Query alteration

d based on partial

search results

Yes

IRecord results for

Document Space

Modification and

file maintenance

Display

(:

checkpoint

data

Alter query,

Relevance

Feedback

process

..)Display

Abstracts

--------default

- - - - optional

Typical Search Negotiation in an

On-Line Document Retrieval System

Figure I-1

T-14

of pointers. To search the file, some or all of the chains named by

query terms are followed and a correlation is computed for each item

encountered.. Similar situations occur for serial, inverted, calculated,

or clustered organizations. (See Chapter II.) In any case, once all

correlations are gatherel and sorted by value; the names, citations, or

atetracts for the highest scoring documents are obtained. At this time,

a set of secondary restrictions may be applied before a presentation is

made to the user. Restrictions often include bibliographic or quantity

limitations on output, verification of word order within the text, and

others. Regardless of the secondary processing, the major portion of

the search effort involves accessing file partitions and accumulating

correlations. These are the significant aspects as far as file organiza-

tion is concerned.

Relevance feedback is a tool for obtaining improved search results

through iterative searching (6, 7, 8). Briefly the process works as

follows. A user at an on-line console views the citations or abstracts

of a few documents retrieved by an initial search. Immediately or after

consulting the source texts, he enters decisions as to which items are

definitely relevant or non-relevant, possibly leaving a few items un-

judged. The system alters his original reluest by adding or emphasizing

descriptors found r.mimarily in the relevant documents and by removing

or reducing the importance of terms found primarily in the non-relevant.

A new file search is made, the results presented to the user for his

Inspectionp and the entire process repeated if desired. Several varia-

tions of this general scheme are possible. Positive feedback employs

only terms from the relevant documents whereas negative feedback uses

39

1_ 15

only the non-relevant. These may be used separately, jointly, or

selectively depending on the output of the initial search. Positive

techniques are especially valuable when some relevant are retrieved and

additional similar items are desired. Negative methods produce some

success even if no relevant are retrieved in the initial search or if

the relevant obtained are dissimilar. If a clustered file is used, docu-

ments from separate clusters may generate distinct queries for operating

within each cluster. Such query splitting procedures have been investi-

gated by Borodin, Kerr, and. Lewis (9). Although evaluation is difficult,

at least one investigation of feedback searches reports improvements of

506 to 10% in precision and recall, the standard performance measures for

information systems (7, 8), Thus feedback has been shown to be an

effective retrieval tool in an on-line environment and should definitely

be indluded among the software services.

Document space modification tries to pass on the success of previous

searches to fUture users by making the retrieved relevant correspond

more closely to the original query (10, 11). Considering the set of

documents obtained after feedback and all other processing, each relevant

item is modified according to whether its terms appear in the document,

the query, or both. A similar, but inverse modification is applied to

the retrieved non-relevant so that there are positive and negative

strategies here also. Experiments by Brauen indicate substantial

improvement in future performance iased on these methods and indicate

their importance to current retrieval systems.

Both techniques affect file organization in that they require access

to entire document vectors. Soie file schemes distribute the index terms

T- 16

of a vector throughout memory so that its entirety is unretrievable in

a single access. This may be acceptable for the search process, but in

order to use feedback or space modification, complete vectors must be

easily obtained.

D. Storage Devices

The discussion of document file size points out that considerable

memory space is required for even a moderate size retrieval system. In

general, direct access devices have the most appeal in the solution of

the mass storage protlem. asks and drums provide sufficient capacity

and speed to warrant their use for dictionaries, directories, and docu-

ment vectors, Text and occasional items may be assigned to data cells,

photostores, or magnetic tape.

Throughout this research, the IBM 2314 Direct Access Storage Facility

is usad as a model device. Its hardware consists of eight interchange-

able disk packs (volumes) each with a capacity of 29 million characters

(12). The average access time is approximately 100 milliseconds for a

3600 character data block providing there is no queue for the single I/0

channel servicing all packs. This also excludes whatever delays are

encountered while unblocking records. Specifically the access time con-

sists of waits for the completion of four events:

1) access motion--positioning the access arm (set

of read-write heads) at the proper cylinder,

2) head selection--switching to select the read

head. for the appropriate track,

I 1?

3) rotational delay--rotation necessary to position

the read head at the start of the data, and

4) data transfer- -reading the data into main memory.

As a result of the mechanical motions involved, disk fetches require

several milliseconds and are slow and expensive relative to internal com-

puting speeds. Cylinder changes are most costly as a substantial amount

of time is required to accelerate the access arm. For this reason it

is better to input a single large data record than several small ones

scattered throughout the volume. Other delays are much smaller, the

head selection time being negligible. A full revolution of the pack

requires 25 ms regardless if data is read. Consequently, the expected

rotational delay is 12.5 ms and the transfer time is proportional to the

amount of information moved. Table I-1 summarizes the storage and

access specifications for the IBM 2314 (12).

There are many ways of reducing the delays from disk fetches.

Accesses can be confined to the same cylinder if possible or programs

might be implemented so that processing on the current record is finished

in time to fetch the next record while in the same rotation. However,

the best way to insure short, real-time response is to minimize the

number of fetches.' This holds true even in time-shared or multiprogram-

med systems, for a small number of I/0 interrupts means that program

execution is suspended less often. As a result, the primary measure of

response time and the quantity for minimization is the number of disk

accesses.

Storage Capacity

Packs/Device 8
Cylinders/Pack 200
Trafts4kylinder 20
Characters/Track 7294

Characters/Cylinder 146K

Characters/Pack 29.2M

Retrieval Times

Access time

Minimum 25ms

Maximum 135ms

Average 75ms

Rotational delay

Maximum 25ms

Average 12.5m8

Transfer rate .0032ms

(per character)

Storage Capacity and Retrieval Time

for the IBM 2314 Direct Access Storeze Facility

Table I-1

l9

4. The Clustered File Organization

A. General Concepts

A clustered file is arranged so that similar documents are located

near each other within the storage medium. Generally an automatic

classification prommiure is used to compare document descriptions with

each other and define the so-called clusters. Retrieval programs either

process all or none of lava items in a cluster and therefore transfer

large blocks of data from mass storage rather than many smaller individ-

ual records. For each cluster, a profile characterizes its information

content and acts as a directory element. Loosely speaking, a profile

is an aggregate of the index terms in the.clustered documents and has a

structure resembling a document or query vector. The search process

matches a query with eamh profile and examines in detail only those

clusters with the highest scores. For large collections, there may be

a great many clusters (profiles) and the classification procedure is

often re-applied to group profiles. The reault is a hierarchical

directory similar to that in Figure 1-2.

Referring to Lefkovitz's ideas (2), the classification imposes a

hierarchical. information structure on the data and the tree storage and

search procedures are parts of the file organization. A hierarchical

structure is naIural to a document file with respect to usage since users

are able to find analcgies between the automated search and their per-

sonal library activities. In an interactive environment, a user might

browse within the file by viewing information in the profiles. Subse-

quent operations could allow query alteration before or even during the

search. Finally if at least one relevant document is located, additional

44

Dummy node Co)
Level 0

Level 1

Profile 0 0
Vectors

Level 2

Profile o/ 07 0
Vectors

Level .3

Document 0 0 0 0 0 0 0 0 0 0 0 0 0
Vectors

Sample Hierarchy Resulting from Document Clustering

Figure 1-2

45

20

000

I- 21

pertinent articles should be found in the sane 'file area.

B. Areas of Investigation

This thesis treats three aspects of a clustered file organization--

rrofile definition and. storage, updating, and secondary uses of the

hierarchy. Because profiles are aggregates of document vectors, their

definition involves many factors including limitations on the number of

index terms, weighting procedures, and number of allowable sons. A3.1 of

these affect the system's ability to discriminate among clusters and

hence the accuracy of performance. The actual order of tree storage

strongly influences response times and search cost. File update tech-

niques are important in order to maintain 'speed and accuracy. New items

must be re-distributed occasionally to achieve physical proximity of

related information and thereby maintain reasonable data access times.

In addition, profiles might be modified during update in order to reflect

.the presence of new cluster members, A few additions make little differ-

ence, but it is unreasonable to expect a hierarchy to perform well after

the file has increased. its size several times. Finally, the high cost

of current classification methods leads to the idea of using the profiles

and document hierarchy for seieral purposes. By spreading the clustering

expense among all applications, this overhead is more easily justified.

Several possibilities are discussed, including the concept of associating

a small term theasurus with each node in the hierarchy. Thus, statis-

tically related thesaurus terms are available for modifying requests as

the search enters various parts of the collection.

These are the problems for consideration and all of them are related

. 46

I- 22

by their association with the cluster profiles - -either definition,

storage, changes, or secondary uses. Actual classification methods

are not examined herep but surveyed in Section Search techniques

are described only to the extent that they are used in the research.

5. Outline

The present chapter outlines the purpose and operation of a document

retrieval system, the file organization problems within it, and the

general processing environment in which these prolaems are to be solved.

The next two chapters concentrate on file organization methods, first

surveying current schemes, then describing the clustered file in con-

siderable detail. Chapter IV is devoted to the experimental system and

evaluation methods used in this research. Chapters V to VIII are given

to the areas for investigation--profile definition, updating, tree

storage, and. query alteration based on profile information. The final

chapters include a comparison of the clustered and inverted organizations

and the conclusions and future investigations suggested by this work.

47

I- 23

References

1. R. M. Hayes, Information Retrieval: An Introduction, Datamation,

March, 1968.

2. D. Lefkovitz, File Structures for On-Line Systems, Spartan Books,

New York, 1969.

3. IBM System/360 Operating System, Supervisor and Data Management

Services, IBM Corporation, White Plains, New York, 1968.

4. I. A. Warheit, File Organization for Library Records, Journal of

Library Automation, Volume 2, No. 1, March, 1969.

5. M. Davis, D. Murray, File Organization for an On-Line Retrieval

System, Unpublished class report, Computer Science 635, Cornell

University, January 1969.

6. J. J. Rocchio, Document Retrieval SystemsOptimization and

EValuation, Harvard. University Doctoral Thesis, Report ISR-10

to the National Sdience Foundation, Chapter 3, Harvard Computa-

tion Latoratory, March 1966.

7. E. Ide, Relevance Feedback in an Automatic Document Retrieval

System, Report ISR-15 to the National Science Foundation, Depart-

ment of Computer Science, Cornell University, January 1969.

8. G. Salton, Interactive Information Retrieval, Technical Report

69-40, Department of Computer Science, Cornell University,

August 1969.

9. A. Borodino L. Kerr, F. Lewis, Query Splitting in Relevance

Feedback Methods, Report ISR-14 to the National Science Founda-

tion, Department of Computer Science, Cornell University,

October 1968,

10. T. Brauen, R. Holt, T. Wilcox, Document Indexing Based on Rele-

vance Feedback, Report ISR-14 to the National Science Foundation,

Department of Computer Science, Cornell University, October 1968,

11. T. Brauen, Document Vector Modification in On-Line Information

Retrieval Systems, Report ISR-17 to the National Science Founda-

tion, Department of Computer Science, Cornell University,

Septemter 1969.

12. IBM System/360 Component Descriptions, 2314 Direct Access Storage

Facility, 2844 Auxiliary Storage Control, IBM Corporation, White

Plains, New York, September 1969.

Chapter If

Survey of File Organizations

1. Introduction

Most file organizations partition their records into groups related

by some natural or imposed criteria. The logical access method specifies

how related items are associated while the physical access method facili-

tates translating record names into storage addresses. Here, file

structure and logical access are emphasized rather than the details of

data management services (physical access). This chapter surveys exist-

ing file organizations applicable to a document collection and evaluates

their utility in an on-line retrieval s stem. In these systems, a search

consists of at least four steps.

1) directory scan--choosing the file partitions for

detailed examination;

2) accumulation of query-document correlations within

the selected partitions;

3) selection of items for output--sorting cOrrelations,

fetching retrieval data, and applying secondary re-

strictions; and

4) information display.

Ptxticular attention is given to the directory scan and the generation

of correlations since these are the most crucial and costly steps.

In all, five types of organizations are discussed: sequential,

chained, inverted, calculated access, and clustered. Some variations

and comtdnations are considered also. Much of the terminology is

24
. 45

II-2

adapted from previous surveys by Lefkovitz (1), Salton (2), Lowe and

Roberts (3), and Meadow (4). As far as evaluation is concerned, most

surveys examine retrieval time and storage usage. In addition to these,

the present discussion considers the evaluation quantities outlined in

Section I.2.B--convenience of implementing desired software features,

maintenance, quality of retrieved material, cost-performance tradeoff,

and general appropriateness to on-line document retrieval.

2. Methods of Logical Organization

A. Sequential Files

A sequential file organization stores documents in the order of

their ac uisition and retrieves them b a.com lete scan of all records.

In fact, the file shows little organization at all since it has no parti-

tions, no directories, and no particular order for item storage.

Because the complete file is scanned during a search, the retrieval time

is prohibitive for on-line operation. However, sequential files are

still justifiable in current awareness systems or in other situations

where it is possible to accumulate requests over short periods of time.

In these cases, a search is made when the query batch is large enough to

yield an acceptable cost per user. A number of retrieval systems use

the sequential organization and employ this batching technique (5, 6, 7).

In spite of their large access time, sequential files have several

favorable properties. First, their storage requirements are minimal,

since no pointers, linkages, or other overhead is involved. Second,

information can be retrieved via almost any criteria since entire docu-

ment vectors may be examined. For example, bibliographic. information:

50

I1-3

the presence, absence, or weights of index terms; and almost any correla-

tion function can be used for query-document matching. Third, mainten-

ance is trivial since new records are simply stored at the end of the

current file.

Finally, the expense of structuring the file in any other way may

force the use of the sequential scheme. This is obviously the case if

the volume of activity is so low that the cost of organizing the file

exceeds the total cost of the searches made. Coffman and Bruno recognize

this situation and suggest splitting the file into structured and sequen-

tial parts (8). The search process begini'An the structured portion and

proceeds to the sequential portion only if necessary. Items retrieved from

the sequential subfile are subsequently transferred to the structured sec-

tion. A slightly more complicated scheme would record the number of times

a document is retrieved and retire information from the structured subfile

when its retrieval rate falls below a chosen threshold. Exactly where

the file should be split is unclear. Lipetz considers the tradeoff

point between sequential and some other organizations; his results may

have bearing on this problem (9).

A similar scheme proposed by Leimkuhler partitions the file into

bins so that the probability of a successful search is maximized for the

effort expended (i0). Each bin f)rms a sequential subfile of the next

group of documents judged equally likely to satisfy queries. The search

is cumulative; always starting with the same initial bin and proceeding

to the last bin, unless the user is satisfied earlier. The points of

file division and expected search effort are computed from a form of

Bradford's law relating literature productivity, number of references

per document, and collection completeness. Leimkuhler favors a 2-bin

11-4

system having 20% of the most pertinent documents in the first bin. It

is expected that 2/3 of the requests are satisfied by searching only the

initial subfile,

In a more restricted situation, Ghosh (11) considers searching a

sequential file to find documents containing all the descriptors found

in the query (not necessarily implying true relevance). A set of

queries is defined to have the consecutive retrieval property (CRP), if

there is a sequence for storing all records so that the documents

satisfying each query are located consecutively. A file ordered in this

way has not only minimum storage requirements, but also minimum search

time if a suitable directory is used. Ghosh shows that an arbitrary

query set can always be dittled into overlapping groups of queries with

ZegT,

Ai)

CRP, The complete file, thun, is the concatenation of sequential sub-

files associated with each query group. Although this organization

appears interesting and perhaps applicable to finding actual relevant

documents, no implementation or evaluation information is known.

These extensions of sevential files do not change the fact that

their access times are too slow to _wrmit on-line search dis la feed-

back etc. The results indicate, however, that sequential organizations

cannot be discarded too quickly, especially when used in conjunction

with other techniques. The schemes of Ghosh and Leimkuhler actually

border on single-level document clustering. The fact is, that serial

order is acceptable for 1:.,xts of a document collection, but not its

entirety. The problem is to decide how the file should be partitioned

and how each portion should be accessed,

52

11-5

B. Chained Files

Logically, the chained file organization partitions documents into

sets of vectors having common index terms. The elements of each set are

chained together and accessed by following a sequence of pointers. The

file directory consists of a table giving the head of each chain while

actual document vectors are stored in order of acquisition. A new docu-

ment is attached to the file by placing it at the head of the chains

corresponding to its index terms. As a result all chains are in decreas-

ing order by accession number and point to the most recent information

first. The file search procedure using this type of organization is

depicted in Figure II-1. A bdnary search, hashing method, or other

lookup technique is used to scan the directory and locate the beginning

of the document chains corresponding to each query term. Subsequently

all items along these chains are fetched and correlated with the query

vector to establish which documents are suitable for output. Once the

retrieval cutoff is chosen, accession numbers or other retrieval data

are displayed. In some situations a separate file is accessed in order

to present complete citations or abstracts for the documents at the top

of the ranked list.

With a chained organization, a document vector is a set of triples

(t,w,p) where t is an index term, w is its associated weight, and p is

a pointer to the next document containing t. Only the weight is an

optional component; the term identifier is necessary to detect matches

and to differentiate among the chains which intersect in a document.

Because a pointer is required for each assigned index term, the total

Query
Vector

File

Directory

Document

Vectors

Retrieval

Document

Vectors

Query

Vector

Index terms

Weights

Index

I1-6

Heads of chains

t
. .

t
. .

t
..

t
. ..

t

a a
k

.

O

a a
\

Correlation

Function

Legend t=index term

wwweight

c=correlation

Ranking Table

as c IR
e

al
1

c t R

.

.

.

I
al

I
c R

} To be

retrieved

awdocument vector

R=retrieval data

awdodument accession number

Structure and Search of a Document File

Using a Chained Organization

Figure II-1

I I- 7

space needed for them is considerable. Depending on the number of bits

allocated to each element of the triple, the file size may increase as

much as l00% (12). The space required for the file directory is small

in most cases and presents no genuine implementation problem.

In order to alleviate some of the overhead for pointers, the multi -

list file comtdnes several descriptors into a "superkey" and maintains a

single chain for items containing all descriptors (13, 14). To effect a

savings, the vocatelary must contain term pairs or triples which occur a

significant nuaber of times throughout the file. Unfortunately there are

very few super-keys which meet these conditions. Tests involving triplets

show that 90% of the super-keys occur only once. As a result, the multi-

list structure is only slightly better than chaining single keys and does

not provide the storage economy that istneeded.

Inftwmtrtion systems with a variety of interrelated record types

often use chains to reduce the storage of redundant information as well

as to provide the desired access points. The Integrated Data Store (15)

circularly chains common data elements and addresses them by pointers

from other parts of the file. Similarly, records having the same attri-

bute values are chained in rings which may also point to other rings.

LogieCay, the file is a highly inter-connected network of data elements

and records accessed through a single directory. Physically, items are

packed into pages and fetched from disk through the data management

facilities of COBOL. Several other programming systems, CLP (16), APL

(17), and DMS (45) provide facilities for defining and manipulating

similar structures. Although ideal for many files, ring structures pro-

vide few benefits for information retrieval since the typical document

file has only one record format, little repetitious data, and, few complex

linkages.

Considering data retrieval in chained organizations, the search

time is proportional to the total length of the chains involved plus a

small amount for the directory scan. Naturally chains intersect at

various places, and duplicate effort may result. For example, if one

chain is followed to its end before another is considered, then some

documents are visited twice and. unnecessary accesses are made. This

situation is eliminated by considering the next element in all chains

before fetching a new document vector. Since each chain is ordered by

accession number, always selecting the highest number insures that no

items are re-scammad. In addition, all correlations are gathered in a

single sweep across the disk, i.e. without jumping back across data

previously passed over. If only recent data are required, it may be

possible to terminate the search early. Specifically, the accession

numbers used as pointers might contain an indication of publication date

or dates could be examined directly in the vector. Regardless of these

factors, search time is still approximately one access per document

correlation, altbnigh this may be reduced somewhat further by using

blocked records. Although better than sequential files, it is doubtful

tha,; a chained organization provides access that is fast enough for on-

line operation.

.Lefkovitz (1) describes two variations of the chained organization

which are designed to reduce search time- -the controlled list length and

cellular organizations. In the first case, each document chain is

limited to a pre-determined maximum size. When the maximum is exceeded,

I1-9

another directory entry is made and the /ist is continued. In the

second case, a new directory entry is made each time the chain crosses

a cell boundary. A cell is defined as a convenient sub-unit of the

storage device; for disks, the cylinder is an apprtqasiate choice. In

either case, the directory size and scan time increases. In systems

testing for complete matches of query terms, it is possible to intersect

sections of chains and. thereby eliminate some documents not having all

query terms. However, matching based on correlation functions allows

documents to be retrievel even if they do not completely match the query.

As a result, all chained items must be examined and the intersection

process is of little value.

Chained file organizations have some advantages in an on-line

system. Pointers make it possitae to relate documents in a wide vriety

of ways; e.g. similarity of keyword assignments or bibliographic data;

statistical correlation; or a priori knowledge of related publications,

former editions, or other factors. Moreover, a number af pre-search

statistics are available to aid query formulation. For example, chain

length indicates the number of items indexed by each term (specificity

of the query) and the total list length is certainly an upper Wird on

the number of retrievable documents. Such information might form a

useful display. Real-time updating is also possitae since only a few

pointers must be changed to incorporate new items into the file. Finally,

since document vectors are stored intact, both relevance feedback and

space modification procedures are possible.

Nevertheless, the disadvantages of chains outweigh their advantages.

First, precautions must be taken to avoid and repair breaks dt9 to

57

harliare or software failure. Second, in spite of easy file addition

procedures, changing an existing document is difficult, especially if

its vector must be enlarged. Finally, the main objections are the heavy

storage overhewi for pointers and search times proportional to the number

of documents correlations. The last disadvantage is a particular hind-

rance since better retrieval is generally obtained by examining an

increasing number of documents.

C. Inverted Files

The inverted file organization has wide use in on-line retrieval

systems because it provides quick access to data (18, 19, 20, 21).

kog5.ce.....7.lythe file is ortitioned into sets of documents having a common

keyword although records themselves are stored in anr order. The

directory contains one entry per vocabulary term; each entry lists the

accession numbers of documents containing that term. In a sense, docu-

ments are chained, but all pointers reside in the directory rather than

in vectors. Figure 11-2 depicts the structure and use of a file organ-

ized in this way, that is, using lists of accession numbers inverted by

index term. A search begins by scanning the directory to obtain the

lists associated. with each query term. After merging the lists, each

vector is fetched from disk, matched with the query, and the resulting

correlation stored in a ranking table. Finally, the highest scoring

documents are retrieved and displayed.

As outlined, the inverted file produces no better performance than

a chained organization. The retrieval time is still proportional to the

number of correlations since complete vectors are fetched from random

58

Query

Vector

File

Directory

Document

Vectors

Retrieval

Index terms

Weights

Lists of

Numbers

0)

a a a

1

a 'I

aaaa

Ibionwinommimmommovoa

Document

Vectors

'Query

Vectors

Ranking Table

ICorrelation1.4.

Function

Legend a = domunent accession

number

= correlation

t = index term

w = weight

FD-1

La To
a c R

retrieved

2_, 1211_1

R = retrieval data

D = document vector

Structure and Search of a Document File Using

Lists of Accession Numbers Inverted by Index Term

Figure 11-2

59

IT-12

disk locations. In fact, the situation is worse since the directory

is quite large and cumbersome. However, retrieval time can be substan-

tially reduced by eliminating many items during the directory scan. For

systems using Boolean queries, this is clearly the case since conjunc-

tion of search keys imply list intersections while disjunctions imply

unions. As a result the only documents actually fetched are the ones

which completely match the request.

A similar procedure is possible with some correlation coefficients

for unweighted vectors. The ranking table is used as an area for accumu-

lating the number of matching terms between the query and various

documents. For many match functions, these totals constitute the numer-

ators of the coefficient; normalization is all that is necessary before

the final value is obtained. There are several ways to obtain the

normalizing denominators for coefficients:

1) access their document vectors,

2) provide a special table, or

3) include them with the accession numbers in the

directory lists.

None is very pleasing. The first case returns to the situation of

accessing all items on the merged list in order to obtain a complete set

of correlations. The other methods are faster, but increase the directory

size. Regardless of cost, it is possible to obtain complete correlations

after just the directory scan, and the resulting savings are considerable.

Retrieval time is reduced to an amount proportional to the number of

query terms plus the time needed to fetch data for final displLj--

certainly fast enough for on-line work. Moreover, since correlations

11-13

are computed from directory information, index terms are no longer

needed as part of the stored document vectors. In fact, if only acces-

sion numbers are output, the entire file might consist of just the

directory, resulting in storage requirements approximately the same

as for a serial file. This is certainly a pleasing situation for initial

searches, but it obviates the use of relevance feedback and document

space modification.

To review, both relevance feedback and space modification produce

increased user satisfaction and are, therefore, desirable tools in a

retrieval environment. However, they require the entire contents of

document vectorsin one ease to obtain index terms and in the oth..ir case

to modify them. The inverted directory contains all this data but in

term order rather than document order. Consequently the only realistic

way to implement these features and. maintain on-line operation is to

have both the inverted and main files present. This combined file

approach nearly doubles the storage requirement. And in the case of

space modification changes must be made to both files.

The inverted organization can be modified to work with weighted

query and document vectors also. On one hand, the system could operate

as outlined in Figure 11-2. On the other hand, the directory can be

augmented to permit a more rapid search. For example, let D (d1,d2,...,dn)

and (ql,q2,...,qn) be a document and query vector respectively. Here

d
i
and q

i
denote the weights assigned to the ith term. The cosine

correlation between these vectors iso

1

11-14

[q4 di]

i 1

2

n

Las 1 i Li-i

In order to compute COS(4,D) during the directory scan, the values of

d /IDI are stored in the appropriate directory lists along with accession

numbers. This is possible since all the needed information is available

when the document is added to the file. During a search, the total

correlation is accumulated in the ranking table by summing the contribu-

tions from matching terms. The contribution from matching terms with

weights qi and di is:

CONTRIBUTION
cli1.1

q d

IS I IDI) W (II-2)

The lest hand factor in the last equality is obtained from the query and

the right hand factor from the directory. It is important to note that

normalization is already included in the directory entries. An example

of correlation calculation is shown in Figure 11-3. With this procedure

all correlations are obtained after the directory scan and only the

retrieval data for the highest scoring documents must be fetched. Further,

both terms and weights may be removed from the original vectors if feed-

back and space modification procedures are not used. Assuming the

system design includes these features, a combined file must be main-

tained; again the storage overhead is approximately 100.

The advantage of computing a correlation during the directory scan

is the rapidity of the search. Although this technique works with the

cosine correlation, it is inconvenient or impossible with others. Each

. ,

Documents D
1
= (2,0,0,1,1,0,3,0,3,1)

1E/11

D
2
= (0,1,0,0,3,1,0,1,0,2) 1D21

D
3

(1,0,2,1,0,1,0,1,0,1) 1D
3

1

Query

Inverted

Directory

Terms

di

1DI

Ranking

Table

- (0,0,2,0,0,2,0,0,0,1)

qi
.67 .67 .33

lq I

TI-15

5

= 4

0. 3

a2 a2 al

60 .25 60

a3

.33

oc. Correlation

(.33)(.20) = .06

(.67)(.25)+(.33)(.50) = .33

(.67)(.67)+(.67)(.33).4(.33)(.33) = .78

.

Legend a
i
= accession number for D

i

D = document vector i

Q RE query vector

t = term i

Sample Correlation Calculation Using an Inverted File

with Contributions Stored in the Directory Lists

Figure 11-3

1T-16

matching function has its own peculiarities, but in general two require-

ments must be met. First, non-matching document terms must not have a

direct influence on the coefficient since only the lists corresponding to

matching terms are examined. However, in some cases, such information

may be derived from other quantities already on hand. Second, the cora-

putation must permit the accumulation of total coefficient. In the case

of the cosine fUnction, this is accomplished by storing normalized con-

tribution values in the lists of accession numbers. Of course, extra

storage allocated to each list element could facilitate almost any

computation, but practical considerations generally impose some limitap-

tions. As examples, consider the product-moment, Tanimoto, and overlap

correlations*

Pm (D-5)

IQ:4 I 1D-31

Q D
T

nQ + nD -.QD

0 -

Mm (qi,d1)

Min (4,11-.5)

whervii :Eqi and 3 The product-moment measure cannot

be computed in the manner suggested because of negative contributions

from non-matching terms. The Tanimoto and overlap coefficients do not

allow for easy calculation since values of qi, di, Zqi, :Edi must be

available. In order to compute either correlation, weights for document

terms must be included in the accession lists and the values of :Ed
i

must be obtained from a separate table.

T Ja

Henceforth, it is assumed that system design permits calculation of

correlations within the directory so that the problem of quick response

reduces to the question of rapid access. Unfortunately accession lists

have variable and often considerable lengths and many standard directory

scanning techniques do not work. Length is especially troublesome if

automatic document indexing is used and nearly every major word is

treated as an index term. Without other controls, it is not uncommon

for a list to span several disk tracks. Collmeyer and Shemer (22) con-

sider forming serial, tree-structured, and hash-coded indexes to the

accessioa lists and conclude that hashing is preferred, With a hashing

procelare, the storage location of an accession list is computed from

the bit pat'tern for the corresponding index term. Higgins and Smith

(23, 21f) give considerable attention to hash-coded indexes, looking at

methods for computing addresses and handling overflows. Equal attention

is given to the storage of accession lists to permit easy access and

maintenance. Exponential chaining is developed as technique for handl-

ing file additions. Generally, in the updating process accession lists

must be lengthened, possibly by re-writing them or by chaining the

overflow to the original list. In time, the directory deteriorates

into chains of updated entries, which slows processing. The exponential

chaining procedure adds an entire block of availatae space to the over-

flow chain each time the previous block is filled. By continually

increasing the size of the additional block, lists are kept from being

too fragmented in storage. A variation of this scheme uses periodic

maintenance runs to collect all segments of a chain and to re-write it

as a single block along with an exponentially increasing number of

11-18

ie

available overflow spaces.

To summarize, the inverted file search examines only pertinent

records and yields an acceptable search time at the price of increased

storage space. The time results from three factors:

1) index searching to locate the appropriate accession lists,

2) fetching accession lists and computing correlations,

and

3) obtaining retrieval data for the documents to be

displayed.

The first two factors are proportional to the number of query terms

while the third is related to the amount of desired output. It is

unfortunate that search time increases with query length since this

penalizes longer queries which generally perform better. In addition,

since the relevance feedback process adds additional terms to queries,

the second and third iterated searches are considerably more expensive.

The storage space and complexity is the big drawback to this organize-

tion. In order to get all the desired features, combined files must be

used and. substantial penalties incurred in terms of space and..mainten-

ance. The problems of long accession lists, overflows, and chained

blocks within lists are considerable. Generally, the same retrieval

features available with the chained organization are also applicable

to the inverted file.

D. Computed-access Files.

Computed-access files are those that try to approach large scale

content addressable memory. In other words the manipulate the contents

11- 19

of a ue vector to calculate the stor e address of a ou bucket

of documents which are highly similar to the Query. Hopefully, many of

these documents are actually relevant. Hash addressing (scatter storage)

is a computed access method that has been used successfully with a single

search key (25, 26, 27, 28, 29). To extend this idea to several keys

(index terms), a conglomerate address must be calculated which is

descriptive of the entire query or document and the query addresses must

be mapped into the document addresses. The first scheme discussed below

follows this idea to some extent; while the second scheme uses concepts,

from finite geometries to compute addresses. Regardless of the method,

calculated-access differs from previous organizations in thatt

1) the file is partitioned into groups of items related

in some mathematical manner and

2) a major portion of the access procedure is based

on computation reaher than on a directory scan.

Files and Huskey describe a retrieval system using super-imposed

coding which partially meets the above 'criteria (30). Document vectors

are maintained in serial order as described in Section II.2A. A

directory entry is made for each document consisting of a code word

(N bits) and a pointer to its vector. This directory is kept in serial

order also. Now consider a specific document. The character string for

each of its index terms is hashed to a value between I and 14, and the

corresponding lAt in the document code word is turned "on". Al: ,ther

bits remain "off". Once the document code word is generated in this

manner it is placed in the directory. To search the file, a query code

word is generated by the same hash fUnction and is matched with all

11-20

document codes. Each time the query code is a subset of a document code,

the pointer to the document is saved. Later the pointers are used to

access complete vectors and correlations are computed (See Figure II-4).

The scheme appears neat and simple, bit depends on making the

number of bits per code word large enough to eliminate too many false

drops, and at the same time small enough to make the directory manageable.

The serial directory scan is slow, perhaps, but does allow for easy up-

date, For on-line work, more speed could be obtained by sorting the

documents by code word, This facilitates bulk transfers of data rather

than individual records. Further, if the directory itself is ordered

according to the first K bits of its code words, a secondary table might

act as an index to it. Given a query code word, the first K bits become

a subscript to the secondary index which leads to a substantial section

of the directory and then to blocks of documents. As supplemented, this

approadh might prove feasible with respect to storage space and access

time. There is a problem with accuracy, however. Examining a document

only when its code word is a complete superset of the query code word

may prove too strict. On one hand., documents containing only a few query

terms are not examined under this principle, whereas they might actually

have high correlations with the query and even be retrieved with a

different method, However, examining a document when there is one or

more matching code word bits would be such a lenient criterion that most

of the file would be scanned. Solutions to these problems approach the

clustering.techniques and profile generation methods reserved for later

discussion. In its original form, the superimposed coding system is

probably not feasible for on-line document retrieval. However, proper

68
4mmmalimmimmasmairs......siws

Query

Vector

Primary

Index

(sorted)

Document

Vectors

Index terms t t

Weights w

Secondary

Index

I I - 21

N bits 0.
40-0. K bits

[10 I l000locoo

Query Code Word

400011111111111M01111110/

00 01 10 11.

_

Document

Vectors

IQuery

Vector

raTrelation

Function

Legend a document accession

number

c ri correlation

t av index term

w weight

Ranking Table

a cIRI
c Ra

.

.

2121EL

To be

retrieved

R retrieval data

D document vector

File Organization Based on Query and. Document Code Words

Figure I1-4

69

11-22

enbancements could make it more usefUl.

Ayr some time, Ghosh and others (31, 32, 33, 34, 35) have considered

the following problem. Assume that document vectors are stored serially

and consider a directory table holding only the document accession num-

bers. Tbe problem is to organize the index into buckets so that given a

query, the proper bucket addresses are generated by solving algebraic

equations. In the context of the work, the "proper bucket" is a bucket

containing the accession numbers of documents having all the query terms.

The problem 'is solvable for some special cases: for binary vectors, for

queries with a small number of terms, and for queries with two multiple-

valued attributes. In general, the organization represents query

attributes (terms) by dependent or independent linear forms (hence the

-01 del query size). The system of equations to be solved in connection

with retrieval is Hx = v where H is a matrix of coefficients, x is the

vector of query attributes, and v is the vector of attribute values.

The elements of H are elements of a Galois field of finite dimensions,

sometimes being powers of its primitive elements. The solution

x H
-1

v is used to generate bucket addresses and the proper documents

are obtained.

As fine as the concept sounds, the organization is more a mathe-

matical object than a working reality. The reasons are twofold. First,

there are difficulties with the size and computations for the matrix H

as well as reducing Hx = v to echelon form, obtaining a solution, etc.

Second, the redundant storage factor for these schemes is very high

because of the nature of the task, namely computing bucket labels for

aja combination of terms. Only a few example calculations are available;

IT- 23

but for 3 attributes of 9 values each (729 record types), the scheme uses

81 buckets and, on the average, stores a record 2.8 times. For 2 attri-

butes of 9 values and 3 attributes of 3 values, the redundancy factor is

7.0. As a reSult, this approach falls short of the desired situation--

economically handling thousands of attributes of many values apiece.

Unfortunately, no really good calculated access methods are known

at this time.

E. Clustered Files

A clustered file_partitions documents into subject classes and uses

hierarch of rofiles to describe and access each cluster. The term

clustering refers to the use of a classification scheme to produce

groups (clusters) of statistically related items. Early research on

classification methods was conducted by Needham (36), Doyle (37), Parker-

Rhodes (38), and others. The combination of document clustering, profile

hierarchies, and. on-line searching developed more recently, mainly due

to the work of Salton's SMART project (39, 40, 410 42). Because a great

deal of descriptive material is presented in Chapter III; the discussion

here is confined to relating clustered files to other organizations.

LogiCalljr, the file is partitioned into subfiles (clusters)

using the.similarity criteria of the classification procedure. Generally,

many of the grouped documents share several index terms rather than just

one or two. Hopeftlly, this implies some semantic relationship among

the texts also. However for retrieval purposes, all that is required is

for documents in a cluster to have greater internal similarities than

external similarities, If profiles are made which reflect this bias, then

the bemt classes for searching are those most similar to the query. As

mentioned earlier, a profile is a composite of subordinate vectors, so

its format makes it possitae to measure query-cluster similarities by

profile correlations. The search process begins by computing query-

profile correlations for the nodes on the highest level. After ranking,

nodes having correlations above a chosen cutoff are expanded. That is,

the sons of the nodes are obtainei and the correlation-expansion procedure

is applied to them. The search, then, is an alternating series of

correlations and expansions, terminating with document correlations and

actual retrieval.

Throughout the organization, items are stored serially. This in-

cludes profiles on the first tree level, the sons of each node, and the

clusters of documents vectors. Since large blocks of data (sons of a

node) are transferred from disk rather than individual items, the number

ofaccesses made in a search is proportional to the number of expanded

nodes.. For a very narrow strategy--expanding only the best node at each

step- -the number of accesses is approximately equal to the number of

levels. For broader strategies, the cost increases accordingly. This

situation produces a welcome cost-performance tradeoff, A narrow search

yields only a few relevant documents, but at low cost; broader searches

are M1EV3 comprehensive and more expensive. Of course, a full file search

is always possible by scanning all documents directly. In all cases, the

marginal cost of retrieving a few extra documents is small.

The storage overhead for this organization is basically the space

for profile vectors, It is difficult to state the total requirement

accurately because it depends on the properties of the hierarchy--

72

number of levels, a degree of nodes within those levels, and the amount

of overlap. (See Chapters III and V,) This research shows that accept-

able performance levels are maintained even when the profiles are reduced

to onlY 7% of the space allocated to the document vectors. The result is

substantiated under a variety of conditions and using hierarchies with

widely different properties.

The expense of classification is the largest disadvantage of the

clustered file. The number of operations to classify N items may be

proportional to N2, to NlogN or to N depending on the method. Thore is

some evidence that more expensive methods produce better clusters, but

cheaper schemes are not completely unacceptable either. This study dis-

regards the classification cost and suggests that hierarchies can be

used for several purposes. By distributing expenses among several appli-

cations, clustered files are more easily justified. Alternate uses in-

clude automated browsing for viewing how information is structured, check-

point displays during searching, construction of a retrieval thesaurus,

query alteration procedures, and others. (See Section 8 of Chapter III.)

The maintenance of a clustered file is a drawback also. For a time

new documents can be successfully blended into the existing hierarchy

with or without changes to profiles. Eventually the quality of the

hierarchy diminishes because the profiles try to represent too much

information, This may imply a complete re-clustering. However, a more

reasonable scheme is to record the number of additions to each path of

the.tree and to re-cluster selectively. That is, to re-structure only

a single subtree of data and to re-connect it to the rest of the

hierarchy,

73

11-26

There are a number of other advantages of a clustered file in addi-

tion to those of time and space. Since complete document vectors are

available, relevance feedback is easily implemented. Document space

modification may require changes to both documents and profiles, however.

In addition, almost any correlation coefficient can be computed because

complete information is at hand. Several modes of operation might be

provided by simply changing the matching function. Cost performance

trade-offs and browsing features have been mentioned. The general

appropriateness of the hierarchical structure is not to be overlooked

either. Its concept is familiar to most users thxough their previous

activities, and it provides a reasonatae structure for browsing

and observing the relationships among the stored texts. In summary, the

clustered organization not only facilitates storage and access, but also

participates in other phases of the retrieval process.

3. Methods of Physical Access

Physical access deals with the process of locating records on a

storage device regardless of their relationship with other file items.

For example, suppose that the search process follows a chain or expands

a cluster and consequently requires correlations with documents Dl7, D48,

and D695. These records must be fetched from disk, deblocked from their

track format, and transferred to work areas for the correlation program.

The physical access method specifies how the operating system actually

finds these vectors on disk. Methods are generally limited to those

supported by a manufacturer's software since the task is one of inter-

facing the operating system and a storage device. Three schemes in wide

74

st.

T

use are: sequential, direct, and indexed sequential (43).

Sequential access is most applicable to magnetic tape, although

used with disk also. It is simple in concept and places little burden

on the operating system or application programs. Records are stored in

order of increasing reference numbers and located by their relative posi-

tion in the file. Given the current position, a desired record is found

by computing the number of intervening items and reading or skipping over

this intermediate information. Although slow for accessing random disk

locations, sequential schemes provide the most rapid way of obtaining

multiple or quantity input from a localized area of the file.

Direct access is the fastest way to obtain records from random disk

locations. The operating system is given the disk address of desired

items and actually does little more than initiate I/0 activity and trans-

fer input data to program buffers. The application program has the

burden of supplying the required disk addresses, generally using lookup

or hashing methods. In the first case, the file construction and update

processes return addresses of stored items. These are used directly as

pointers, elements of secession lists, etc. Whenever an item is needed,

its disk address is obtained by table lookup or scanning a list. In the

second cage, a record accession number is hashed into a disk address and

the record is stored at this address or in a connected overflow area.

The advantage of hashing is that it avoids a lengthy lookup process; its

disadvantages include problems of overflow and selection of a hash

fUnction.

Indexed sequential access is easier to use and slower than the direct

method, but more restrictive and faster than the sequential scheme.

Briefly, the operating system constructs a set of hierarchical directories

11-28

as the file is built (43, 44, 46). Application programs access items

simply by specifying their reference numbers (keys). To start, records

are stored in order of increasing key value in the prime data area of

each disk cylinder. The rest of the cylinder consists of a track index

and an overflow area for new items. During this process, the key for

the last record associated with each track is stored in the track index..

Moreover, the entire file is preceded by a cylinder index containing the

key of the last record associated with each cylinder. Several levels of

master index may be used to point to sections of the cylinder index. The

result is a hierarchical directory structure which is distributed about

the disk (Seel Figure 11-5).

To retrieve data, the operating systei (or data management system)

compares the key of the desired record with the entries in the highest

level index. Descent to lower level indexes is made depending on

whether the key has a high, equal, or low match. Prime data tracks are

searched sequentially to find the proper record. Actually, retrieval

is more complex because of overflow conditions resulting from file up-

dates. Suppose a new record is to be inserted in the middle of the file,

but will not fit onto the desired track. In this situation, the entire

track ,is re-written in proper sequence and items pushed off its end are

moved to an overflow area. Overflow items are linked together and to

their home track by making a second entry in the track index. Consequent-

ly when the track index is examined during retrieval, either the prime

area is searched sequentially or the overflow area is searched by

following a chain. Overflow tracks might be allocated for each cylinder,

76

Master Index

Cylinder Index

Cylinder 1

Track 1

Track 2

PDE

OFE

Prime

Data

Area

Over-

Track 20 Flow

Area

1

TI- 29

450 900 _.1

118 1 I 450 I . .1 900 I .

Track Index

12 92 .

D
6

I

D
12

14 104

D
31 D",Xt

D65 D
92

0

D
14

D
100

D
237 :104

_

Legend: D
x

- record for document x

PLC - prime data entries in the track index

OFE - overflow entries in the track index

Index entries are the largest document numbers per

cylinder, track, overflow chain, etc.

Indexed. Sequential Access

Figure 11-5

II-30

for the entire file (single area at the end), or both. In the last

case, the secondary area contains items overflowing from the cylinder

areas.

Indexed sequential access is selected in this research as the methai

'lost amour/ate to the clustered file. It is particularly useful since

the sequence of cluster access is unpredictable and its indexes provide

the required retrieval speed. However once a cluster is selected, its

vaume of data is retrieved as a single entity and sequential, rapid

transfer is most important. Because the most efficient operation occurs

when entire tracks of information are transmitted from disk, it is assumed

that records are not deblocked by the operating system. Master and

cylJauler indexes are also assumed to reside in core storage as well as

the track index for the cylinder currently being accessed. These same

conditions are used wben the inverted and clustered organizations are COM-.

Wed on the basis of search time. Because direct access may be more

approTalate for inverted. files, the results are presented in this way

also (See Chapter Ix),

4, Summary

This chapter surveys current file organizations applicable to direct

access devices. In accordance with the purpose of this work, logical

structure--partitions of records, linkages among related items--have

been emphasized rather than data management functions (physical structure).

In all, five types of logical organization are described and evaluated

with respect to usage in on-line document retrieval. Table II-1

summarizes the evaluation of sequential, chained, inverted, calculated-

7$

P
r
o
p
e
r
t
y

S
e
q
u
e
n
t
i
a
l

C
h
a
i
n
e
d

I
n
v
e
r
t
e
d

(
C
o
m
b
i
n
e
d
)

C
a
l
c
u
l
a
t
e
d

A
c
c
e
s
s

C
l
u
s
t
e
r
e
d

P
a
r
t
i
t
i
o
n
i
n
g

N
o
n
e

S
i
n
g
l
e

S
i
n
g
l
e

M
a
t
h
e
m
a
t
i
c
a
l

C
o
r
r
e
l
a
t
i
o
n

C
r
i
t
e
r
i
a

c
o
m
m
o
n

t
e
r
m

c
o
m
m
o
n

t
e
r
m

r
e
l
a
t
i
o
n

m
a
n
y

c
o
m
m
o
n

t
e
r
m
s

L
i
n
k
a
g
e

T
o

R
e
l
a
t
e
d

I
t
e
a
s

N
o
n
e

P
o
i
n
t
e
r
s

L
i
s
t
s

C
o
m
p
u
t
a
t
i
o
n

P
h
y
s
i
c
a
l

a
d
j
a
c
e
n
c
y

S
p
a
c
e

N
o
n
e

1
0
0
%
.

2
.
0
0
%

O
v
e
r
h
e
a
d

S
e
a
r
c
h

R
e
a
d

P
r
o
p
o
r
t
i
o
n
a
l

P
r
o
p
o
r
t
i
o
n
a
l

?
P
r
o
p
o
r
t
i
o
n
a
l

T
i
m
e

e
n
t
i
r
e

t

0

n
u
m
b
e
r

o
f

t
o

n
u
m
b
e
r

o
f

t
o

n
u
m
b
e
r

o
f

f
i
l
e

d
o
c
u
m
e
n
t

c
o
r
r
e
l
a
t
i
o
n
s

q
u
e
r
y

t
e
r
m
s

c
l
u
s
t
e
r
s

e
x
p
a
n
d
e
d

R
e
l
e
v
a
n
c
e

F
e
e
d
b
a
c
k

P
o
s
s
i
b
l
e
l
,

d
o
t

p
r
o
b
a
b
l
e

P
o
s
s
i
b
l
e

P
o
s
s
i
b
l
e

w
i
t
h

c
o
m
b
i
n
e
d

f
i
l
e

P
o
s
s
i
b
l
e

E
a
s
y

S
p
a
c
e

M
o
d
i
f
i
c
a
t
i
o
n

P
o
s
s
i
b
l
e

P
o
s
s
i
b
l
e

P
o
s
s
i
b
l
e

b
u
t

w
i
t
h

d
i
f
f
i
c
u
l
t
y

?
P
o
s
s
i
b
l
e

b
u
t

w
i
t
h

d
i
f
f
i
c
u
l
t
y

P
r
e
-
s
e
a
r
c
h

S
t
a
t
i
s
t
i
c
s

N
o
n
e

C
h
a
i
n

l
e
n
g
t
h

L
i
s
t

l
e
n
g
t
h

N
o
n
e

L
i
m
i
t
e
d

1

E
v
a
l
u
a
t
i
o
n

S
u
m
m
a
r
y
F
o
r

L
o
g
i
c
a
l

A
c
c
e
s
s
M
e
t
h
o
d
s

T
a
b
l
e

I
I
-
1

P
r
o
p
e
r
t
y

S
e
q
u
e
n
t
i
a
l

C
h
a
i
n
e
d

I
n
v
e
r
t
e
d

(
C
o
m
b
i
n
e
d
)

C
a
l
c
u
l
a
t
e
d

A
c
c
e
s
s

C
l
u
s
t
e
r
e
d

C
o
s
t
-
P
e
r
f
o
r
m
a
n
c
e

N
o

N
o

N
o

N
o

Y
e
s

T
r
a
d
e
o
f
f

A
c
c
u
r
a
c
y

F
u
l
l

F
u
l
l

F
u
l
l

?
V
a
r
i
e
s

w
i
t
h

(
P
r
e
c
i
s
i
o
n
-

R
e
c
a
l
l
)

s
e
a
r
c
h

s
e
a
r
c
h

s
e
a
r
c
h

s
e
a
r
c
h

e
f
f
o
r
t

E
a
s
e

O
f

C
o
m
p
u
t
i
n
g

C
o
r
r
e
l
a
t
i
o
n
s

V
e
r
y

h
a
r
d

V
e
r
y

h
a
r
d

M
u
s
t

b
e

o
f

s
p
e
c
i
f
i
c

t
y
p
e

V
e
r
y

e
a
s
y

V
e
r
y

e
a
s
y

M
a
i
n
t
e
n
a
n
c
e

A
d
d
i
t
i
o
n

E
a
s
y

E
a
s
y

M
o
d
e
r
a
t
e
l
y

h
a
r
d

H
a
r
d
"

H
a
r
d

'

C
h
a
n
g
e
s

H
a
r
d

H
a
r
d

H
a
r
d

H
a
r
d

H
a
r
d

B
r
o
w
s
i
n
g

N
o

N
o

N
o

N
o

Y
e
s

O
t
h
e
r

-
C
l
u
s
t
e
r
i
n
g

e
x
p
e
n
s
e

-
C
h
e
c
k
p
o
i
n
t

s
e
a
r
c
h

-
A
l
t
e
r
n
a
t
e

u
s
e
s

E
v
a
l
u
a
t
i
o
n

S
u
m
m
a
r
y

F
o
r

L
o
g
i
c
a
l

A
c
c
e
s
s

M
e
t
h
o
d
s

T
a
b
l
e

I
I
-
1

C
o
n
t
'
d

11-33

access methods to make a complete comparison.

Some comments must be added to the summary. First, all organiza-

tions are designed so that relevance feedback and document spac(

modification could be implemented. For sequential files, this Involves

expending a great amount of time while it means maintaining a combined

file for inverted organizations. For clustered schemes, profiles might

have to be changed during space modification. The point is that both

features can te made available, but with varying costs. Second, in the

area of pre-search statistics, the chained and inverted schemes supply

the number of documents caitaining specified index terms, and other

information which might be of interest to an on-line user. Clustered

files cannot provide this same data, but offer the possibility of inter-

rupting a search and viewing checkpoint information. Third, regarding

quality of output, the chained and inverted files supply the same pre-

cision and recall values as a full search (serial scan). Exceptions may

arise, however, in the treatment of documents with tied correlations.

The quality of a cluster search varies with the expended effort so that

a cost-performance tradeoff is possible. However, most relevant docu-

ments are retrieved early in the search. It might be possible to achieve

a similar tradeoff with an inverted organization by examining the acces-

sion lists of only a few query terms. However, the system is really

processing a different query under this condition. Finally, the ms,jor

differences between the inverted and clustered schemes is the tremendous

storage overhead of the former and the classification expense of the

latter. Ttms maintenance difficulties for both are non-trivial. In the

end, the additional flexibility and general appropriateness of the

clustered file may te the deciding factors in the choices made by

actual systems desigrers.

11-35

References

1. D. Lefkovitz, File Structures for On-Line Systems, Spartan Books,

New York, 1969.

2. G. Salton, Automatic Information Organization and Retrieval, McGraw-

Hill, Inc., New York, 1968.

30 T. Of Lowe, D. C. Roberts. On-Line Retrieval, Informatics, Inc.,

Project 4594, Technical Report TR-69-304, 1969.

4. C. T. Meadow, The Analysis of Information Systems, John Wiley & Sons,

New York, 1965.

5. National Library of Medicine, Medlars System Manual, Bethesda,

Maryland, 1965.

6. National Aeronautics and Space Administration, Guide to Processing

and Retrieval of Information at the NASA Science and Technical Infor-

mation Facility (3 volumes), March 1965.

7. A. K. Kent, Searching Literature Files by Computer, Industrie Chemique

Beige, Vol. 33, pp. 879-882, 1968.

8. E. G. Coffman, J. Bruno, On File Structuring for Non-uniform Access

Frequencies, Technical Report Series, Number 6, Computing Laboratory,

University of Newcastle upon Tyne, England, 1970.

9. B. Lipetz, Influence of File Activity, File Size, and Probability

of Successful Retrieval on Efficiency of File Structure, Research

Department, Yale University Library, New Haven, Connecticut.

10. F. F. Leimkuhler, A Literature Search and File Organization Model,

American Documentation, Vol. 19, No. 2, ATall 1968.

11. S. P. Ghosh, On the Theory of Consecutive Storage of Relevant Records,

IBM Research Publication 13627, IBM Research Laboratory, San Jose,

California, June 1970.

12. I. A. Warheit, File Organization of Library Records, Journal of

Library Automation, Vol. 2, No. 1, March 1969.

13. N. S. Prywes, etp.1, The Multilist System Moore School of Electrical

Engineering, University of Pennsylvania, Technical Report No. 1

under Contract N0rr551 (40), 1961.

14. N. S. Ftywes,'H. J. Gray, The Multilist System for Real-Time Storage

and Retrieval, IFIPS Proceedings, pp. 112-116, 1962.

11-36

15. Introduction to Integrated Data Store, Publication CPB-11048,

Computer Department, General Electric Company, April 1965.

16. R. W. Conway, et al, CLP-The Cornell List Processing Language

Manua..1., Department of Computer Science, Cornell University, October

1965.

17, G. Dodd, R. Beach, L. Rossol, APL-Associative Programming Language

Ufmrs Manual, Research Publication GMR-622, General Motors Research

Laboratory, July 1967.

18, R. K. Summit, Dialog--An Operational On-Line Reference Retrieval

System, Proceedings of the ACM National Meeting, Thompson Book C0.,

Washington, D. C., 1967.

19. IBM System 360 Document Processing System, Program Description and

Operations Manual, IBM Corporation, White Plains, New York.

20. Project Intrex Semiannual Activity Report PR-12, MIT, Cambridge,

Mass., September 1971.

21. Qwik-trieve Users Manual, Westinghouse Tele-Computer Systems

Corporation, April 1970.

22. A. J. Collmeyer, J. E. Shemer, Analysis of Retrieval Performance

far Selected File Organization Techniques, Xerox Data Systems, El

Segumdo, California, 1970.

23. L. D. Higgins, F. J. Smith, Efficient Disk Storage for Interactive

Document Retrieval, School of Physics and Applied Mathematics, The

Quemm's University of Belfast, Belfast, N. Ireland, 1970.

24. L. D. Higgins, F. J. Smith, On-Line Subject Indexing and Retrieval,

School of Physics and. Applied Mathematics, The Queen's University

of Belfast, Belfast, N. Ireland, 1970.

25, R. Morris, Scatter Storage Techniques, CACM, January 1968.

26. D. Murray, A Scatter Storage Scheme for Dictionary Lookups, Journal

of Library Automation, Vol. 3, No. 3, September 1970.

27. V. Lum, Yuen, Dodd, Key-to-Address Transform Techniques: A Funda-

mental Performance Study on Large Existing Formatted Files,

Formatted File Organizations Final Report, Information Services

Department, IBM Research Laboratory, San Jose, California, March 1970.

28. E. G. Coffman, Jr., J. Eve, File Structures Using Hashing Ainctions,

CAM, Vol. 13, No. 7, July 19704

29. B. H. Bloom, Space/Time Trade-offs in Hash Coding With Allowable

Errors, CACM, Vol. 13, No. 7, July 1970,

30. J. R. Files, H. D. Husky, An Information Retrielial System

Super-imposed Coding, Preceedings FJCC, 1969.

31. C. Abraham, S. Ghosh, D. Ray-Chaudhuri, Filing Schemes Based

Finite Geometries, Information and Control, Vol. 12, No. 2,

II-37

sed on

on

1968.

32. C. Abraham, R. Bose, S. Ghosh, File Organization of Records for

Multiple Valued Attributes for Multivariate Queries, IBM Research

Report 1886, 1967.

33. C. Abraham, R. Bose, S. Ghosh, File Organization of Records wit

Unequal Valued Attributes for Multi-attribute queries, prelimin

report to Air Force Contract AF 30(602)-4088, May 1967.

ary

34. S. Gtmal, C. Abraham, Application of Finite Geometry in File Org

tion for Records with Multiple-valued Attributes, IBM Journal of

Research and Development, Vol. 12, No, 2, 1968.

35. S. Ghosh, Organization of Records with Unequal Multiple-valued

Attributes and Combinatorial Queries of Order 2, Formated File

Organization Techniques Final Report, Information Services Depart-

ment, IBM Research Laboratory, San Jose, California, March 1970.

36, R. Needham, The Place of Automatic Classification in Information

Retrieval, Report ML-166, Cambridge Language Research Unit, Cambridge

England, 1963.

iza-.

37. L. Doyle, Breaking the Cost Barrier in Automatic Classification,

SDC paper SP-2516, July 1966.

38. A. F. Parker-Rhodes, R. M. Needham, The Theory of Clumps, Report

14L-162, Cambridge Language Research Unit, Cambridge, England, 1960.

39. J. J. Rocchio, Document Retrieval Systems - -Optimization and EValua-

tion, Harvard University Doctoral Thesis, Report ISR-10, Chapter 4,

to the National Science Foundation, Harvard Computation Laboratory,

Mem:1h 1966.

40. J. D. Broffitt, H. Morgan, J. Soden, On Some Clustering Techniques

for.Information Retrieval, Report ISR -11 to the National Science

Foundation, Cornell University, June 1966.

41. R. Dattola, A Fast Algoritm for Automatic Classification, Journal

of Library Automation, Vol. 2, No. 1, March 1969.

42. R. Dattola, ExPeriments with a Fast Algorithm for Automatic

Classification, Report ISR-16 to the National Science Foundation,

Department of Computer Science, Cornell University, September 1969.

85

43. IBM System 360 Operating System, Supervisor and Data Management

Services, IBM Corporation, White Plains, New York, 1968.

44, V. Lum, H. Ling, M. Senko, Analysis of a Complex Data Management

Access Method by Simulation Modeling, Information Services Depart-

ment, IBM Research Laboratory, San Jose, California, 1970.

45. Data Management System (DMS) Reference Manual for XDS Sigma 5/6/7/9

Computers, Xerox Data Systems, December 1970,

46. A Description of AMIGOS, Comress Corporation, Rockville, Maryland,

1970.

Chapter III

Clustered Files

1. Introduction

The purpose of this chapter is to present a comprehensive discussion

of clustered files. Individual sections are devoted to classification

methods, hierarchy formation, search techniques, updating, cluster storage,

request clustering, and alternate uses for the hierarchy. The intent is

to provide an understanding of the construction, use, and maintenance of

clustered files and to introduce concepts used in the experiments described

in later chapters.

2. Classification Methods

A clustered file organization depends on a classification algorithm

to group documents with similar properties. Since document properties

(keywords) reflect subject content, clusters actually consist of seman-

tically related items even though the partition is made on a statistical

basis. Classification methods can be characterized in at least two ways:

by direction of application and by amount of work. Generative methods

arrive at the final hierarchy by "bottom-up' processing. Initially all

documents are considered as individuals and highly similar items are

placed in classes (clusters). A profile is constructed to represent each

class and higher level clusters are produced by grouping profiles. The

process continues until only a small number of items remain. Divisive

methods construct the hierarchy in "top-down" fashion. Initially all

documents are placed in a single class which is divided into a few large

subclasses. Tbereafter each subclass is treated independently and is

62

67

111-2

split into additional subclasses. This division process continues until

the size of a subclass falls within specified limits. Regardless of the

method, clustering entails considerable expense, and algorithms can be

characterized by the number of operations required to classify the N items

on a single level. A great many algorithms employ similarity matrices

giving pairwise associations among items; in general N
2

operations are

required to generate such a matrix. Other algorithms partition or groUp

items into crude subclasses and then refine the division. Often, the

elements of each subclass are compared with profiles for other classes and

then shifted about. If there are k subclasses, then the total clustering

effort is proportional to kN operations. Some schemes do not re-distribute

items after assigning them to initial subclasses and thus handle them

only once per level. These are so-called one-pass algorithms. Apart from

top-down and bottom-up application and the work involved, classification

algorithms are based on a wide variety of techniques including eigenvalue

analysis, factor muilysis, latent class analysis, clump theory, and others

(1). For most information retrieval applications, a scheme must provide

control over cluster size and overlap, and at the same time it must not

demand excessive computation or storage space.

Sokal and Sneath (2) describe a number of clustering algorithms

using similarity matrices. For the present, let S
ij

denote the similarity

between documents i and j. In the single linkage method, the similarity

between classes A and B is defined as

SAB m ?lax {Sij I iCA, jCB

The hierarchy is made by choosing a threshold 0 and joining pairs of

Eb

III- 3

documents or classes which have similarity coefficients greater than 0.

The threshold is reduced and pairing resumes; the entire process continues

until a termination condition is satisfied. The average weight method is

similar, but uses a different measure:

2 2 S4 4

nA ie A JO

Here n
A

and nB are the number of items in their respective classes. The

complete linkage scheme joins two classes if and only if sii> 0 for all

%A, JO. Each of these algorithms generates the hierarchy from the bottom

up and requires N2 calculations to make the similarity matrix plus the

work involved in the pairing process. Unfortunately, the problems of

matrix storage and calculation generally prohibit the use of N2 methods

in document classification.

One-pass classification algorithms examine each item only once per

level. Again, the procedures rely on similarity coefficients S
ij

and a

threshold 0. As records (documents or profiles from the previous level)

are read from the input device, the first item starts a cluster. The

second item is compared with the firsts if 20 the second item is

assigned to the same cluster; if S12 0, the second item starts a new

cluster. Subsequent items are compared with all previous classes and

either join the best existing class or start a new one. Nagy and Casey

(3) require each item added to a cluster to have a similarity greater

than 0 with all previous members. Hill () and Johnson and. La Fuente

(5) avoid examining items in a cluster by using a profile to represent

its members. Similarities are measured using the profile and. altering

its makeup to reflect the addition of new items or the loss of old ones.

P 69

The cutoff 0 tan remain constant or vary to provide better control over

the size and number of clusters (5). Obviously, one-pass methods are

applicable in top-dmwn or bottom-up fashion. The work involved is diffi-

cult to establish because the number of clusters changes as the algorithm

proceeds. However if K clusters are eventually formed from N items, the

total work fcmc that level is bounded by kN operations. One-pass methods

are definitely economical of time and space, but are questionable in

terms of quality. Although promising results are known (5), additional

research is needed in this area,

Between the N2 and one-pass methods is a class of top-down algori-

thms which re-adjust an initial partition of the eocuments in order to

improve the cluster quality. Rubin and Friedman (6) start with a read=

partition axul use hill-climbing techniques, "forcing passes", and "re-

assignment passes" to minimize the data scatter within clusters. Ifitofsky

(7) partitions the vocabulary of a node (all index terms in the corres-

ponding documents) before associating documents with these sub-vocabularies.

Similar methods by Doyle and Dattola (8, 9) are used exclusively in this

study. To start, a number of unrelated documents are chosen as cluster

seeds and thetr vectors are used as profiles. Next follows the scoring

cycle in which each document is compared with all profiles. If for each

document, the highest doommmt-profile score is above a given threshold

0, the document is placed in the corresponding cluster at the end of the

cycle. If the highest score is less than 0, the document is assigned to a

special class of looso items. After all documents are scored, the cycle

ends; profiles are re-defined to reflect the gain or loss of cluster

members; and, parameters are adjusted to control size and overlap.

When a cycle results in no changes to the classification, an iteration

is said to have ended. At this.point, if the number of loose documents is

TI1-5

large, the.cutoff 0 is lowered and a new iteration begins. If only a

small numter of items remain loose, processing terminates for this level.

Remaining loose documents may be blended into existing clusters or passed

on to the next hierarchy level as individual items. Although the algorithm

appears complex, it has a number of desirable features, including control

of cluster size, overlap, and disposition of loose items. The process is

applied in top-down direction and works in time proportional to kN opera-

tions per level, where k is the number of clusters on that level.

At this time, optimal classification methods have not been found

for luma in document retrieval. All methods are moderately successful de-

pending on the data and 'amount of computation, but still not enough is

known about methods for automatically identifying and grouping related

pieces of text. The difficulties may lie in the document indexing or in

the classification methods themselves, Classification is not the topic

for investigation in this research; and although its problems are not

mentioned further, the limitations of current knowledge does affect the

results presented here.

3. Hierarchy Formation

A cluster hierarchy is a connected arrangement of profiles which act

as a file directory. In the previous section, cluster generation is

described as a level by level process having one set of profiles asso-

ciated with each level. The hierarchy is constructed by connecting each

profile to-its constituent elements on the next lower level. The result is a

tree structure whose roots are top level profiles, whose leaves are documents,

and whose intermediate nodes represent the middle level profiles. The tree

111-6

is used for both retrieval and updating functions, and in both cases

each profile's purpose is to characterize all documents beneath it. For

retrieval, the documents most similar to a query are found by comparing

the query with the first level profiles and following the most promising

paths, For updating, a new document is treated as a query and its vector

is stored with the most similar lowest level cluster, In addition to the

broad questions concerned with the hierarchy structure, two topics of

ecific concern are methods of li

profiles.

e amon nodes and methods of definin

A. General Structure

A systems designer needs to satisfy the desires of several types of

users and to maintain a balance among response time, search cost, and

retrieval performance (precision-recall). To some degree, these measures

depend on the general shape of the hierarchy--cluster size, amount of over-

lap, and number of levels, all of which are interdependent themselves.

Large clusters of documents or profiles produce a hierarchy with only a

few nodes and. levels compared to a hierarchy based on small clusters, As

a result a search consists of fewer profile comparisons and is quicker

and. cheaper. The output, however, is inferior since presumably it is

more difficult to detect the presence of a relevant document by examining

the profile of a large cluster than to detect it by examining the profile

of a small cluster.

Not a great deal is known about hierarchical shape and most classifi-

cation algorithms avoid the problem by providing parameters for cluster

size, overlap, number of levels, etc. An experimental approach to finding

S2

ITT-7

optimal cluster size is to classify a sample collection several times,

to search it using the same search strategy and keeping the amount of work

constant, and to determine the best cluster size based on the precision-

recall plats. Even if this difficult test sequence is maintained, the

results may not be applicatae to different classifications, search para-

meters, or collections. The problem of controlling the experiment centers

on keeping the search effort constant while changing the cluster size. A

more basic difficulty is that of choosing an adequate and appropriate

measure of search effort. The above test scheme is difficult, but super-

ior to methods which examine only search time or storage space. At this

point, no optimal cluster size is known. The values used in this study

are tased on the findings of current research and their appropriateness to

practical stituations.

In general, clusters overlap so that a document may have multiple

memberships, and may be retrieved from several search paths. The optimal

amount of overlap has been investigated in a manner similar to that out-

lineu almve. That is, Cluster size is held constant while overlap is

varied and the evaluation is based on precision-recall curves from searches

using fixed strategies. The protaems related to work measurement are

simplified because cluster size is constant. Results by Dattola (9)

suggest that a small amount of overlap is best (440%). This is an

important finding because of its influence on search times and the method

of linkage among nodes of the hierarchy.

B. Linkage Among Nodes

Linkage between levels of profiles or profiles and documents can be

93

111-8

accomplished in at least two ways. Pointers might link a parent to its

sons either by starting a chain in the parent node and placing one pointer

in each son or by collecting all pointers in the parent. With indexed

sequential access, record keys are used as pointers rather than disk

addresses so that the file remains relocatable. By assigning keys in

increments greater than one, new documents or profiles are blended into

the file by giving them keys which fill the vacancies in the sequence.

Actual vectors are stored in data overflow areas as described in Chapter

II. Deleting a record from the file is accomplished by removing its

pointers from the hierarchy. Unfortunately, in some cases pointers limit

the extent of advanced buffering since the current record must be obtained

before the next access is initiated. Another problem occurs if updating

overflows the intervals between record keys. However, because pointer

linkage is easy to manipulate and is applicable regardless of the amount

of overlap, it is often used with a great deal of success.

Implicit linkage methods assign each profile and document a structured

km which is a sequence of digits identifying the path locating its node

in the hierarChy (Figure III-la). Given a node for expansion, its key and

degree are used to derive the keys of its sons. Buffering may be advanced

as far as possible since the keys of all desired records are generated at

once. One of the great advantages of a structured key is that it contains

a complete description of the record's place in the file. From a single

key, parent, son, or filial nodes can be accessed for information that

would be useful in broidening or narrowing searches, in browsing processes,

or in relevance feedback. In addition, knowledge of the local structure

allows for file integrity checks and possible reconstruction following

. 94

Level 0

(dummy)

Level 1

(profiles)

Level 2

(profiles)

Level 3 0 0
(documents) 111 112

1

/ \
0 0 0
121 122 123

IT1-9

%

0

if
0

21 231

a)

Order by

Subtree

Structured Key Assignments

Heir-Filial

Order

Order by

Level

1 1 1

11 2 2

111 11 11

112 12 12

12 111 21

121 112 22

122 121 23

123 122 111

2 123 112

21 21 121

211 22 122

22 23 123

221 211 211

222 221 221

23 222 222

231 231 231

b) Orders of Cluster Storage

Figure III-1

95

hardware or software failures. Structured keys meet the requirements of

increasing values for indexed sequential access and even permit several

storage orders. Right-justifying keys and sorting them into ascending

sequence places nodes in order by levels; left-justifying and sorting

results in subtree order; and their combination yields heir-filial order

(Figure III-lb). During updating, new pieces can be added to any part

of the hierarchy without disturbing previous linkages. As before, the

new vector is located in a data or overflow area and only the degree of

the parent node is altered. Item removal is best accomplished by setting

a deletion indicator and leaving the rest of the record intact, Space

is reclaimed during maintenance processing when items are shuffled about

to achieve more efficient operation. At this time a record may be

assigned a new key, but this poses no serious problems since the keys are

only used for internal identification,

Under the assumption of a low percentage of overlap either method of

linkage works economically. Structured keys require overlap to be handled

by duplicating document vectors and storing them with each cluster in

which they have membership. An advantage of duplication is that each

cluster becomes a contiguous block of data and therefore accessible at

maximum speed. Pointer linkage can be used to save the space given to

duplicate items, but cluster.access time increases due to the excess

jumping about the disk to fetch the overlapping items, The space require-

ments for a Structured key and degree is slightly larger than that needed

for pointers and record keys, but probably not enough to make a real

difference. Assuming a small amount of overlap, the weference between

. S6

ITT

methods must be given to structured keys, .based on the ease of update and

the extra links to related information.

C. Profile Definition

One of the assumptions of cluster searching is that profiles for

relevant clusters are more similar to a query than other profiles. A

similar assumption connected with classification maintains that a high

document-profile similarity implies a large degree of similarity between

the document and all current cluster elements. Consequently, a good

profile definition is crucial to the success of a clustered file.

Basically, a profile attempts to characterize all the documents in its

crown, that is, all documents reachable from it by descending paths.

Given a specific node, a profile is loosely described as a collection

of index terms found in those documents. Consider a node whose crown

is the document set C (to
1.

D
2''''

,D)
'

The following standard profile
n

definitions are of general interest:

1) Profile P1

Let Di I. (dii, di2,...,div) be a vector of unweighted index

terms representing the ith document. In particular, let

d
ij

.1 1 if term j is assigned to D
i
and d

ij
0 otherwise,

for j 1, 2,

P1 (1)11' Ple""Plv) DilfD211"'"n

simply denotes the terms in all clustered items. In other

words pij 1 if and only if there is at least one document

containing term ji no importance weighting is used.

S7

2) Profile P2

Using tho same document description, the vector

P2 (P21' P22"."132v)
01 02 4.'1" pn

ITI-12

is a weighted profile in which p2j is the number of clustered

items *- which term j appears. In this manner, P2 exhibits

document weighting.

3) Profile P
3

Let dij be the importance (weight) assigned to the jth term

in D. The profile

(P31' 1)32'1'133v) D1 D2 4.1"4. Dn

exhibits mterweightlag in the sense that pi3j is the total

importance assigned to term j in all clustered items.

The definitions begin with two different types of document keywords--

weighted and unweighted--and produce either weighted or unweighted pro-

files. Many retrieval systems using manual indexing do not use weights

because keywords are carefully chosen and weighting appears superfluous.

In the case of simple automatic indexing, information for computing mean-

ingful wtights may not be available. In either instance, P1 profiles

carry out the philosophy of no weighting and produce economical vectors

in terms of storage requirements. Although unsophisticatea; it should

not be surprising to find that P
1

is adequate for distinguishing'among

diSsimilar groups of cohesive documents (clusters). Litofksy uses a

modified fora of this profile in his work (7).

The P
2
profile starts with unweighted documents and introduces

weights to emphasizo terms which cause cluster formation. This defini-

tion is suitable when converting the unweighted documents of an existing

11111111IMINIMINIIMIll

(Is

.1

TTI-13

retrieval system to a clustered file organization. Hill (4) and Dattola

(9) both use forms of the P2 vector; in the latter case, rank value

weighting is used also.

Automatic indexing generally converts every major word to an index

term. As a result, many index terms are assigned to document and it is

useful to associate a weight with each term to indicate its importance.

In the collections used in this study, term frequencies within a document

are automatically assigned as weights. This idea is carried over to P3

profiles where a weight is the total term frequency in C. The SMART

system (10) and the work of Rutdn and Friedman (6) make extensive use of

P
3
profiles. At this point, it is possible to argue convincingly in

favor of eachprofile definition based on cost-performance, emphasis to

inner-document or intra-document properties, or sensitivity to cluster size.

Later, investigations consider each definition - -its weighting procedures,

term deletion, and update characteristics.

In a more theoretical treatment, each document is considered as a

point in v-dimensional space. An excellent profile would be the center

of mass of the clustered vectors, namely

p -Z D
cm n i

1

. iml

If the values of the vector matching function are independent of the factor

1

n
, then P

2
and P

3
profiles yield the same results as the center of mass

for their respective systems. This.condition holds for the cosine corre-

lation mentioned earlier, COS(Q,P)- However, for the cosine, the
IQ! IPI

Loomcentroid vector

ow

C

is a superior profile in the sense that it maximizes the average correla-

tion between itself and all elements of C (11), The difference between

P and P is a matter of a slight shift in emphasis on the terms con-
cm cv

tributing to the total correlation as evidenced by the following equations.

Di

COS(Q,Pcm) COS(Q,D)

ial

1
COS(ci,P0v) cos(taDi)

pi I oil + IDDnni I

In the first case, term multipliers are sensitive to vector magnitudes,

while in the second, case, each term has the same multiplier. Actual

differences in values are slight, however, since many documents with

similar properties are generally involved in the sums,

The following figures show examples of all profile definitions for

node 1 of the hierarchy shown in Figure III-1, Figure 111-2 depicts P1

and. P
2
profiles while Figure 111-3 shows P

3
vectors, In both cases, the

upper half of the drawings show profiles as they might actually be stored

on disk. The lower half shows the contributions to the total cosine

correlation made by a single match involving each term, As expected,

the P and
cm

P
cv

vectors produce almost identical contributions. It is

also observed that P
3

profiles generally have a larger range of weights

than P
2

profiles, As a result, terms of low weights contribute much less

to a correlation in P
3
vectors than in P

2
vectors. An opposite relation

1C0

1

Document

ITT-15

Stored Vector a itude

111 D1 (1909190909190909090)

112 D2 (0909190909191909090)

121 D3 00 0 1)(0 0 9 9 9 0 1 1 90, 9

122 D4 (0,0,0,0,0,1,0,0,0,1)

123 D5 (0,0,0,0,0,1,1,0,0,0)

Profiles P1 i. (1909190909191909091) IT

P2 .. (1909290909593,0,0,2)

P - (.20,09.40,0,011.0,.6090909.40) 67.72
cm

P ri, (.12909.2390909.63,.37,0,0,426) i0767
cv

Contributions of Term Matches to Total Cosine Correlation

Contribution Matching Term

Vector 1 2 3 4 5 6 7 8 9 10

.45 0 .45 0 0 .45 .45 0 0 .45

P211P2I
.15 0 .30 0 0 .76 .46 0 0 .30

pe./Ipcml .15 0 .31 0 0 .76 .46 0 0 .31

Pcv/IPcvl
44 0 .28 0 0 .77 .45 0 0 .32

Legend P1 D
1

vD2
vD

3
N'D

4
vD

5
D
1
+D

2
+D

3
+D +D
4 5

DP

cia

P ID I

Di

1

cv 5 i

Profiles Resulting from Unweighted Document Vectors

Figure 111-2

IIT-3.6

Document ; Stored Vector . Magnitude

111 Di = (1,0,3,0,0,1,0,0,0,0) 4.T.

112 D2 - (0,0,2,0,0,3,1,0,0,0) jr.14.

121 D3 sr (0,0,0,0,0,1,2,0,0,3) 6.7;

122 Dis, Is (00,00,00,00,0,2) 16.5

123 D M (01010,010,2,110,010) trc
5

Profiles P3 31:67

Pans. 478

P (.06A .28, ot ot .62, .25totot 27) 167F
cv

Contributions of Term Matches to the Total Cosine Correlation

Contribution
Vector 1 2

.39

.39

.36

Matching Term
6

0 0 .77

0 0 .77

0 0 .80

7

.31

.31

.32

8

0

0

0

9

0

0

0

10

.39

.39

.25

P3/11)31

Pcm/iPcml

Pcv/IPcvl

.08

.08

.08

0

0

0

Legend P3 D
1

+D
2
+D +D +D5

5

P D

cm

1
Di

Pcv 5 i.1 pil

Profiles Resulting from Weighted Document Vectors

Figure 111-3

1C2

111-17

hobis in the case of high weighted terms.

As illustrated, P2 and P3 profiles assign weights based on document

or term frequency. Doyle suggests an alternate profile which characterizes

a cluster by a vector of keywords whose weights are rank values (8). A

rank value is the difference between a base value and the rank assigned

to the term if all terms in the vector are ordered by decreasing frequency,

Such a profile is made by the following procedure.

1) Rank all vector terms by frequency; that is, the

most frequent term has rank 1, etc. Terms with

the same frequency share the same rank.

To the it
h
term, assign the weight vi = b-ri where

b is a base value (constant) and r is the rank

given to the term in step 1).

The base value is a pre-selected constant chosen large enough to insure

that all vi are positive in all profiles. Although weights are based on

frequencies here, it is easy to see how the rank value technique could

be applied to almost any weighting scheme.

Rank value profiles exhibit two major differences from the vectors

considered earlier. First, weights are derived from frequency ranks

rather than frequency counts, although these tlro are somewhat related

(12). As a result, the weight range in a typical vector is reduced con-

siderably. The reduction is greatest when many documents are considered

and. the summed frequencies would become quite large. The importance of

a small weight range is the reduction in the range of contribution values

associated with vector match functions. The second difference is that

the constant base value and subtraction process guarantee that all vectors

103

111-18

have the same high weight rather than the same low weight. This also

decreases the range of contribution vaues; in fact, the higher the base

value, the smaller the range, Figure III-4 shows the application of rank

value weighting to the P2 and. P3 profiles considered previously. Two

base values, 5 and. 10, are used. Both the use of ranks and the increase

in base value are observed to decrease the range of contribution values

from those in the previous example.

An forms of profiles mentioned here as well as some variations are

the basis for experiments in Chapter V. In particular, P P and P

are evaluated under actual search conditions with and, without rank value

weighting. Each of the major differences of rank value vectors is exam-

ined as well as several altogether different weighting_procedures,

Fir_j,ys_sector len h andia/1 Iternal processing are considered in some

detail. This section simply presents the standard and. rank value profile

definitions and provides several examples of their application.

it, Search Strategies

The search procedure for a clustered document collection can be

described as a series of correlations and expansions. Specifically, a

query is compared with all nodes on the first level of the hierarchy

(correlations) and one or more of the highest scoring nodes are replaced.

by their sons (expansion). This cycle is repeated until the document

level is reached. and items are ranked for final output. Narrow searches

expand only a few nodes per level and retrieve the most promising docu-

ments rather quickly. They provide an inexpensive search with high

precision and. low recall. Broader searches expand several nodes per

1(

P Profile using Rank

Original Profile

Frequency Ranks

Base Value = 5 .

Base Value = 10

Value Weighting

P
2
= (,1,0,2,0,0,5,3,0,0,2)

F I

4 3 1 2 3

II
P
r
= (1,0,2,0,0,4,3,0,0,2)

P
r
1= (6,0,7,0,0,9,8,0,0,7) 2r1T9.

Contributions of Term Matches to the Total Cosine Correlation

Contribution

Vector

P2/ IP21

PI Pr I

Pr'/IPel

1 -2

15 0 .30

.17 0 .34

.36 0 .42

Matching Term

5

0 0

0 0

0 0

P
3

Profile using Rank Value Weighting

Original Profile

Frequency Ranks

Base Value = 5

Base Value = 10

6 7 8

.76 46 0

.69 .51 0

.54 .48 0

P = (1,0,5,0,0,10,4,0,0,5)

3 I I I 1

4, 2 1 3 2

P
r

= (1,0,3,0,0, 4,2,0,0,3)

P
r

(6,0,8,0,0, 9,7,0,0,8)

9 10

0 .30

0 .34

0 .42

Magnitude

ViEF

6-94

dontributions of Term Matches to the Total Cosine Correlation

Contribution

Vector 1 2 3 4

P /IP
3

Pri1Pr

Prdli3r°1

.08

.35

0

0

0

.39

.41

.47

0

0

0

5

0

0

0

6 ? 8 9 10

.77 .31 0 0 .39

.64 .32 0 0 .48

.53 .41 0 0 .47

Rank Value Weighting Applied to Standard Profiles

Figure 111-4

. I

level and secure higher recall, but at lowr precision. Thus, by vary-

ing the search strategy, it is possible to obtain a desirable cost -

performance tradeoff: users wanting a small amount of relevant data

have quick, economical searches while users wanting more comprehensive

searches pay and wait accordingly.

There are a number of variations of this general procedure. Forward

search strategies allow only one opportunity to expand nodes on each

hierarchy level, thereby constantly proceeding toward the documents. Some

systems allow backtrackim; that is, restarting the search on a upper

level when an earlier expansion turns out poorly. The SMART system, for

example, maintains a record of all nodes examined and in each instance

expands nodes with the highest correlations. Unless special steps are

taken, backtracking occurs in the natural course of events. A plunging

strategy is a combination af an extremely narrow forward search followed

with backtracking. Initially, only one node on each level is expanded,

until the items in the first document cluster are examinei and ranked for

possible output. Next, a test is applied to determine whether the search

should be halted, backed up one or more levels and continued, or com-

pletely restarted. The test might involve statistical operations, showing

documents to an on-line user, or other criteria. In any case, the search

involves narrow plunges to the bottom of the hierarchy. Generally,

strategies which include backtracking are worthwhile only if there is a

loose, flexible criteria for deciding how many nodes are expanded on each

level. For example, it is useless to backtrack if an a_priori decision

is made to expand a fixed number of clusters. In.this case a forward

search strategy serves just as well.

106

111-21

Finally, there are a number of problems in measuring query-profile

similarity. Consideration must te given to the influence of cluster size,

hierarchy level, profile length, and the number and type of matching index

terms. The experiments in Chapter V deal with these and other factors

since they relate to profile construction.

Fcn: the most part, SMART's cluster search scheme is appropriate for

this investigation, since the experiments focus on profile definition and

behavior rather than search strategies. SMART provides many options for

controlling the scope (broad or narrow), strategy (forwari or backtrack),

amiguaching procedure; additional details are given in Chapter IV and

in a pager by Williamson, et al (10),

5. Updating

Additions to a clustered file are mad taendin a new document

into the cluster with which it Mb the highest similarity, The update

process uses a new document as a request and makes a very narrow search

of the file, recording each node that is expanded (update path). The new

item is stored in a data or overflow area (see Chapter II) and logically

linked to the profile hierarchy, If structured keys are used, the new

item's key is simply one more than the key of the last document already

in the cluster; linkage is established by increasing the degree of the

parent (see Section III.3,A), This blending update procedure is adequate

for a time, but it subjects the hierarchy to the changes illustrated in

Figure III-5a, In the case of cluster A, its profile continues to charac-

terize both the original and new information; that is, it remains at the

center of the cluster, The updated version of cluster B shows polarization

1G7

A

Original Clusters Updated Clusters

a) Cluster Updating without Profile Modification

Original

Clusters

Updated

Clusters

b) Cluster Updating with Profile Alteration

Legend

111-22

After

Re-Clustering

A document 0 profile

Figure 111-5

111-23

into distinct regions. Finally, cluster C is "enlarged" by the addition

of a document which does not really belong in any existing cluster, but

which fits beet in C. In the last two cases, the profiles no longer

accurately represent their respective clusters and to some degree the

entire document classification is no longer a logical division of the

collection. Tbese intuitive arguments simply point out that in all

probability file updating involves two steps:

1) alterations to each profile on the updating path and

2) final incorporation of the new document into a

lowest level cluster.

EVen if profiles could be altered in an optimal manner the hierarchy

continues to degenerate. Figure 11I-5b shows an exanple in which two

clusters become polarized with addition of new documents. That is, their

profiles move to one end of the cluster to represent the majority of

documents, and leave the other items virtually unretrievable. No profile

can adequately represent these clusters for searches. FUrthermore, the

example indicates the original classification is no longer a logical

division of the data, In light of the new documents three clusters are

preferable to the original two clusters. The cause of these problems is

the use of a static hierarchy structure to represent a dynamic document

collection. Clearly, new items change the character of the data base, and

the hierarchy structure must change as well as the profiles. The solution

to these problems re:quires some type of re-clustering whenever the file

enlarges enough to cause a significant drop in retrieval performance

measures,

PCs

ITT-24

Tbe investigation of the uAdating _process has two aims: 1) to

examine profile alteration procedures to distinguish those which are

effective and 2) to determine how quickly the hierarchy degenerates.

That is, to find how quickly precision and recall decrease with increasing

file size and thereby obtain an idea of when the file must be re-clustered.

The experiments examine three options for altering profiles. The first

completely re-makes the profile by re-weighting and adding new terms, and

writing the new (probably longer) vector into another part of storage.

This process results in an accurate profile, but requires a large amount

of work and fragments whatever organization is used in storing profiles.

The second option simply associates the new document with the lowest level

node and leaves all profiles unchanged. A third option, useful with

weighted profiles, alters only existing profile terms and changes their

weights to reflect the addition of new documents. No new terms are added,

thereby maintaining the original vector length and the storage sequence,

since the new profile exactly over-writes its previous version.

With an increasing number of additions to the file, the quality of

the classification decays and it becomes desirable to re-cluster the data.

Unfortunately, a complete clustering is an expensive procedure and cannot

be undertaken too frequently. A most promising technique is partial re -

clustering, that is, re-classifying only those portions of the hierarchy

that experience significant growth. Under most circumstances many clusters

receive few additions and therefore might survive for considerable time

without re-organization. More volatile subject areas need frequent revi-

sion. In order to implement partial re-clustering, the profile for each

node should include the number of documents in its current crown as well

110

111-25

as the number of documents added since the last classification (update

count). Whenever the ratio of update count to crown size exceeds a

specified threshold, all items beneath the node are re-clustered, the

update count it reset to zero, and a new update cycle begins. The experi-

ments conducted in Chapter VII investigate parameters applicable to this

procedure.

The addition of new documents to a clustered file also increases

search time since a new item is stored in an overflow area away from the

rest of its cluster. Consequently expanding an upper level node may in-

volve several disk accesses to fetch all the documents in its crown. The

effort can be reduced, however, by re-writing the file periodically so its

physical and logical sequence are the same. Although there is some

expense involved, this procedure consists of moving data only, not re-

structuring the file. For this reason, this protaem is not considered in

detail in later chapters.

Another problem in large data bases is the handling of records which

are old and essentially inactive. Nearly all information loses value with

age; in document retrieval systems, this means that fewer users ask for

or accept older documents even if they are relevant. For this reason it

is reasonable to retire older items to archive storage--magnetic tape, for

example. One way to accomplish this is to make periodic scans of the

hierarchy and to remove all documents beyond a certain age. Naturally

profiles must be adjusted to reflect deletions, and partial re-clustering

may be advisatae in cases of significant alterations. The retired docu-

ments are maintained as a serial file for retroactive searching. The

undesirable features of this scheme are the need for a complete file scan

1 1

111-26

and the loss of information in making the serial file (i.e. the cluster

relationships).

Another solution to the problem of aging files is the generation of

time dependent clusters. To explain, assume that a 2 year period is chosen

and that all information obtained in that period is grouped into lowest

level clusters. Let the rest of the hierarchy be made by grouping

cluster profiles in the usual manner. The result is a collection divided

by subject and publication period (on the lowest level only). Updating

occurs only in clusters of the appropriate period. This idea has several

advantages. First, old information is easily identified and removed for

storage elsewhere. Second, users limiting queries to recent material are

able to eliminate search time spent on unwanted documents. Third, the

structure of retired information is retained since entire clusters and

their profiles are removed intact. The profiles can still be usei as a

directory so the archive file merely becomes an extension of the disk.

Fourth, vocabulary changes might be implemented across publishing periods

by associating a dictionary with each period. For example, suppose a

thesaurus is used in the indexing process and when the period ends, the

thesaurus is reviewed and changed if necessary. Instead of re-indexing

all previous documents using the new thesaurus, the old thesaurus (or a

list of changes from new to old) is stored along with all other data for

that publishing period. As a result, only retroactive searches covering

that period must have their queries indexed in terms of the old vocabulary.

New documents and requests for more current information are processed

using only the newer thesaurus and the data for the new publication period.

Because the test collections are not large enough, it is not possible to

111-27

accurately investigate questions relating to aging files and vocabulary

changes. This discussion is included for completeness and to point out

an area in need of further research.

6. Hierarchy Storage

A. General

Search speed is one of the primary goals of any file organization.

For a clustered document collection stored on disk and accessed by the

indexed sequential method, search speed depends on the management of disk

space and the storage scheme for documents and profiles. The character-

istics of the disk device (Table I-1 for the IBM 2314) and the amount of

system traffic (20) also influence retrieval speed; however, these factors

are rarely under control of a system designer and, therefore, are not

considered in detail here. In this researcht managemera t. of disk space

refers to the allocation of areas for index data and overflow u oses

within the indexed sequential access method. Lum, et al (21) consider

many of these options including

1) number of indexes and their placement;

2) placement and blocksize of data4

3) amount and placement of overflow (cylinder overflow,

overflows located on the same or separate disk pack).

In the experiments related. to hierarchy storage, it is assumed that any

master and cylinder indexes are core resident as well as the track index

for the current cylinder. Consequently, a search which crosses cylinder

boundaries requires an extra read to fetch a new track index. Overflow

space is limited to 10% of the disk capacity, allocate as 2 tracks per

1.13

111-28

cylinder.

The interesting questions concerning hierarchy storage deal with

the method and. order of record storage. This chapter introduces the con-

cept of structured keys for identifying and linking nodes and suggests

three remmi storage sequences (subtree, heir-filial, and level). To

inildally build the file or to re-organize it, records are sorted by key

value, taxmked, and writtan onto prime data areas of the disk. If each

cluster completely occupies an integral number of tracks, there is no

wasted space and each access ottains the maximum amount of useful data.

In practice, cluster sizes vary a great deal and it is necessary to trade

retrieval speed for wasted space. In each tradeoff, there are two opposing

ideas to consider. The neighboring concept holds that minimal I/0 delays

occur if records in a filial set occupy the minimum number of disk tracks,

Filial limms are those accessed and processed together such as documents

in the same cluster, sons of the same hieralmhy node, and all profiles on

level 1 (sons of a dummy node on level0). The splitting concept holds

that the amount of wasted di.sk space is minimized only by splitting records

and filial sets across tracks to insure the use of every byte of storage.

Obviouslar minimizing the search time wastes disk space and vice versa,

The following storage algorithm attempts to maintain a time-space tradeoff

by using a threshold for wags-bed disk space, It assumes full track block-

ing (one physical record per track) and stores items in a specified

sequence.

B. A Disk Storage Algorithm

The following disk storage scheme is used. in the experiments in this

111-29

research. As mentioned above, it attempts to maintain a balance between

space waste and search time. It requires that the order of record stor-

age be known; that is, which record is first, which is second, etc. As

items are stored, the necessary indexes for indexed sequential access are

inserted whenever a cylinder boundary is crossed, The algorithm consists

of three steps repeated for each filial set of records.

1) Let T le track capacity,

0 so threshold for wasted. track space,

E es remaining space on the current track, and

total size of all records in the current filial

set, F.

2) Compute X n. = number of tracks to store F if a new

track is begun and

S-E
number of tracks to store F if the

present track is continued.

Store F taking the actions specified below

Case A Case B Case C

Conditions X'sq X'>X
Etc. 0 .

X°-X
E >8

.

Actions

Starting storage

location

current

track

new track

(insert ISAM

index if re-

quired)

current

track

Results

Wasted. space
.

Accesses to

fetch F

,

0

X

E

X

0

X + 1

115

TTI-30

The frequency of cases B and C depend heavily on (); the frequency of case

A is influenced by the size of the average filial set. After storing

the entire file, the important evaluation criteria are the total amount

of wasted space and the number of filial sets requiring an extra access

(case C),

C. Orders for Hierarchy Storage

The final storage consideration is the order in Lich records are

placed on disk. Of the three sequences mentioned earlier (subtree, level,

and heir-filiztl) and illustrated in Figure III-1, only two are really

viable, Subtree order is easily discarded because it locates filial

records in widely separated disk aveas Both the level and heir-filial

sequences place filial records in close proximity. Order by level stores

all nodes on a complete hierarchy level as a contiguous set of physical

records. This scheme is most advantageous for broad searches since many

nodes are expanded and their proximity reduces the motion of the access

arm, As a bonus, order by level allows a hierarchical arrangement of

memory devices, For example, the more active, upper level nodes might be

allocated. to a drum while the less active, lower level nodes reside on

moveable head. disk, Heir-filial order provides for rapid narrow searches

since the sons of a node are generally neaxer their parent than with

order by levels, However, I/0 time for broad searches is high since

unrelated profiles on the same level are separated by a moderate distance.

Consequently, if several unrelated nodes on the same level are expanded,

the disk arm jockeys back and forth among these locations for the rest of

the search,

If search strategies are of the forwird type, then choice of the

optimal storage sequence appears to hinge upon the frequency of narrow

and broad searches. This assumes, however, the existence of realistic

strategies which take advantage of any economics offered by either scheme.

The e riments in Cha ter VII consider the ap licabilit of the level

and heir-filial sequences for forward search strategies. The storage

algorithm described earlier is used to place records in a simulated file

Vriar to actual request_processing. An additional outcome of the tests

is an estimate of the I/C) activity involved in a cluster search and its

relation to recision-recall jerformance.

7. Qmery Clustering

To this point, the classification procedure has been applied only

to document vectors, Howeimmi, Sny type of data can be clustered, and

query clustering has teen suggested as an alternate way of partitioning

a document collection (13, 14). Implementation of query clustering re-

quires saving requests and, possibly a record of their relevant documents.

Using this data, the query vectors are clustered just as though they were

documents! therefore the profiles in the resulting hierarchy are combina-

tions ofquery terms. Secmcd, documents are associated with the lowest

level query clusters using one or more of the following schemes.

a) All documents relevant to one or more queries of a

query cluster are associated with that cluster,

b) All documents highly similar to a query cluster profile

join the corresponding cluster.

TII-32

c) All documents highly similar to one or more queries of

any query cluster join that cluster.

Documents not meeting any of these criteria ate clustered in the standard.

way. The search process using a query generated hierarchy is no differ-

ent than with document clusters. The success of query clustering depends

on the fact that new requests are more likely to be similar to previous

requests than to documents. In view of the large difference between

speaking and writing vocabularies, it appears plausible that users request-

ing similar information may phrase their questions similarly so that the

success of one user can be passed onto another.

Further, ty accumulating requests over long periods of time and by

constantly placing relevant documents in the proper cluster, it may be

possible to assimilate vocabulary changes in the system on a gradual basis.

Early tests with query clustering have shown the technique to be promising,

bui the results are too few to be very conclusive.

Finally, comes the idea of combining query and document clusters in

the same system. Keen (15) describes a search procedure which tries query

clusters first and then uses document clusters if the initial search fails

or leaves the user unsatisfied. However, there is no real reason to main-

tain two distinct hierarchies. The nodes of both trees could be combined

and searched at the same time. The combined system might be more effective

than either one used separately.

8. Alternate Uses of the Hierarchy

The expense of various classification procedures is indicated in

118

Section 111.2. Whatever its cost,

1) the time saved in

compensates for

2) special service

111-33

clustering is justified only if

earches over the hierardny lifetime

the clustering expense or

s or advantages are apparent.

In the second instance, costs are spread among several applications or are

justLtied by increased us r satisfaction. This section discusses supple-

mentary uses of a cluster hierarchy and introduces a set of experiments

on automatic query alt

could not be develop

collection makes t

possible otherwi

A. Sugge

Because

partition

is to bia

extent,

Most

alt

eration. It is not the case that these applications

ed using different methods, but having a clustered

hem more effective or more economical than might be

e.

sted Uses

of the classification process, the hierarchy provides a

of the collection which is far from random. The aim, in fact,

s clusters in favor of retrieving relevant information. To some

this requires grouping documents with.similar subject content.

of the alternate hierarchy uses--browsing, query expansion and

eration, SDI, and content analysis--benefit from this type of division

o.

Viewed from its top, the hierarchy first separates literature into

general. and then more specific areas on successive levels. This is a

natural structure for allowing on-line users to browse among nodes, seek-

ing new areas of interest and discovering new relationships among familiar

topics. Depending on the mode of operation, profile terms might be dis-

played along with substitutes, related terms, indicators of importance,

pointers to related nodes, etc. Such information might be used to directly

III-314

access documents or to refine the keywords used in the current query

formulation.

A number of systems employ retrieval thesauri to broaden requests

by replacing or supplementing keywords with class descriptors, thereby

providing more opportunities for keyword matches. Current research is

aimed at automatic thesaurus construction in lieu of the manual methods

used previously (16, 17). In many respects, thesaurus construction is

simply the process of finding highly co-occurring terms and making them

into a single entity. Since clusterei documents share a common vocabulary,

the cluster is a natural starting place for identifying initial term

classes (18). In this way the most obvious and important local associa-

tions are recognized first and tested later for their gldbal applicability.

Some of the problems caused by high frequency terms are lessened by this

procedure.

Syntactic and linguistic analyses also benefit from the fact that a

cluster contains homogeneous subject matter. In a sense, the information

within a cluster provides a context for interpreting meaning, assigning

parts of speech, resolving ambiguities, etc. Since current techniques

seem to work best in narrow subject areas, again it is appropriate to

apply them aftAer documents are placed in individual clusters.

Procedures for selective dissemination of information (SDI) might

also benefit from a clustered collection. Generally these systems store

user interest profiles and compare them with all incoming documents. When

a profile matches a document, notification is sent to the user so that

he is made aware of the document's existence. With a clustered file, a

ITT-35

user's name is associated with one or more nodes of the hierarchy. He

receives a notification each time one of his nodes appears on the update

path of new documents. An advantage of this procedure is that new items

are not compared with all user profiles. In addition, names can be

associated with upper and lower level nodes, thereby indicating general

or specific interests. Finally, only a slight amount of extra work is

required to provide SDI since all the comparisons must be made anyway in

order to update the data base. To identify which nodes are associated

with a user, his original interest profile is used as a query and a file

search is made.tO identify nodes which correlate highly with it. After

adding his name to lists for the indicated nodes, the profile can be

discarded and SDI proceeds automatically.

B. Query Alteration

Tenn classifications have been used by a number of researchers in

attempts to improve performance by adding related index terms to documents

and requests (16, 17, 19, 22). In some of this work, statistical methods are

employed to determine the best substitute for each vocabulary term. Then

the base terms in individual vectors are augmented with substitute terms

which are used in a wide variety of ways during matching. For example,

substitutes might be employed in either requests or documents, or both.

Or matches involving substitutes might be counted only if there are

matches on their corresponding bases. Or matches might have different

emphasis according to whether they involve base or substitute terms. With

the proper options, an impressive degree of success has been achieved

with these techniques in unclustered collections.

121

IIT-36

One difficulty in applying these procedures to large collections is

the amount of computation for obtaining the base-substitute pairs, for

example, preparing a similarity matrix. In this research, a set of sub-

stitutes is associated with select profile terms for each node in the

hierarchy. Specifically, base-substitute pairs are profile terms which

have a maximum term-term correlation in those documents beneath the node

under consideration. For the lowest level nodes, only a few terms and

documents are involved and similarity matrices are easily calculated and

stored. On upper levels, the required matrices are obtained by combining

those on lower levels. These techniques greatly decrease the amount of

effort in obtaining substitutes, especially.when minor profile terms are

removed from consideration.

A fUrther bonus from a substitute structure within the hierarchy is

its close association with the document collection. The broad substi-

tutes on upper levels are applicable to the entire collection while those

on lower levels are concerned with local associations. Each set of

substitutes is applied only as query searches enter the appropriate portion

of the hierarchy. On any particular level, the substitutes brought to

bear may be those from parent nodes (broader terms which expand the

search) or those in the current profiles (narrower and more discriminating

terms). In either case, the request expansion is temporary in the sense

that a new substitute set is applied as the search descends the hierarchy.

In addition, there are two general ways of relating base and substitute

terms during the vector matching process (TIED and UNTIED options). TIED

substitutes have a conditional presence in the expanded vector in that they

enter the correlation process only when there is a match on the corresponding

122

111-37

base. In a sense, their matches are "tied" to base matches. With the

UNITED option, bases and substitutes are treated independently and both

are always available for matching, much as in traditional query expansion.

Finally, different emphasis may be assigned to matches on base terms and

those on substitute terms.

Figure 111-6 illustrates these concepts on a small structure--

showing the profiles, base-substitute pairs, and the use of substitutes

in searching. Not all profiles contain the same terms, so naturally the

substitute sets differ for each node. The pair (eta) is always present,

other pairs occur only once or twice. Some terms have the same substitute

on both levels while others change substitutes. In the example, the

scoring fUnction is simply the number of matching terms. Without the

use of substitutes, the request matches profiles P' and P" equally.

Using substitutes from the upper level, the query expands to (a,b,dcg,f)

and the matching favors node P". Note that in this case, the tied

option neglects the match on term g since there is no match on its base d.

Two versions of the query are formed when substitutes on the seme level

are used. Again node P" is favored because of the extramatch on term a

due to its close association with term f.

The experiments in ,Chapter VIII restrict themselves to the TIED

matching option. The tests are further divided into those for increasing

recall by usin substitutes from previous levels (parents) and those for

increasing.,_precision by using the substitutes for profiles on the current

level. Several sets of substitutes are made with varying degrees of

frequency restrictions applied to the terms. In all cases tile purpose of

123

Query vector

Parent node

Profile P = (a,b,c,d,e,f,g)

Base-substitute pairs \\\
(deg)

(e,a)

Q u (agdaf)

Sons

Profiles P' = (a,c,d,e)

Base -substitatte

pairs c,d

eta

P" = (a,b,e,f,g,h)

(a,b)

f,a)

,h)

IIT-38

Source of

Substitutes

Expanded

Query

Matching

Option

Matching Score

P'

None (a,d,f) None 2 2

Upper levels (a be dgE tf) Tied 2 3

Node n Untied 2 4

Current level (a,c,d,f) Tied 3
Node n Untied 3

(a,b,d,f,a) Tied 4
Untied

Note: Substitute terms are underlined, base terms are not.

Use of Term Substitutes in Cluster Searching

Figure 111-6

124

the experiments is to show additional uses for the profile hierarchy and

to help justify the expense of constructing a clustered file.

9. Summary

This chapter presents a general, but comprehensive review of the

construction, use, and maintenance of a clustered file. Clustering methods

are classified as generative or divisive and according to the amount, of

work they involve. Dattola's algorithm is explained in some detail since

it is used extensively in the research. The description of hierarchy

formation includes cluster size and overlap, linkage among nodes, and

profile definition. In particular, the standard profiles and rank value

profiles are defined, illustrated, and. compared. Next, various search

strategies are explained followed by some ideas on how the hierarchy

should be stored in order to achieve a fast search. In discussing updat-

ing, it becomes apparent that file maintenance involves changes to profiles

as well as periodic partial reclustering as the collection grows. The

possibility of query clustering is introduced as another way of achieving

a viable document classification. The comments on browsing procedures,

thesaurus construction, SDI, etc, relate alternate ways of using clusters

once they are formed. Of particular interest is automatic query altera-

tion based on term-term associations found in each node's profile.

References

111-40

1. G. Salton, Automatic Information Organization and Retrieval, McGraw-

Hill, Inc. , New York 1968.

2. R. R. Sokal, P. H. A. Sneath, Principles of Numerical Taxonomy,

Freeman, 1963.

3. R. Casey, G. Nagy, Recognition of Printed Chinese Characters, IEEE

Transactions on Electronic Computers Vol. EC-15, No, 1, February

1966.

D.R. Hill, A Vector Clustering Technique, Proceeding of the FID-IFIP

Conference on Mechanized Information Storage, Retrieval, and Dissemi-

nation, North-Holland Publishing Company, June 1967.

5. D. B. Johnson, J. M. LaFuente, A Controlled Single Pass Classification
Algorithm with Application to Multilevel Clustering, Report ISR-18

to the National Science Foundation, Department of Computer Science,

Cornell University.

6. H. P. Friedmen, J. Rubin, On Some Invariant Criteria for Grouping

Data, Journal of the American Statistical Association, December

1967.

7. B. Litofsky, The Utility of Automatic Classification Systems in

IS&R, Doctoral Thesis, University of Pennsylvania, 1968.

8. L. B. Doyle, Breaking the Cost Barrier in Automatic Classification,

SDC Paper SP-2516, July 1966.

9. R. Dattola, Experiments with a Fast Algorithm for Automatic Classifica-

tion, Report ISR-16 to the National Science Foundation, Department

of Computer Science, Cornell University, September 1969.

10. D. Williamson, R. Williamson, M. Lesk, The Cornell Implementation

of the SMART System, Report ISR-16 to the National Science Founda-

tion, Department of Computer Science, Cornell University, September

1969.

11. J. J. Rocchio, Document Retrieval SystemsOptimization and Evalua-

tion, Harv:-...rd University Doctoral Thesis, Report ISR-10 to the National

Science Foundation, March 1966.

12. G. IC. Zipf, Human Behavior and. the Principle of Least Effort,

Addison-Wesley, Cambridge, Mass., 1949.

13, V. R. Lesser, A Modified Two Level Search Algorithm Using Request

Clustering, Report No. ISR-11 to the National Science Foundation,

Department of Computer Science, Cornell University, June 1966,

14, S. Worona, Query Clustering in a Large Document Space, Report ISR-16

to the National Science Foundation, Department of Computer Science,

Cornell University, September 1969,

15, E. M. Keen, Search Matching Functions, Report ISR-13 to the National

Science Foundation, Department of Computer Science, Cornell Univer-

sity, January 1968,

16. M. B. Lesk, Word-Word Associations in Document Retrieval Systems,

American Documentation, January 1969.

17. K. S. Jones, D. M. Jackson, The Use of Automatically-Obtained Key-

word. Classifications for Information Retrieval, Information Storage

and Retrieval, Vol. 5, pp 175-201, 1970.

18. R. Dattola, D. Murray, An Experiment in Automatic Thesaurus Con-

struction, Report ISR-13 to the National Science Foundation, Cornell

University, January 1968.

19. K. S. Jones, E. 0. Barber, What Makes an Automatic Classification

Effective?, Technical Report, University Mathematical Laboratory,

Cambridge, England, 1970.

20, J. Abate, H. Dubner, S. Weinberg, Quereing Analysis of the IBM 2314

Disk Storage Facility, JACM, Vol. 15, No. 4, October 1968.

21. V. Zum, H. Ling, M. Senko, Analysis of a Complex Data Management

Access Method by Simulation Modeling, Information Services Depart-

ment, 1114 Research Laboratories, San Jose, California, 1970.

22, K. Sparck Jones, Automatic Keyword Classification for Information

Retrieval, Butterworths, 1971.

Chapter IV

The Experimental Environment

3., Introduction to the SMART System.

The principal tool used in this research is the SMART information

retrieval system at Cornell University (1, 4). By virtue of its modular

design and. extensive facilities for gathering evaluation statistics,

SMART is more than a simple document retrieval or text processing system.

In reality, it provides a laboratory environment for testing the effective-

ness of content analysis methods, search strategies, file organizations,

end on-line procedures. The system makes available several static docu-

ment collections with corresponding query sets and a wide variety of

processing methods and controlling parameters. Experiments are generally

carried out by changing a single variable and making pairwise compararisons

between retrieval runs. Some types of experiments suffer because there is

no actual user population. However, the advantages of reproducible re-

sults axmi a completely controlled envixahMent more than compensate for

this in many cases.

A great deal of the SMART evaluation ic based on retrieving user-

specified relevant documents. For the most part, the author of each

request has carefully examined the collection and identified items which

answer his question. These relevance judgments are recorded and used as

a standard for measuring the quality of output from experimental tests.

Typically, the system correlates a request vector with all or part of a

document collection and ranks items in order of decreasing similarity;

that is, in the order they are to be retrieved. Using the relevance

TV-2

judgments, the output is scored according to how many relevant are found,

at what rank positions, etc. Averaging performance measuns across an

entire query set provides at least one basis for comparing retrieval

methods. There are a number of problems with this evaluation, but its

strongest point is that the measures of retrieval quality are based on

documents that requestors previously designated relevant and not some

internal Criterion.

In the usual case, SMART automatically extracts the information

content of a natural language document or query and represents it as a

vector of weighted concepts. A concept is simply a numerical identifier

for a word, word stem, or phrase that actually occurs in the text. The

weight reflects the semantic importance of the concept and generally

increases in proportion to the frequency of occurrence. Figure IV-la is

a schematic of a vector of this type. The stored representation of a

document is a condensed version of this vector containing only concepts

with non-zero weights and augmented by header information and a small

piece of retrieval data (Figure IV-lb),

queries, documents, and profiles all have similar internal formats.

Any of these items could be considered a vector is an m-space, having

one dimension for each vocabulary term. Given two such vectors--a

document and a query, a number of functions might be used to measure

their proximity in space and hence the desirability of retrieving the

document. Experiments with SMART show that the cosine of the vector

angle is a rather good.measure for detecting relevance, and this function

is used extensively in this research (See section II.2.0 and Figure IV-lc).

D (w
1, 2'

w)

Weight assigned to concept Ci

(120,

'Hon-occurrence of concept C2

a) Document/query vector

r

Head Retrieval

Data

I c/w ... c/w

300

Characters

b) Stored Data Structure

Correlation Function

COS(q,D)
Q.

lip)!

q
i
di

2 1 1 [2 IL- qi

Retrieve D if COS(Q, W.< K g. cutoff

c) Document Space Model

Figure IV-1

180

With the cosine similarity function, the retrieved items lie within an

m-dimensional cone swept about the query vector. The half-angle of the

cone is COS
-1

(K), where K is the cutoff established to distinguish

retrieved and non-retrieved documents.

2. The Mita Collections

The collection used in this study consists of the abstracts for

1400:aeredynamics articles and their corresponding 225 requests with

relevance judgments. Texts for both documents and queries are those used

by Cleverdon's Aslib Cranfield Project (2). The SMART word stem analysis

procedure was.applied to the text in order to obtain search vectors.

Specifically, each item is indexed by

1) deleting words found on a restriction list,

2) reducing morphological forms of the same word to their

common stem, and

3) .weighting each stem according to its number of

occurrences.

The restriction list consists of approximately 360 prepositions, pronouns,

conjunctions, and auxiliary and common.verbs (See Appendix A). The auto-

matic stemming procedure confounds words ending with common Suffixes while

taking into account doubled final consonants, changes of z to i, and the

removal of silent e's. This processing results in a vocabulary of 5000

words with a rank-frequency distribution similar to that of the well-known

Zipf curve.

For later reference, the distribution of document and query lengths

is shown in Figure IV-2. In this context the length of a vector refers to

131

30

20
IMINEMI

% of Query Collection

Average Query Length 8.9

Standard Deviation 3.4

10 20 30 40 50 60 70 80 90 100

Number of Index Ttrms

a) Distribution of Lengths of the 225 Cranfield Queries

%of Document Collection

20

15

10

5

Average Document Length 53.6

Standard Deviation 23.1

10 20 30 .

50 60 '70 80 90 100

Number of Index Terms

b) Distribution of Lengths of the 1400 Cranfield Documents

Figure IV-2

TV-I;

its number of non-zero elements; that is, the number of index terms

assigned to the corresponding text. Understandably, documents are

longer than weries, averaging 54 terms as opposed to 9 for queries. A

number of documents have in excess of 100 terms, The distribution of

weights is just as important as length. Within documents, term frequen-

cies range from 1 to 27 occurrences. A great many terms occur once, a

smaller number twice, and so on; the distribution appears to be almost

,Poisson. Queries differ markedly in that 97% of all terms have unit

frequencies within their vectors and the other 3% occur only twice. As

it is, query terms might as well not be weighted according to frequency

at all. These results indicate that users write short specific requests

'and omit badcground material that might really'be helpful. This may be a

genuine user preference or because instructions are not given to the

contrary.

A final statisticdto report is the distribution of relevant docu-

ments for each query (Figure IV-3). With an average of 7 relevant items

per question, the collection generally is 1.2. Using all the averages

mentioned so far, the typical query contains 9 terms of the same weight

and aims at retrieving 7 relevant documents indexed with 54 concepts

apiece. Obviously the task is a hard one, for even if all query terms are ,

matched a document might have a cosine correlation of only 0.41. Under

these conditions, random keyword matches are expected to have a noticeable

influence on performance. Longer request formulations would help this

situation, but unfortunately users do not seem to supply them on their

own accord.

133

40

30

Number of queries

With R relevant documents

20-

10

Average Relevant/query 7.2

Standard Deviation 5.4

IV- 7

10 20 30 40

R, Number of relevant documents

Distribution of relevant documents

Cranfield Collection, 1400 Documents, 225 Requests

yigure 1V-3

TV=8

3. The Generated Hierarchies

Three cluster hierarchies ware produced for the Cranfield documents

using the Dattola classification procedure (3). All consist of three

levels--two for profiles and one for documents--but their clusters differ

greatly in size and overlap. Hierarchy 1 is the primary test case for

this study; the others are used to confirm selected test results. Table

IV-1 lists the properties of each hierarchy; in order to interpret this

data, a few definitions will be reviewed. The crown of a node is the

number of documents reachable from it along all descendant paths. For

a particular query, a node is relevant if and only if at least one rele-

vant document is included in its crown. The values reported in the table

are the average number of relevant nodes per level. Finally, overlap is

defined as the ratio of the total number of leaves to the collection size

(minus 1,0 and expressed as a percent).

The first two hierarchies are designed so that each document cluster

fits onto a single disk track (approximately); the third allows about

two clusters per track. Comparing Hierarchies 1 and 3 in Table IV-1,

both have about the same overlap and. node degrees, although the latter

contains neaxly twice as many nodes, Hiexaxchy 2 has much more overlap,

but only a few nodes on level 1 (with high degrees). As a result, its

first level prattles characterize 450 documents (indirectly) rather than :

50 or 100 as in the other cases.

.
The number of relevant nodes per level provides a superficial evalua-

tion of Dattola's classification procedure without regard to searching.

The table shows that level 2 clusters confine relevant documents to a

IV- 9

Property

1

Hierarchy

2

Z4mml 1 (Profiles)

Number of nodes 13 6 28

Average crown 115 446 5o

Range of crowns 60-201 267-445 224.81

Average relevant nodes 3.9 3.3 5.2

Average sons 4 16 4

Average P
3
profile length 812 908 526

Iarnel 2 (Profiles)

Number of nodes 55 94 103

Average crown 27 28 14

/lenge of crowns 10-55 11-64 4-25

Average relevant nodes* 5.3 9.0 5.1

Average P profile length 323 311 197

Average P2
3 profile length 266

Level 3 (Documents)

Total number of nodes 1500 2679 1400

Overlap 7% 91% 0%

Average relevant nodes (unique) 7 7

Average document length 54 54 54

Range doomment length 10-164 10-164 10-164

*Based on partial data

Crown . number of documents reachable from a node

Relevant node m a node whose crown contains one or more

documents

Ovorlap m ratio of total nodes on level 3 to collection

(1400) less 1,0

Properties of the Experimental Hierarchies

Table IV-1

relevant

size

I V-10

.small number of groups, but the level 1 clusters do not .Ionfine them a

great deal mare. It is unfortunate that the algorithm is not able to

place all the relevant for a query under a single first level node,'

especially since a typical query has only 7 relevant documents. In the

preseat situation, the broader search strategies should expand 3-5 nodes

on leve. 1 and 5-9 nodes on level 2. In some circumstances this destroys

the economy of involving the first level profiles at all. To illustrate,

suppose that all level 1 profiles occupy two disk tracks while all level

2 profiles occupy 5 tracks. If 3 nodes are e4anded on each level, then

the search cost is probzbly 2 accesses for level 1 and 2 to 4 accesses

for level 2, making a total of 4 to 6 accesses. Under these circumstances,

it might be better to disregard level 1, just examine level 2, and incur

a fixed cost of 5 accesses. Obviously the situation is improved in both

cost and performance if the relevant are grouped. more tightly. However

in the experimental environment, collect:ton size constrains the number of

nodes if a reasonable cluster size is maintained, In an actual collection

of thousands of documents, there would be a great many more top level

nodes and the economy becomes more apparent.

Table III-1 also shows the average vector length (number of index terms)

for some of the standard profile types in each hierarchy. As large as

the vectors are they do not strictly conform to the definitions of

standard profiles (see Section 111.3) since the definitions generate

vectors with more index terms than the software can handle. In ore to

perform any experiments, all terms with frequency 3. are removed in each

P3 or P2 vector, Even so, on level 1 of Hierarchy 2 terms of frequency

3 or less had to be eliminated.. At this point it is impossible to

137

I V- 11

substantiate that this deletiou has negligible effect on results; later

analysis and experiments confirm this assertion. Since P3 profiles are

based on term Cccurrence frequencies and. P2 profiles use document frequen-

cies, the initial term deletion results in vectors of different lengths.

Consequently, two sets of unweighted (P1) vectors are possible, depending

on whether P2 or P3 vectors are used as starting profiles. For example,

given P3 vectors, their unweighted counterparts are generated simply by

setting all weights to a constant value. In an actual system, this storage

space would. be reclaimed. In any case these shortened, but otherwise

undisturbed vectors are used as "standard" profiles throughout the study.

The set of unweighted vectors will always be identified and consistent

with other profiles used f or comparison.

Evaluation

This research is a study of profile definitions, uses, and modifica-

tions, as well 8A an evaluation of clustered files in general. However,

evaluation is complicated by the following three factors $

1) changes in profile definitions may affect several

evaluation measures (storage, search time, quality

of search output),

2) output quality varies with the search strategy, and

3) imperfect evaluation measures,

The first factor points otit the difficulty of selecting a "good" profile

since it is improbable that a single definition maximizes all the desired

measures, Output quality refers to the amount of relevant material

retrieved and the order of its presentation. These quantities depend on

ICS

IV-12

the number of profiles expanded on each hierarchy level (search strategy)

which has a secondary effect on response time. Consequently, a "good"

rendile for one search strater.z7 may not perform well for another strategy.

HopefUlly, some of these difficulties are eased by the dual evaluation

rwocedure adopt.eld here. Both methods are based on external relevance

judgments for the query set. In the first case, the standard SMART

precision-recall computations are made for fixed search strategies. The

second, new method is based on the content of clusters chosen for expansion

xnIber than the final document order. Although the search is not completed,

the method is independent of search strategy. Finally in nearly all

cases, comparisons are made among runs with only one changed parameter.

With these precautions, the general consistency of both evaluation

methods, and the relatively large query set; reasonable confidence is

placed in the conclusions drawn from the output,

A. SMART Evaluation

A SMART cluster search strategy includes selections for parameters

concerned with

1) measu.ring query-profile similarities and

2) deciding which nodes are expanded (1).

The cosine correlation is used exclusively in this work although it has

been suggested that query-profile similarities should be influenced also by

the position of a node in the.hierarchy. Some of the results in Chapter

V deal with this question. In order to decide which nodes should be

expended, smar maintains a list of nodes examined on all previous levels

and arranges it in order of decreasing similarity. At each exTension

159

point, the list is scanned from its beginning and nodes are expanded

until one of the following criteria is mets

1) the cumulative crown of the expanded nodes exceeds a

preset naximum,

2) the number of expanded nodes falls within a chosen

range,

3) correlations fall beneath a threshold, or

4) the end of the list is reached.

Several additional factors may influence the criteria also. In any case

the sons of the nodes expanded are fetcheeL, matched with the query, and

their correlations sorted tack into the iist to await further processing.

In the test situation here, two fixed search strategies are used

evaluation, The first is a narrow search designed to examine 5% of

the documents and expand approximately 1 node per level. The second is

a broader search looking at 10% of the collection and expanding 1 to 2

nodes per level. The complete set of SMART parameters is given in Table

IV-2.

Given a search strategy, SMART examines the most promising profiles

and produces a list of documents ranked in order of decreasing similarity,

Suppose that the first k documents on the list are retrieved. Then for

each query, the document collection is divided into four exclusive sets

(Figure IV-4a):

1) retrieved and relevant (a documents)

2) retrieved and non-relevant (b documents)

3) non-retrieved and relevant (c documents)

4) non-retrieved and non-relevant (d documents)

IV:di+

Narrow Search*

Maximum cumulative crown (WANTED) 70

Minimum nodes expanded riINNO1 1

Maxiniwa nodes expanded MAXNOD 1

Correlation margin about expansion ,005

cutoff (EPS)
.

Minimum correlation threshold (MINCOR). ,05

Broad Search*

Maximum cumulative crown (WANTED) 140

Minimum nodes expanded (MINNOD) 1

Maximum nodes expanded (MAXNOD) 3

Correlation margin about expansion ,005

cutoff (EPS)

Minimum correlation threshold (MINCOR) Al

*All other parameters are 0,

SMART Cluster Search Parameters

Table 1V-2

141

Retrieved

Documents

Non-retrieved

Documents

1V715

Relevant Non-relevant

Documents Documents

a

k = a+b = number of documents

retrieved

a) Subdivision of a Document Collection After

Retrieval of k Items

.20 Precision

.10

t10 .30

Recall

Retrieval cutoffs are 5,10,15,20,30,50,75 documents

b) Sample Precision-Recall Plot for a Cluster Search

Figure IV-4

14Z

IV-16

Note that the cutoff for retrieval is k a+b, Under these conditions

the search precision and recall are defined as:

SMART evaluation consists of plotting averaged precision-recall data for

a range of cutofft as well as computing four global measures. For this

research, P-R points (precision-recall) are calculated for cutoffs of

k 5, 10, 15, 20, 30, '50, 75 (the broad search includes k m 100). All

possible cutoffs are specifically not used in order to avoid placing undue

emphasis on the initial P-R values, From a. user's view it makes little

difference whether a relevant document is ranked first or third since a

half dozen items are probably judged anyway. However, differences in

early rank positions have considerable influence on P-R curves, By

plotting points at spaced intervals, this bias is lessened. A sample

curve is shown in Figure III-4b, From equations IV-1 and 1V-2 it is seen

that recall-precision values of 1,0 are perfect so that the better the

performance, the higher the curve,

The global measures calculated are normalized precision, normalized

recall, rank recall, and log precision (5). The two normalized values

approximate average standard precision and average standard recall, but

actually measmre the difference between the ideal performance (precision

aad recall of 1,0) and actual performance. Rank recall and log precision

are somewhat simplified forms of the normalized measures. All of these

values are strongly influenced .by initial data points (ranks 1, 20 1

'IV-17

and are not easily corrected for this factor. However they are useful

for condensing the graphical output into a few statistics for easier

evaluation.

Figure IV-5 contains the precision-recall curve and global measures

for a cluster search using Hierarchy 1, P
3
profiles, and both search

strategies described earlier. Corresponding points from a P-R curve for

a full search are included as a basis of comparison for this and fUture

searches. Considering only the relative positions of the curves and

neglecting the amount of system effort (user cost) involved, it is easy

to conclude cluster searching is vastly inferior to other methods. However,

cluste.: searches are not intended to have the complete effectiveness of a

full search. Their usefulness comes from flexibility; in an inexpensive,

narrow search a few relevant items can be obtained, and as the search

broadens greater recall is achieved. A very broad search might completely

neglect the upper levels of a hierarchy and, in the limit, become a full.

search. Search cost has been treated casually thus far whereas it is an

important factor in comparing the results of cluster search strategies.

As mentioned earlier, the number of disk accesses per query search is

regarded as a reasonable cost measure, at least being proportional to

both computing charges and on-line response time. Because SMART handles

many queries in parallel and actually simulates cluster searches, it is

impossible to obtain the number of disk accesses per query, The average

number of correlations per level is known however, although this data is

difficult to relate to accesses without knowing the details of record

storage. Even if an accurate measure of system effort were available some

144

.25

Precision

.20 \

.15 \ \a\

.10 \13

\r3

.05

A
13\o

\
A

IV-18

.10 .40 50

S bol Descri tion NR NP C 1

Recall

2

0 Full Search ..88 .61 0 0 1400

Narrow Cluster Search .62 .35 13 8 90

O Broad Cluster Search .67 .42 13 12 160

Legend: NR - normalized recall

NP - normalized precision

C(X) - number of correlations on level X

Sample Precision-Recall Curve for Hierarchy 1

Figure IV-5

146

subjective judgments are required to settle tradeoffs between cost and

performance. All this simply proves that search evaluation is not a

straight forward task. Fortunately, the tests ahead compare similar runs

with approximately the same number of correlations per level. This

greatly simplifies the job of rating various profile definitions, etc.

The SMART evaluation proceduce has a number of drawtacks of a mechani-

cal and aestetic nature. First, averaging performance over a query set

must provide for different numbers of relevant for each query; interpola-

tion etc, (6), Second, because a cluster search does not examine all

documents, it may not have the opportunity to retrieve all relevant

information. This condition results in an artifical upper,bound on

recall or a recall ceiling, In order to reduce the influence of this

factor, P-R curves are not displayed beyond the retrieval cutoff. Tbe

global measures require raaks for all relevant items, however, and for

this reason curves are extrapolated by assuming that unretrieved relevant

documents would occupy random positions in the remaining output (7).

Third, precision and recall measure user satisfaction without regard to

search cost. Attempts have been made to incorporate cost by changing the

extrapolation.procedure, but for the most part, system effort is recorded

by the numter of correlations per hierarchy level and these figures are

simply associated with a P-R curve, Fourth, the evaluation process is

quite dependent on search strategy. As a result, conclusions stated under

one set of conditions may or may not apply to a different set of parameters.

Finally, the cost of SMART search.and evaluation procedures preclude

examining a large number of search strategies.

146

IV-210

In spite of these drawbacks, evaluation by means of document level

precision-recall curves is useful in that it gives complete information

about a specific type of search and that curves of this type have become

the standard measures in document retrieval systems.

B. Cluster Oriented Evaluation

This section develops a method for evaluating profiles based on

their success of differentiating relevant and non-relevant nodes. The

measures used- -recall ceiling and precision floor- -are analogous to docu-

ment recall and precision, but extended to clusters. They account for

overlap and place different values on clusters due to their size or the

amount of relevant information they contain. From one point of view, the

evaluation considers the retrieval of clusters of information rather thaw,

single documents. Accordingly, statistics are computed only After each

cluster is "retrieved".

Consider a hierarchy level with m nodes (Figure 1-2). The browiest

possible search strategy, examining all a nodes, involves all the distinc-

tions to be made among these nodes under any condition. Forquery

assume the nodes are ranked by decreasing correlation so that they would

be expisnded in this sequence. For the node ranked j 1, 2,...,2, let

c
ij

be the number of documents in its crown that are not present in the

crowns of nodes with higher ranks. Similarly let rii be the number of

relevant documents in its crown that have not been recovered previously.

Note that c
ij

and r
ij

compensate for overlap as it is encountered in the

k k

sequence of rardced nodes. The sums Zc andZri
j

represent the

in]. ii jral

cumulative crown and cumulative number of relevant over k nodes. The

147

quantity

(IV-3)

is the total number of documents relevant to the query. Recall ceiling

is the percent of all relevant that are recoverable sub ect to the

expansion cutoff do

ril ri2RcIIj U1
(Iv-10

This is the highest possible document recall that is attainable for this

search strategy. Obviously large values of RC
ij

are preferred and RC
il

1,0 is the optimal situation--a3.1 relevant documents beneath the first

node. Deceptively high recall ceilings could be obtained by placing nearly

all documents in a single large cluster and dividing the remainder into

eeveral small clusters. For most requests, the large cluster is expanded

first and a high average recall ceiling is obtained. Viewing only this

measure, it appears that good. performance is otrtained by examining one

cluster. This is only partially true, of course. The clusters used. here

do not have skewed size distributions, but slight effects of size are

observable. Precision floor corrects fcr sit e bi aIneasuring the per-

cent of recoverable documents that are re.. e 'ant sub ect to the expansion

,cutoff

PP .aij +,+ cij (IV-5)

Precision floor represents the lowest possible document precision if all

documents beneath the first j nodes are retrieved. Again, large values

of PF
ij

are preferred; PFil 1.0 indicates the ideal situation--all

1.45

11/722

relevant and no non-relevant beneath the first nods.

As an example of these measures, consider a hierarchy level having

5 nodes with non-overlapping crowns of sizes 10, 10, 20, 20, and 30

documents respectively, Suppose that a query with 8 relevant documents

is correlated with the profiles and produces the ranking and evaluation

statistics shown in Figure IV-6, The values are interpreted as follows.

If only one node is expanded, regardless of what else occurs in the search,

the highest possible document recall is 4/8 and the lowest possible ciocu-

ment precision is 4/20 (assuming all are retrieved). Similar statements

can be made for other cutoffs. The accompanying graphs show the chaages

in RC
ij

and PF
ij

for varying expansion cutoffs.

After processing n queries, the average recall ceiling and average

precision floor are computed as followsi

- 7Etc
1=1

j = 1, 2, n

PFj n ij
i=1

(Iv.6)

These are actually macro averages in that they average the individual

performance statistics for each query of the set (6). Other averaging

methods could be defined also, but are not used here, Both RC, and

P F can be plotted separately or together along with some measure of
a,

system work to provide a performance curve for one level of the hierarchy,

Figure III-7a is a hypothetical plot of Rei versus the number of clusters

exTended. All such curves are non-decreasing and achieve a maximum of

RC, 1,00 for j4:n, In.the ideal situation every query has all its

149

IV- 23

Rank Node cij.
g

r
1j

RC
i j

PFij

1 4 20 20 4. 4 4/8 4/20

2 5 30 50 2 6 6/8 6/50

3 1 10 60 0 6 6/8 6/60
L. 3 20 80 2 8 8/8 8/80

5 2 10 90 o 8 8/8 8/90

a) Example of cluster oriented evaluation statistics

1,0

.8

.6

.4

.2

RC1j

Cutoff j

1 2 3 5 .8 1,o

.25

.20

.15

.10

05

b) Graphs of recall ceiling and precision.floor for the above

query,

liegend

query 1 8 relevant documents

C
ij

a number of additional documents in the cluster

ranked j

r
ij

u. number of additional relevant documents in the

cluster ranked j

RC
ij

= recall ceiling if j nodes are expanded

precision floor if j nodes are expanded

Figure 1V-6

Recall Ceiling

1,0 1:11-13-0.-0-.- 0- 1:1--- 0--0-- 0-18

0/
o-or

o/
00

Expansion Cutoff

0 Experimental CI Ideal

a) Hypothetical Plot of Recall CeilingVersus Expansion Cutoff

1.0 Precision Floor

,8

.6

,2 0 ----- 00-000:0

.2 ,4 .6 .8 1,0
Recall Ceiling

0 Experimental El Ideal

b) Hypothetical Plot of Recall Ceiling Versus Precision Floor
Plotted at various Expansion Cutoffs

Figure IV-7

relevant in the crown of the top ranked node so RCj 1,00 for j m

1, 2... n. Hence, the aim is to raise experimental curves to a hori-

zontal line, Figure IY-7b is a hypothetical plot of PFs versus RC

drawn at various expansion cutoffs, With this curve, the ideal case arises

if for every query, only relevant documents are found in the crown of the

top ranked node, Hence RC1 = PF1 1,00, and the ideal graph is a vertical

line at the extreme right of the scale,

Measuring system work (search time and cost) is a non-trivial task,

involving the selection of a work unit and problems associated with.measure-

sent. The number of disk accesses per search is probably the test unit of

work. Hcmever measurements made under this condition depend on the

characteristics of a specific storage device, order of hierarchy itorage,

blocking factors, etc. As a result, disk accesses are too specific a

unit except where these factors are controlled, The SMART evaluation

suggests measuring work by the number of quimy comparisons made with docu-

ments and profiles, The inaccuracies here are twofold. First, size

differences among data vectors on various levels indicate that not all

comparisons incur the same cost. Second, this unit ignores the economy

from storing vectors in adjacent locations. The cluster evaluation scheme

measures system effort by the number of nodes expanded in the search, This

quantity is device independent and emphasizes the economy from storing

items adjacently, A fixed number of accesses--one or two--might be

associated with each node expanded in order to provide conversion to other

units. However, the varying number of sons per node is neglected and

obviously, more work is involved in expanding a node with many sons than

IV-26

with a few sons. In spite of this final difficulty, the number of nodes

expanded is used as the measure of system effort in the majority of cases

in this study. Basically, it is assumed that averaging overmany nodes

and many queries minimizes the effects from variations in the degrees of

nodes.

Given two profile definitions PA and PB, there must be some agreed

method of using the recall ceiling and precision floor measures and curves

to determine which definition is superior. The following rule is used for

this purposes P is said to be superior that P244LIttamagemihms_of

recall ceiling and precision floor for P
A
are greater than the correspond-

IngIalues for PB. Symbolically this is expressed ass

P >P 444
A B apj)A >,(pi)a

j)A ("j)B

for j = 1,

Note that the values of j may be restricted to the initial ranks since

Rem = 1.0 in all cases.

So far, evaluation considers a single level of the hierarchy and all

of its nodes. However, an actual search generally accesses only part of

the nodes on any one level. Still, it is reasonable to.use all nodes in

evaluation since this includes the full set of items to be distinguished

under any search strategy. Examining multiple subsets of nodes is possible,

but turns the evaluation into an undesirable combinatorial test situation.

This is really unnecessary since it can be shown that if PA>PB holds for

all nodes on a level, then it also holds for a majority of subsets of

these nodes. For any particular subset S. either

153

I027

1) PA:,..PB within S or

2) PB7..-PA.within S,

However, since PA:17.PB for the entire level, then the first case must be

more prevalent among all possible subsets. As a result, PA>PB for

the majority of search strategies.

The remaining concern is the interaction among all levels of the

hierarchy. The evaluation considers each level independent of the rest.

Given two profile definitions PA and Pir is it possible to have a con-

tradiction such as P
A
>PB on one level and that P

B
>P

A
on another

level? Although possible, this situation is highly improbable if the

profile definition is at all reasonable--assigning term weights which

are non-decreasing with the number of keyword occurrences. FUrther,

since profiles on higher tree levels are composites of those on lower

levels, it is even more difficult to realize the contradiction if a

profile definition is consistently applied. Lastly, if a contradiction

occurs it is fairly clear that neither profile has a strong superiority

over the other. Both probably perform about the same.

As mentioned either, the ideal case arises when RC1 PP). = 1,0,

This situation occurs if for all queries;

1) the classification isolates all relevant and no noa-

relevant in a single cluster and

2) the single relevant cluster always ranks first when

profiles are matched with the query vector.

In practice neither goal is achieved; therefore the best achieVable

performance curve lies beneath the ideal curve. Specifically, Table IV-1

1 54

IV-28

shows that Dattola's classification algorithm resulted in 3 to 5 relevant

nodes on level 1 and 5 to 9 relevant nodes on level 2. Under these

conditions, best performance occurs if for each query i, the profiles

are always ranked in a way that maximizes all partial sums

rik

cik

j11111 1, 2,000104

This ranking is best in the sense that the greatest number of relevant

documents are retrieved for the fewest expanded nodes (least amount of

work). Figures IV-8 and IV-9 show the best achievable performance for'

the first and second levels of the hierarchies used in this study.

Althou h cluster-oriented evaluation faces the drawbacks of incom-

plete searching and unsure relations between hierarchy levels, the method

has several advantages, First, it is independent of expansion cutoffs

and some parameters of various search strategies. Second, it accounts

more accurately for s stem effort hence search cost and leaves user

effort as a secon consideration Third it examines onl a small art

of the retrieval rocess rather than attem tin to measure effects across

an entire search. Presumably, the latter technique obscures some experi-

mental effects in its across-the-board measurements Finall cluster

evaluation is uite economical com ared to actual searches. Both evalua-

tion methods are used where appropriate so that conclusions are drawn

with a substantial degree of confidence.

Precision Floor

Legend

.20 .60

0 Hierarchy 1, 13 nodes

Hierarchy 2, 6 nodes

o Hierarchy 3, 28 nodes

IV- 29

.80 1,00

Recall Ceiling

Best Achieveable Performance Curves- -Level 1

Figure IV-8

1 56

.100

.080

.060

.020

Precision Floor

Legend

.20 .40 ,so

0 Hierarchy 1, 55 nodes

A Hierarchy 2, 96 nodes

Best Achieveable Performance Curves--Level 2

Figure IV-9

16-17I

IV-30

te.

1.00

References

1. D. Williamson, R. Williamson, M. Lesko The Cornell Implementation

of the SMART System, Report ISR-16 to the National Science Founda-

tion, Department of Computer Science, Cornell University, September

1969.

2. C. W. Cleverdon, J. Mills, Factors Determining the Performance of

Indexing Systems, Volume 1-2, Aslib Cranfield Research Project, 1966.

3. R. Dattola, Forthcoming Doctoral. Thesis, Department of Computer

Science, Cornell University.

4. G. Saltok The SMART Retrieval System- -Experiments in Automatic

Document Processing, Prentice Hall, Englewood Cliffs, N. J., 1971.

5. G. Salton, Automatic Information Organization and Retrieval, McGraw-

Hill, Inc., New York, 1968.

6. G. Salton, The Evaluation of CompUter-Based Information Retrieval

Systems, Proceeding of the FID Congress; 1965,

7. R. Dattola, Experiments with a Fast Algorithm for Automatic Classifica-

tion, Report ISR-16 to the National Science Foundation, Department

of Computer Science, Cornell University, September 1969.

V--1

Chapter If

Profile Experiments

1. Introduction

The previous chapters provide the background for the experiments in

this and succeeding chapters. Previous chapters contain discussions on

the structure and use of a clustered file, the basic profile definitions,

search methods, storage organization, updating techniques, and other

areas. The experimental environment, description of the collections and

hierarchies, and. the evaluation methods were also covered.

The resent cha ter resents the results of an extensive set of

emr.i focused on reatile definition. Particular attention is given

to;

a) the performance of the standard profiles (P ,P2,P3);

b) the effects of rank value weighting;

c) bias in search results;

d) profile length;

e) frequency considerations; and

f) tradeoffs among unweighted, partially weighted, or

fully weighted terms,

For the most part, the work uses Hierarchy 1 and. cluster-oriented evalua-

tion (see Chapter Iv). The most promising techniques are thoroughly

tested using all hierarchies and both evaluation schemes. Final conclu-

sions are based on the complete set of results.

A summary of the major conclusions includes the following.

a) Profiles superior to standard or rank value vectors can

V -2

be made by using term weights based on frequency ranks

(not rank values). The resulting vectors are free from

correlation domination and other biases.

b) A lar e portion of the low weighteprofile te s irm as be

deleted without a large performance loss, In fact,

deletion improves the performance of unweighted profiles.

c) Unweighted profiles give somewhat inferior search per-

formance, but partial weighting schemes may suffice

instead of fully weighted profiles,

A number of secondary conclusions related to cluster size, biased search

results, and frequency considerations are brought forth also.

2. Standard Profile Performance

In order to review the standard profile definitions, consider a

node whose crown is the document set C = {D
1'
D
2'

,..'Dn Then, the

standard profiles are

P1 s. v D2 v, v Dn where Di is an unweighted vector,

P2 + D2 +,+ Dn where Di is an unweighted vector, and

P3 + D2 +,..+ Dn where Di is a weighted vector.

Terms in Pi profiles are unweighted while those in P2 and P3 profiles are

weighted according to document frequencies or total occurrence frequen-

cies within C. In Chapter IV it was explained how each profile is

obtained from the clustered Cranfield collection including the necessity

of eliminating the lowest frequency terms, In order to describe other

profile properties, the following concepts are introduced.. The size of a

160

V- 3

profile P is the number of documents in its crown; its length is the

number of index terms in its vector; and its magnitude Il is the square

root of the sum of squares of its term weights. In the case of P1

vectors, each term is assigned a unit weight. The properties of the

standard profiles for Hierarchy 1 are given Table V-1.

Evaluation curves for the standard profiles are shown in Figures

Y-1 and. V-2. At least three observations can be made. First weighted

profiles perform significantlz_better than unweitted. ones

(P3>P1, P2>.P1). Later examination shows that the results for un-

weighted vectors are biased so that small clusters unfairly achieve high

ranks, regardless of their relevancy. Some of this bias can be removed

and performance improves considerably. A second observation is that

term wei hts based on document fre uenc a uivalent if not sli ht-

er_k_ior, to wei tits term met rrence (ting within docu-

ment frequencies), i.e. P
2 3
> P,

.

This is a surprising and pleasing

result since it indicates that an existing document collection without

weights can be clustered and searched without performance loss due to

profiles. If a large performance difference had been observed, an un-

weighted collection would have to be re-indexed with weights in order to

obtain maximum benefit from the clustered organization. The final obser-

vation is that of a slight performance advantage for the shorter P1

vectors over the longer ones. The effects of vector length in unweighted

profiles is discussed in Section Va. Actually the standard profiles

differ in so many ways it is impossible to draw conclusions from these

tests, The curves are presented as a reference for later experiments

involving fewer variables.

161

V-4

Property

Number of preiles

Average size

Profiles

-1 (term frequency weighting)

Average length

Range of lengths 438-1302 120-692

Average magnitude 590 162

Range of magnitudes 340-971 74-304

Nodes on

Level 1

Nodes on

Level 2

13 55

/15 28

812 323

Profiles

(document frequency weighting)

Average length 722 266

Range of lengths
397-1175 93-580

Average magnitude 291 84

Range of magnitudes 169-477 37-145

1 Profiles

' (unweighted, made from P3)

Average length 812 323

Range of lengths 438-1302 120-692

Average magnitude 28 44

Range of magnitudes 22-36 11-26

Profiles

(unweighted, made from P2)

Average length 722 266

Hangs of lengths
397-1175 93-580

Average magnitaule 27 16

Range of magnitudes 20-33 10-24

Properties of P1, P2, P3 Profiles for Hierarchy 1

Table V-1

162

Precision

.020 Floor

.015 0A

.010

V-5

005

2
.4.4."4"`"Ifta3

60
Recall

Ceiling

C) P3 Profiles (term frequency weighting)

'Att, P
2

Profiles (document frequency weighting)

() P
1

Profiles (unweighted, made frau P3)

P
1

Profiles (unweighted, made from P2)

Evaluation of the Standard Profile Definitions

Hierarchy 1, Level 1

Figure V-1

,05

04

.03

Precision

Floor

\ti

013-
%4A,,

.02

10D,E1,',, "n

V-6

.20

Profiles

Profiles

Profiles

Profiles

.40 ,50

Recall

Ceiling

(term frequency weighting)

(document frequency weighting)

(unweighted, made from P3)

(unweighted, mule from P2)

Evaluation of the Standard Profile Definitions

Hierarchy 1, Level 2

Figure V-2

164

.60

sOMIEEINNII

V-7

Because maNy curves similar to Figures V-1 and V-2 are presented, a

few remarks about their characteristics are in order. First, points are

plotted at cluster cutoffs in all cases so that the ith point represents

the precision floor and recall ceiling obtained if the search expands

clusters. Roughly speaking, the same amount of system work (e.g., number

of disk fetches) can be associated with the first, second, third, etc.,

points on all curves for a given hierarchy level. Second, the PF scale

varies considerably between levels while the RC scale is the same. This

is due to the substantial difference in the size of the profiles on

various levels and the dependency of PF on profile size. Third, more

performance differences are generally observed on upper hierarchy levels.

This is caused by the nature of these vectors--longer, more extreme

weights, greater magnitudes, etc.

3. Rank Value Profiles

Rank value profiles derive term weights from frequency ranks rather

than frequency counts. Given a P
2

or P
3
vector, its terms are ordered

by decreasing frequency and re-weighted by assigning them rank values. A

rank value is the difference between a base value and the position of the

term in the frequency ranking. Chapter III illustrates rank value pro-

files and points out their differences from staniard profiles; namely

a) all vectors have the same high weight rather than the

same low weight and.

b) the range of term weights is considerably reduced

since weights are derived from frequency ranks.

165

V-8

The following experiments examine the selection of a base value and

these differences. The results indicate superlmserformance can be

rank value weighting, However, improvements are due to

pjlepshtsylysical properties of the vectors rather than to factors

intrinsic to the rank values themselves.

A. Base Value Selection

Suppose a rank value profile P has k index terms with frequency ranks

from 1 to r 4.5k (terms with the same frequency share the same rank), If

the base value is b2...r, term weights range from If() = b-r to wa = b-1.

The quantity wo is the yaltyisslgla (lowest value), wa is the weight

min; (highest value), and wa wo = r is the weight range. Az mentioned

ablyve, keeping the base value constant for all profiles assures that all

vectors have the same apex. This contrasts with the standard profiles

which all have the same origin.

In Boyle's work (1) , the major criterion in base value selection is

assurance of a positive weight origin in all profiles, However, the

base value influences cosine correlations and search results and there-

fore should be chosen carefUlly. To illustrate, consider a rank value

profile P = (Pi, P2, ...,Pv) with a base value b such that wo = 1. In-

creasing the base value to b' = b 4- a (a> o) is equivalent to increasing

all term weights by a constant and forming

P. P + A where A = (al, a2, a),

b' - b if pi 0

(V-1)

0 if pi = 0

166

V-9

The addition vector A is actually an unweighted profile whose unit weight

is a. Correlations involving P' can be expressed as follows:

COS(C11,P0 CC6(14P + A)

IP + AI cag(gtp) + IP + AI ca5
(64 A)

.15 fa cos(Q,p) + cos(q, A) }

(3. - 2 agi [1-COS(P,A)]} (V-2)

1,0 a Cos(Q,P) + COS(Q,A)

where m
1131 .11i. 1AI

IP + A
-a

IP + Al

This equation indicates that the total correlation is approximated by a

linear combination of two other correlations--one from the original

weighted profile P and the other from the unweighted profile A. Note

that a and 0 depend only on CPI and a = b' b. Further, as the base

value increases, wo--5.00 wa--P-Cola 0, ando --ma. As a result, the

unweighted correlation dominates the total and performance approaches that

of unweighted profiles.

The effect of increasing the base value can also te viewed as making

terms less distinguishable during the correlation process. For example,

the terms of the profile P m (2, 1) using b = 3 contribute to correlations

in the ratio 2:1. That is, a match on one term is worth twice as much

as a match on the other. Raising the base value to b' = 11 yields P' m

(10, 9) whose terms contribute in the ratio 10:9. The relative importance

of terms is reduced so that correlations differ only slightly depending

on which tent is actually matched. The same effect occurs in large

vectors also, namely an increase in base value "smears" the importance of

the weights assigned to individual terms. In the profiles for these

1

V-10

experiments, term weights represent frequencies; using a low base value

maintains frequency distinctions while a high valUe decreases their

importance.

Figures V-3 and V-4 compare search performance in:Hierarchy. 1 for

several sets of ran' value profiles made from P2 vectors (document fre-

quency weighting). The results are generally as predicted by equation

11-2, namely decreasing performance with increasing base value. This

supports the idea of maintaining the distinctions apparent in the original'

term weights to whatever extent possible. The single exception to these

conclusions occurs in Figure 11-3 for the lowest base value (66). One

86> °Pb ... 66
explanation for P-

b
is that'too small a base value places

unwarranted importance on frequency.rank as a retrieval indicator. How-

ever, other data shows that the
b 66

performance is strongly influencedP_

by a single, large cluster which nearly always ranks high regardless of

its relevancy. Some evidence of this situation lies in the fact that the

abscissa (EC) values are nearly identical for both curves while their

ordinate (PF) values differ markedly because of cluster size (see equa.

tion IV-5). It is not the case that an equal number of relevant documents

could not be retrieved, but that they are recovered from clusters of

vastly different sizes. The exact nature of this bias is discussed further.

in Section V.4.

The evidence shows that rank value_profilesperform better when they

rely on a small base value rather than a large base value, Since the base

value is selected prior to profile construction, it is difficult to

determine a value which is low, but not so low as to jeopardize performance

168

.020

.015

.010

.005

Precision Floor

A °

0 V4D
o 0 \7\

0
'7-,%, 0
0

.20 .30 .50 .60

Recall Ceiling

Symbol Base Value Apex Lowest Origin

N7 66 65 2

0 86 85 22

A 100 99 36

0 226 225 162

0 op (unweighted)

Search Performance as a Function of Base Value

Rank Value P
2
Profiles, Hierarchy 1, Level 1

Figure V-3

Precision Floor

0

20

..

V-12

.5o .6o

Recall Ceiling

Spbol Base Lovrest Orialn

0
26

100

CO

25 2

99 76

(unweighted)

Search Performance as a Function of Base Value

Rank Value P
2
Profiles, Hierarchy 1, Level 2

Figure V-4

.176

v-13'

as in Figure V-3 (b 66), Fortunately, once the profiles are made,

they can be adjusted via Equation V-1 to any desired base value, The

experiments .in the following sub-section show how to eliminate the

entire problem of base value selection.

B. Weight Origins and Apexes

Using the same base value throughout a hierarchy or level causes

all prOfiles to have the same weight apex while their origins vary, For

example if b is 21, the hierarchy might contain these profiles:

P (18,20,19)

(20,16,18,15,12,19,16,1?,1344)

w et 18, w
a

20

w re 12, w
a

ow 20

The previous experiment
supports, to some extent, the notion of maintain-

ing male-mum differentiation among profile terms in rank value profiles by

keeping the base value (and hence weight origins) low. A logical exten-

sion of this idea is to artifically reduce the weight origins for all

vectors to the same low value, Note that this does not produce a standard

P2 or P3 vector since profile term weights are still based on frequency

ranks.

Figures V-5 and V-6 compare the performance of rank value profiles

with variable weight origins (fixed apex) and. similar vectors with a

fixed weight origin (variable apexes). The experimental profiles are

constructed from original P2-type vectors (document frequency weighting)

and are designed so that the lowest origin is the same in all tests. The

best previous curves are included also. The figures show no significant

difference between good profiles with variable origins and profiles with

.020

.015

.010

.005

Precision Floor

V- 14

.40 .50 .60

Recall Ceiling

O Fixed origin wo 2
0 Variable origin Base value el 86 Lowest origin 22
V Variable origin Base value 12 66 Lowest origin 2

Comparison of Fixed and Variable Weight Origins

Rank Value V2 Profiles, Hierarchy 1, Level 1

Figure V-5

172

.05

.04

.03

.02

Precision Floor

\\,
c

41Q`

30

Fixed origin

.50

Recall Ceiling

wo 2

0 Variable origin Base value 26 .Lowest origin 2

.6o

Comparison of Fixed and Variable Weight Origins

Rank Value P2 Profiles, Hierarchy 1, Level 2

Figure V-6

1.73

V-16

a low fixed origin. This is not unexpected in level 2 vectors, where the

change in origin produce only small changes in term weights.. However,

most level 1 profiles have their term weights reduced by a considerable

amount, yielding vectors whose correlations are more sensitive to

individual term weights (see Section V.2,A.). As a result, the size

bias noted earlier is removed and. performance improves, The importance

of these tests is that they show rank value profiles with a fixed,

minimal weight origin provide ecuivalent or better performance than

similar profiles constructed usirg an c timltievbas arioble

origins), Consequently, base _value selection need not be considered. in profile

construction. The new construction process simply sorts the index terms of

an initial vector (P2 or P3) in increasing frequency order and assigns

weights equal to ranks in the sorted sequence. These vectors are denoted

by P* or P*, depending on the initial vector,
2 3

C. Weight Range

The starting points for rank value profiles are standard vectors

(P2 or P
3
) whose term weights are frequency counts. Given such rank value

profiles, the previous experiments suggest reducing their weight origins

to a minimal constant in order to improve performance (P* or P* vectors)) ,

2 3

The.difference between these final profiles and the standard profiles is

simply that term weights are ranks of documen' frequencies rather than

frequency counts. Figures V-7 and V-8 compare the effectiveness of rank

weighting and count weighting for both document and term frequencies.

In all cases P2 and. P.* curves are connected by solid lines while P3

2

and PIE curves are connected with broken lines.
3

I'M

.020

.015

.010

.005

Precision Floor

V-17

.20
.60

Recall Ceiling

A Document frequency counts P2

0 Document frequency ranks Pit
2

0 Term frequency counts P3
0 Term frequency ranks 3

Phit

Comparison of Profile Term Weights Based on Frequency

Counts and Frequency RanksHierarchy 1, Level 1

Figure V-7

175

a
Precision Floor

.05 -

.03

.02 -

.11111111111011111,

\
1:3 N

AtCPN

0\

. 4gN \01

Siy.
'.-12ib

111

V-18

r
.20 .30 .50 .60

Recall Ceiling

ii Document Frequency Counts P
2

0 Document Frequency Ranks P*
2

() Term Frequency Counts P
3

() Tema Frequency Ranks P*
3

Comparison of Profile Term Weights Based on Frequency

Counts and. Frequency Ranks--Hierarchy 1, Level 2

Figure V-8

V- 2.9

In order to interpret the curves, first suppose that a fixed decision

is made to weight profile terms either according to frequency counts or

ranks. Then the evaluation shows no consensus on a preference for docu-

ment or terra frequencies, that is, Pie, P3 and P5. This result also

supports the findings of Section V.2. In a similar manner, consider a

fixed decision to base all profile term weights either on document or term

frequencies. In this ease, the tests suggest that weights based on ranks

are sup_siorbothose_based on counts, that is, 1:1>P2 and P5>P3. The

ma or reasons for this erformance im rovement are the altered profile

characteristics_t specifically a reduced weight range and its effect on

the cosine correlation, as shown below.

The magnitude of a profile vector and the presence or absence of a

few term matches may greatly influence the final cosine correlation. Given

a Profile P (P1,
pv), where pi is the weight of term 1, and a

similar query (q1, q2.., qv) matching terms with weights pi and qi

contribute, to the total correlation, the amount:

Z1,22 [2PTJ-

qi)

[j
(V-3)()

CONTRIBUTION iFir

For any particular query, the values of qi/Igl are fixed and variations in

IMMIMMM

contributions are due to Pi/1P I .
Figure V-9 is a plot of the contribution

ratio, p14P1, for all unique term weights found in typical profiles from

Hierarchy 1. Two versions of each vector are shown, one having weights

based on frequency counts and the other using frequency ranks. This type

of curve is called a correlation contribution curve and is used frequently

in this study. The curves for frequency counts, show that about 3% of all

1.77

i
/IPI

Contribution Ratio

cs
0 0

ol?
00
oo

0o
0 0

o 0
o0
oc

0
430

o
0

V-20

OD

50 75 100 125 150 175

$ bol.
1...Nocl_qPna_Er

Term Frequency

e ',lei hting

0

A
0

0

1

1

2

2

5

5

14

14

P
3

Pi*.

3
P
3

.

P*
3

Term Frequency Ccunts

Term Frequency Ranks

TerM Frequency Counts

Term FrequenCy Ranks

Cosine Correlation
ContributiOn Ratios-,:-Hierarchy

1

Figure V-9

17t),

V- 21

terms have very large contribution ratios ami control retrieval in the

sense that their matches practically guarantee expansion of the correspond-

ing cluster. This control is due to the fact that

a) large term weights increase IP1 a great deal and result

in large correlation contributions;

t) small term weights change 111 very little and are

relegated to small contributions; and

c) high contributions are obtained at the expense of low

ones since their total is bounded (MAX (cogp,co ur 1)4

Without high weight matches, a considerable number of other terms must

match in order to expand a clUster. This, however, is rather uncomon

since queries generally contain only a few index terMs (an average of 9

in the Cranfield collection). This power of a few high weight profile

terms to influence correlation and, hence, search outcome is Called

correlation dominance. The contribution curves for profiles with weights

based on frequency ranks show much less domination. In these vectors,

the range of weights is much smaller, Ill is smaller, and the correlation

ratios are more evenly distributed. Frequent terms are still more import-

ant than non-frequent terms, but they no longer dominate since it is

easier for a number of other terms to influence cluster expansion.' The

reduced correlation domination is the factor leadin to the erformance

improvement noted in Figures V-7 and V-8. Although frequency ranks are

used here, later experiments show that domination can be reduced by other

methods also. The ranking scheme is simply convenient and maintains

weights which are non-decreasing with frequency.

Another im lication of these results is that the importance of an

179

V-22

index term for retrieval does not increase linearly with frequency, but

in a more gradual way. While previous experiments show the validity of

increasing frequency distinctions among terms, by shifting to minimal

weight origins, it is clear that extreme distinctions (domination) must

be avoided, Term weights based on frequency ranks benefit because they

meet both criteria. For these reasons, the P* and P* profiles provide
2 3

the best performance encountered in this research,

Since the P* and P* profiles appear throughout this study, it is

2 3

appropriate to give a complete example of their construction. Figure V-10

contains such an example and includes a comparison with the standard P2

and. P

3
vectors. The sample data is the same as that used in Chapter III

for similar purposes. As shown in the figure, the starting point is a

standard profile whose term weights are simple frequency counts. First,

all terms are ranked in increasing frequency order; that is, the least

frequent term receives rank 1, etc. This contrasts with Doyle's scheme of

using decreasing order. Note that terms of equal frequencies share the

same rank. Second, the final profile is made by replacing each original

term weight with the term rank established in the previous step. As

discussed earlier, this process reduces the range of weights in the pro-

file, the vector magnitude, and the range of correlation contributions

from matching terms. This is particularly true for P* vectors. These
3

factors decrease the amount of correlation domination and lead to the

performance observed earlier.

D. Summary

This section consists of an investigation of rank value profiles

. iso

V-23

Pl. Profile (WeightSAbasedondcgmELLfmmEma_j2gss) Magnitude

Original Profile P
2

0 2 06' (-1 , ,-,010,-5 ,3, 04-2) 07,3

I I II I

Frequency ranks 1 2 4 3 2

1I I II I

0.P* Profile P* a 0,290,0,40,00,2) 6ri2 2

Contributions of Term Matches to the Total Cosine Correlation

Contribution

Vector 1 2 3

Matching Term

4 5 6 7 8

P
2
/IP

21

P*2/I Pt I

.15

.17

0

0

.30

.34

0

0

0

0

.76

.69

.46

.51

0

0

9 10

0 .30

0 .34

P* Profile (Weights based on term frequency ranks) Magnitude

Original Profile P (10,50,0,10,400,5) Yr.gi

3 I I I I I

Frequency Ranks 1 3 4 2 3

I I /

P* Profile P5.= (1,0,310,014,2,0,0,3)
3

Contributions of Term Matches to the Total Cosine Correlation

Contribution Matching Term

Vector

P
3
/IP

3

11111531

(5-8

.08 0 .39 0 0 .77 .31 0 0 .39

.16 0 .48 0 0 .64 .32 0 0 .46

Construction of P* and P* Profiles
2 3

Figure V-10

and their differences from vectors considered previously. The results

include the following points.

a) Low, but not minimal base values are preferable to large

basa values an o timal choice bein difficult to find.

b) The roblem of base value selection can be eliminated

by using a fixed, minimal weight origin for each profile.

c) Term weights based on frequency ranks are superior to

weights based on frequency counts.

These properties are present in the P* and P* vectors which generally
2 3

yield performance superior to either the standard profiles or rank value

profiles. The modified profiles are actually variations of the latter

types. Their only difference from standard vectors is the use of term

weights based on frequency ranks. The change from a rank value profile

is the use of a fixed, minimal weight origin for each vector rather than

a global base value. In any case, all remaining experiments consider the

use and. characteristics of P* or P* vectors unless explicity stated
2 3

otherwise.

Search Bias

A. An Algorithm for Detecting Bias

The cluster search process consists of matching a query with all

profiles on the first level of the hierarchy, ranking them in correlation

order, and selecting several nodes for expansion. The process is repeated

until document vectors are reached. There is a natural curiosity about

the properties of profiles which occupy the initial portions of the

ranking on each level and thereby become expanded. Specifically, it is

182

V-214

V- 2 5

41.

desirable to determine whether these profiles have consistent properties

of length, size, magnitude, etc. If a damaging bias is detected, then

steps should be taken to correct it. For example, the discussion of the

experiments on base value selection mentions a bias toward large clus-

ters in an informal manner. This section formalizes this concept and

develops an analytical procedure for detecting search performance biased

by a particular profile property. Using this technique on various types

of profiles reveals the negative influence of a bias in unweighted and

certain types of rank value profiles,

The analysis procedure starts with data from a given search--so

many relevant and non-relevant clusters ranked above a chosen cutoff on

each hierarchy level--and.calculates the expected participation of each

profile in achieving this performance, It then examines the actual

participation of each profile and notes deviations from expected values.

Patterns of large deviations of behavior denote bias. In general, good

recall ceiling--precision floor resulst are accompanied by little or no

bias, As with cluster-oriented evaluation (RC-PF), the bias analysis

considers each hierarchy level separately; the arguments for and against

this approach are given in Section IVA.

For a detailed description of the analysis method, consider a

simle hierarchy level with K profiles {Pi, P2, plc} and a collection

of J requests, Let there be a total of ERi relevant clusters and Mit

non-relevant clusters where

a) Ri is the number of requests for which Pi is relevant and

b) Ni is the number of requests for which P is non-relevant.

ist

V- 26

Consequently, I = is approximately the average number of rele-

vant clusters per request so that if_the expansion cutoff I is usedthen

on the average, all relevant profiles could occupy rank positions 1, 2,LI.

In actual tests, relevant profiles ranking I or above are said to

perform well while non-relevant profiles ranking I or above are said to

perform poorly. From an actual search then, the following data is

collectedi

c) r
i'

the number of queries for which P
i
is relevant and

ranks I or above and

d) n
i'

the number of queries for which P is non-relevant

and ranks I or above.

Locking at a specific profile Pi, the ratio ri/hi is its relative fre-

quency of good performance while ni/Ni is its relative frequency of poor

performance. Over the entire set of profiles, values for these ratios

which differ markedly from expected values may indicate biased results.

Figure V -11a contains sample data for 5 profiles and 20 rzquests. For

example, there is a total of Vi = 40 occurrences of relevant clusters

distribited as 2, 5, 7, 12, and 14 occurrences among individual clusters.

Therefore a typical request has I = 40/20 = 2 relevant clusters.

This data is fixed and. unchangeable for the given collections. In an

actual search, suppose Zri = 29 relevant profiles rank 1 or 2 with these

occurrences being distributed 1, 3, 5, 9, and 11 among the individuals.

Taking simple ratios ri/hi gives the indicated frequencies of good performance.

A similar explanation applies to the non-relevant items. Because of the

way the data is listed, it is easy to observe some correlation between

1S4

V- 27

cluster size and. either performance ratio ni/Ni or ri/Ri. Without know-

ing how much these ratios differ from their expected values, it is

impossible to say whether the search results are biased. The following

analysis examines this situation more closely,

Overall, any particular profile Pi is non-relevant for Ni/ 1Tai of

all queries. Furthermore, Pi accounts for ni/ 2ni of all non-relevant

profiles ranked in the first I positions, There is no a priori reason

for Pi to be more prevalent in these positions than any other non-relevant

profile, so the expected value of nift
I

is:

E E /N
n i

n

Nj

Note the expression is independent of the profile under consideration.

A similar calculation for the ratio ri/Ri yields

Er (V-5)

The latter expression represents the true expected value only if all rele-

vant clusters contain the same ratio of relevant to non-relevant documents

for all queries. In practice, cluster sizes and. the number of relevant

documents in them vary a great deal and the above condition does not

hold, Consequently, the conclusions of forthcoming tests are based

primarily on the behavior of non-relevant profiles (n1/N1) and supported

by the behavior of relevant profiles (ri/Ri).

In either case, the important quantities are the deviations of

experimental values from expected values, namely (n1/N1)-En and.

(ri/Ri)-Ers Figure V-llb shows these deviations for each of the

165

V- 2 8

Number of profiles, K 5

Number of queries, J =, 20

Property

Cluster size

1D, /.1.1

1

Profiles
P

2
P. P. P5

10 20 30 40 50

2 5 7 12 14

18 15 13 8 6

2

1 3 5 9 11

1 2 2 3 3

.06 .13 .15 .37 .50

.50 .60 .72 .75 .79

150 1

a) Sample Data Related to Biased Searches

Property

En ni/ZN1

ni/Ni - En

Er = Zri/ERi
- Er

Profiles

Pi P2 P3 P4 P5

.18 .18 .18 .18 .18

-.12 -.05 -.03 .19 .32

.72 .72 .72 .72 .72

-.22 -.12 0 .03 .07

"EP

b) Deviations of Performance from Expected Values

Figure V-11

.3-

.2-

Amount of Deviation

n,
- E

Ni n
50

1

40
1

E

Average cluster size

.2 -

V-29

Amount of Deviation

45

2

30

20

10

1

Number of items ia average

c) Relating Cluster Size and Performance Deviations

Amount of Deviation

-.1

-.2

60

1

48

12

68
1

12

55

6

A

53

36

,
52

5

25

48

3

4?

2

d) Examples of Unbiased Search Results

Figure V-11 Continued

V-30

profiles in the example. Figure V-11c provides a way of observing search

results biased with respect to cluster size because it lists the average

size of all clusters whose profile behavior falls within various deviation

intervals. The second number in each square is the number of items used

in the cooperage. Thus in the deviation interval [En-.1, En), profiles P2

n? nl

and P3 behave such that E117.1.<17:11-24:::En thereby leading to entries

"2 3

of 25 (average cluster size) and 2 (number of items). Three factors about

the columns of Figure V-11c indicate the search results in this example

are biased by cluster sizes

a) a large range of deviations,

b) a wide distribution of entries throughout this range, and

c) a trend of decreasing cluster size in the column entries.

In this instance bias can be defined by saying that the search procedure,

correlation fUnction, and profile properties are such that larger clusters

are more likely to rank 1, 2,..., I regardless of their relevancy.

Eaclh of the three considerations listed above is an important factor

in determining the presence of search bias. Figure V-11d is an illustra-

tion of data lacking some of these characteristics. Column A, having a

small range of deviations is an example of unbiased profile behavior.

Column B shows a wide range of performance deviations, but no bias because

the larile range is due to the peculiar performance of one profile. In

other words, there is a narrow distribution of entries within the range.

Finally, column C shows both a large range of performance ratios and a

wide distxibution, but lacks a trend in the column of property values.

In this case, bias probably exists, but it is not related to the property

under consideration.

1ES

V- 31

B. Investigations of Biased Searches

The above procedure is used to analyze searches made with the stan-

dard, rank value, and modified profiles described earlier, On level 1

of Hierarchy 1, there is an average of 1=4 relevant clusters, so rank

positions 1, 2, 3, and 4 are of primary interest. The corresponding

figure for level 2 is 1=6. In all instances cluster size is the property

investigated, although other properties might show the same results since

large clusters generally have profiles with many terms, large magnitudes,

etc. Cluster size is used because it is invariant among the types of

vectors examined. Figures V-12 to V-15 show the behavioral characteristics

of rank value profiles in Hierarchy 1. The vectors are the same as those

in Section V.3.A, having rank value term weights based on document

frequencies. The following observations can be made:

a) unweighted profiles (infinite base value) show a definite

bias in favor of small clusters;

b) decreasing the base value reduces the bias significantly; and

c) for the lowest base values, there may be a slight bias

in favor of large clusters.

Of great importance is the fact that reduced bias with lower base values

is accompanied by the RC-PF performance improvement seen in Figures V-4

and V-5. It is also possible to explain why a base value of 86 is super-

ior to a base value of 66 in the case of level 1 profiles. Figure V-12,

shows that the largest cluster (size 201) appears in the initial rank

positions.as a non-relevant item much more often in the test run with a

base value of 66. Hence the expanded profiles (1 2 I) frequently

include this cluster, so that all relevant items retrieved must be sifted

n

.30 N
- E

n
, Deviation from Expected Value

.25

.20

.15

.10

.05

En 0

-.05

-.10

-.15

-.20

60

1

83

_1

89

2

109

1

92

1

32

5

5

1

01

1

A

71 .

96

83

101

139

96

1

60

1

108

2

99

2

122

5.
148

2

1

201

i
,

97

2

98

3

99

148

2

115

1

201

1

118

2

130 1

3

76

2

106

4

115

1

Column Base Value E
n

A Co (unweighted) .243

B 226 .228

c 100 .214

D 86 .206

E 66 .208

Behavioral Characteristics of Non-Relevant Profiles

Rank Value Weights Based on Document Frequencies (P2)

Hierarchy 1, Level 1

Figure V-12

iso

V-32

r

- E
r

, Deviation from Expected Value

. 50

.40

.30

.10

Er 0

-.10

-.20

-.30

-.40

-.50

76
,

83

1

118

102

2

115

2

124

2

172
2

A

76

2

83

1

118

2

99

2

118

2

167

2

129

2

76

2

137

4

106

3

96

1

134

1

143

1

115

3.

Column Base Value

201

1

82

2

108

115

2

143

1

115-

1

201

1

103

1

130

140

4

89

2

2

E
x

A 00 (unweighted) .459

226 .494

100 .528

86 .545

66 .54o

Behavioral Characteristics of Relevant Profiles

Rank Value Weights Based on Document Frequencies (P2)

Hieratchy 1, Level 1

Figure V-13

isi

.14

.12

n
.

N
- E

n
Deviation from Expected Value

.10.

. oa

. 06

.04

.02

E
n

0

-.02

-.04

-.06

-.08

-.10

13

1

26

1

17

1

13

1
17

7

20

7

24

9

28

9

27

4

39

9

41

5

32

1

A

13

6

19

18

3

17

6

28

3

28

37

45

5

1

11111111

1111111111

4

33

2

11111111
29

6

23

5

27

22

Column Base Value E
n

A 00 (unweighted) .086

100 .084

26 A78

Behavioral Characteristics of Non-Relevant Profiles

Rank Value Weights Based on Document Frequencies (P2)

Hierarchy 1, Level 2

Figure V-14 .

V-34

Deviation from Expected Value

17

3

18

19

5

16

3

21

3

24

10

32

14

31

4

41

8

32

2

A

16

2

18

1

23

15
4

16

2

23

5

27

9

27

15

32

5

39

8

I 43

1

13

22

34

24

3

34

10

26

5

22

23

4

Column Base Value E
r

A OD (unweighted) .320

100 .342

26 .394

Behavioral Characteristics of Relevant Profiles

Rank Value Weights Based on Document Frequencies (P2)

Hierarchy 1, Level 2

Figure V-15

183

V-36

out of a large set of other documents. As a result, the values of preci-

sion floor measured are significantly lower even though the recall ceiling

values might be the same in both cases. This is the exact effect noted

in Figure V-4.

To complete the current study of search bias, Figures V-16 to V-19

contain a similar behavioral analysis for the standard profiles (P1, P2,

P3) and their counter parts using rank weighting (11, P5). The two

versions of unweighted profiles, one based on P3 vectors and the other

on P
2

vectors, show a large bias in favor of small clusters. In all

other cases, practically no bias is present and it is difficult to draw

further general conclusions. If attention is focused on the behavior

of non-relevant profiles on a particular level and on the range and

distribution of entries in the columns, then it is possible to detect more

or less bias when term weights are based on document frequencies.

However, there is no consensus among levels. It is interesting to note

the peculiar, consistent behavior of one vector (size .3 134) in Figure

V-16. Unfortunately there is no simple explanation for its behavior such

as its profile covering a large number of dissimilar documents in a

"loose" cluster. A similar phenomenon occurs for a few items on level 2.

Another interesting point is the comparison of behavior of the best rank

value profiles and P* and P* vectors. Significantly less bias is noted
2 3

with the latter pair and correlates with the PF-RC performance improve-.

ment in Figures V-6 and V-7.

The study of biased behavior has a direct influence on the SMART

system which includes factors such as cluster size and hierarchy level

in determining a query-profile "correlation". These experiments indicate

.1.S4

.35-

. 30-

.25

.20-

.10-

.05-

- En, Deviation from Expected Value

0

133

1

1
96

83

1

89

134

-.05-
1

123

120

201

1

A

5

115

1
201

1

1

134

1

201

1

127

1

3

148

2

133

3
104 100

5

104

110 114

4

118

Column Profile Description E
n

A P unweighted (made from P) .246
1 3

B P1
unweighted (made from P2) .243

C P3 counts .213

D P2 counts .212

E P* ranks .214
3

F P* ranks .212
2

Behavioral Characteristics of Non-Relevant Profiles

Standard and Modified Profiles, Hierarchy 1, Level 1

Figure V-16

50

.30

.20

.10

Er 0

-.10

-.20

-.30

-.50

r
1

E4 , Deviation from Expected Value

1L..1
8?

2

109

1

143
1

201

1

A

92

112

2

95

5
129

2

92

1

92

1

92

1

201 .167

2

24

5

116

5

105

5

91

3

87

3

96

3

83

3

122 143
1

115
1

Column Profile Description Er

A P1 unweighted (made from P3) .453

B P1 unweighted (made from P2) .459

C P3 frequency counts .529

D P2 frequency counts .530

E Pit frequency ranks .540
3

F Iml frequency ranks .531
2

Behavioral CharacteristicS of Relevant Profiles

Standard and Modified Profiles, Hierarchy 1, Level 1

Figure V-17

196

.14

.12

.08

.06

.04

.02

En 0

-.02

-.04

-.06

-.08

- En, Deviation from Expected Value

13

26

1

13

17

20

24

1

7

26

1

32

3

22

38

2

25

3

33
11

28

11

26

1

24

2

32

5

3

31

12

25

16

25

3
13

16
24

9

28

6

13

25 27

2

31
4

27

6

34
4

5
6

31

13

27

13

21 29

12

27

12

30

10

30
5

52
1

52

Column Profile Description E
n

A P1 unweighteci (made from P
3

) .089

B P1 unweighted (made from P2) .086

C P3 frequency counts .079

D F2 frequency counts .080

E Pol. frequency ranks .078
3

F P4', frequency ranks .080
2

Behavio.cal Characteristics of Non-Relevant Profiles

Standard and Modified Profiles, Hierarchy 1, Level 2

Figure V-18

E
r

E
r

Deviation from Expected Value

4

1

3

A

30

6

24

2

21

6

20

5

28

30

15
29

4

314

5

32

4

Column Profile Description E
r

A P
1
unweighted (made from P

3
) .294

B P
1
unweighted (made from P

2
) .320

C P
3
frequency counts .383

D P
2
frequency counts .380

E P* frequency ranks .404
3

P* frequency ranks .379
2

Behavioral Charlcteristics of Relevant Profiles

Standard and Modified Profiles, Hierarchy 1, Level 2

Figure V-19

19%

V-40

that it is possible to derive profiles (P2, P3, 11, P45) which give un-

biased search performance. Hence at least for matching items on the

same hierarchy level there is no need to include any factors related to

cluster size. Given unbiased profiles, it might be possible to deter-

mine the influence of hierarchy level in a similar experiment which

mixes the nodes from adjacent levels In any case, there is a wide

variety of properties that could be examined using these techniques.

In summary, this section develops an analysis method for identifying

cluster searches which are biased in some manner. The 'method determines

the expected participation of each profile in establishing the search

result; bias shows up as a pattern of large behavioral deviations which

are related to a specified profile property. Applying this technique to

the vectors used earlier provides the following information concerning

bias due to cluster size.

a) Unweighted profiles and rank value jofiles made with a

large base value show a strong bias in favor of small

clusters.

b) Reducing the base value or using a fixed weight origin,

reduces bias considerably.

c) Within the same hierarch. level P P P* and P*

profiles show unbiased performance fnd therefore require

no artifical corrections to the cosine matching fUnctiori:____

as used in the SMART sxstem.

The tests also substantiate the intuitive notions of bias in the previous

section and help to explain the results observed there. In all cases thus

189

V- 42

far, there is a strong correlation between unbiased profiles and good

RC-PF performance.

5. Profile Length

By any of the previous definitions, a profile is an aggregate of

index terms found in clustered documents. As such, their vectors become

longer as cluster size increases. Table V-1 shows that in the first test

collection,level 1 profiles average 700-800 terms to characterize 115

documents and level 2 profiles uses 200-300 terms for 28 documents. These

figures do not include the initial deletion of terms with unit weights

mentioned in Chapter IV. Obviously, considerable disk space is required

to store the profiles. In fact, on the IBM 2314 disk unit, level 1

vectors occupy 7 tracks, level 2 vectors need 13 tracks, and all 1500

documents use only 59 tracks. In this case storage overhead fo, the

clustered organization is 34% of the file size and about 35% of this

(all vectors on level 1) must be accessed to begin a search. Therefore,

in order to make a clustered organization useable in a practical sense,

it is im erative to reduce vector lengths in some manner. The following

experiments show a large number.of terms can be deleted without severely

sacrificing search erformance.

A particularly simple scheme for reducing vector lengths is to

choose a threshold 0 and delete all terms with weights less than this

value, just as in the case of making the "standard" profiles. This pro-

cedure is justifiable since the deleted terms occur only a few times in

their respective clusters and certainly did not cause cluster formation.

In addition, terms with low weights contribute small amounts to

200

correlations, so that presumably the search results remain relatively un-

changed. Furthermore, since the majority of profile terms have low

weights aLyway, the length reduction is great even if a very low threshold

is used. Figure V-20 makes this fact clear by showing the distribution

of term frequencies for the same profiles depicted in Figure V-9. In

combination, the figures show that at least 71% of the profile terms have

individual correlation contributions of less than 0.03 regardless of the

weighting scheme used.

If the above deletion scheme is adopted, a reduced form of profile

P = (pl, p2,..., p) can be represented by

P' T.P-A

pi if pi< 0

A = (al, a2,.., a) where ai = (v-6)

o if

The vector -A is called the deletion vector. Substituting its value into

equation V-2 gives an approximation to correlations using the reduced

profile:

cos(q,P9a.- a Cos(q,P) - /3 (COS(Q,A)

IP1
where

IP + AI

IAI

0IP + AI

(v-7)

When = A, the maximum correlation loss IAIAP1 occurs. However, queries ,

have characteristics quite different from profiles and it is more meaning-

ful to consider the correlation loss due to specific deleted index terms.

Section V.3X. (equation V-3, in particular) establishes that the correla-

tion contribution of a term (weight.pi) is proportional to pi/IPI. Since

0 is the minimum weight retained the maximum loss per term is bounded

201

100

95

90

Percent of Profile Terms

(Cumulative)

6?

o°0 0

0

40

30

zo

rt ti r.13

a
£3 t3C1

a a

25 56 7g----- ido 125 115o

Term Frequency

Level 1, Profile 5 , Weights = Frequency counts

0 Level 2, Profile 14, Weights Frequency ranks

Distribution of Profile Terms by Frequency

Figure V-20

C

V.

V-45

by 0/IPI. (Let 0/IPI be known as the loss ratio whereas values of pi/IPI

are contribution ratios.) This suggests several strategies for obtaining

an appropriate cutoff for each profile. For example, a "constant"

strategy might establish a maximum tolerated loss ratio L and delete terms

such that (00)-4(:L. In other cases, the tolerated loss ratio might

depend on the distribution of contribution ratios (illustrated in Figure

v-9), Specifically considered in Table V-2 are cases in which 0 is a

function of the mean p and standard deviation a of all unique values of

pi/LPI in a given profile.

With the test collections at hand, it is difficult to prove the

superiority of one of these strategies. In all cases 0 varies among pro-

files and in the last two instances, perhaps, its value is more sensitive

to the characteristics of individual vectors. The constant strategy

guarantees that correlations do not change too much for each deleted

term; the others simply assure that a reasonable amount of "correlation

power" is left in the vector. In spite of all this, the basic question

is not one of strategy, but one of showing that a considerable number of

terms can be deleted without damaging .search performance. In this investi-

gation, the third strategy is used and the parameter 6 is changed in the

tests on P* profiles for both levels of Hierarchy 1. To review, these

3

profiles have term weights based on term frequency ranks and provide the

best performance, thus far. Applying the term deletion strategy to the

profiles considerably reduces their length as shown in Table V-3. Their

corresponding PF-HC performance curved are shown in Figures V-21 and V-22.

The reAmlAslAfskilksly_Angsalthata_hree portion of low weight profile

203

V-46

Deletion Tolerated Deletion

Strategy Loss Ratio Cutoff

Constant

F6ction of Mean

Deviation from Mean

6u

Note: Nolo are obtained for each profile separately;

L and 6 are parameters chosen for profile generation

Profile Teri Deletion Strategies

Table V-2

Profile

Property

Deletion Cutoff Parameter

6 = -co 6 xx - 3/2 6 -1 6 = - 1/2

Level 1, 13 profiles

Average length

Rangel of lengths

Percent of original

Level 2, 55 profile

Average length

Range of lengths

812

438-1302

141

75,-200

77

48-107

100 7 9

323 171 70 37

120-672 77-355 33-137 16-76
Percent of original 100 53 22 11

Profile Length Reduction Resulting from Term

Deletion Strategy 3, Hierarchy 1, Profiles,

Table V-3

204

.020

015

.010

00.5

Precision Floor

,.20 .30 .40 .50 .60

Recall Ceiling

Deletion

__Symbol Parameters Average Length

o
o
A

6

6

6

-CO

- 1

- 1/2

812

141

77

(100%)

(17g)

(9%)

Search Performance After Deletion of Profile Terms

Pm. Profiles, Hierarchy 1, Level 1

3

Figure V-21

205

.05

.04

.03

.02

Precision Floor

0 "---41.1
Nif

AEI

V- 48

.20

Symbol

0
A

.30

Deletion
Parameters

.50 6o

Recall Ceiling

Average Length

6 - OD 323 (10%)

6 - 3/2 173.

6 - 1 70 227;

6 - l/2 37 nog

Search Performance After,lleletion of Profile Terms

P* Profiles, Hierarchy 1, Level 2

3

Figure V-22.

V-49

terms can be deleted with onl a small chan e in performance. This con-

firms the earlier assertion that the initial term deletion to make

"standard" profiles do3s not alter performance substantially. In some

ways, the ability to make extensive deletions is a pleasing result since

it implies that the storage overhead and search time can be reduced con-

siderably. For example, with a deletion parameter of 6 = -1, level 1

profiles occupy 2 disk tracks and level 2 profiles occupy k tracks, making

a storage overhead of 7%. Also, using 6 = -1 results in a performance

drap of about 1g - 3%, somewhat less than the improvement found between

P* and P
3
profiles. In other ways, it is unsettling that so many terms

3

can be deleted with so little effect. If it were known that the best

possible profiles were being used, then large deletions would not be

bothersome. On the other hand, all of the profiles considered need a

great deal of improvement in order to reach the test achievable perfor-

mance (Figures IV-8 and IV-9) and If such improvements weaw'made, large

deletions might yield disastrous search results.

In Litofsky's experiments (2), a profile includes only terms which

aam common to all documents in its crown. During clustering, unweighted

vectors (P
1
) are used; however once the hierarchy is made, profiles are

reformatted starting at the lowest level and proceeding upward. In the

reformatting, all profiles with the same parent (filial profiles) have

their common terms removed and retained only in the lart profile.

Appaying this procedure to ail vectors removes many terms and decreases

the storage overhead for the file. To accommodate the altered, structure,

the search strategy is changed so that it follows all paths which match

V-50

the query in any manner. This is an appropriate technique since each

profile term applies to all information beneath it.

Litofsky presents no evaluation data related to his profiles, but it

is possible to approximate these vectors and to evaluate them using the

SMART procedures. Specifically, the highest frequency terms in each

SMART profile are eliminated in order to simulate their transfer to parent

profiles. Using the algorithm developed earlier, the deletion cutoff for

each profile is determined from its distribution of term correlation

ratios. A cutoff 0 = + w)1PI is applied and all terms with weights

larger than 0 are removed. This procedure guarantees that the deleted

terms are common to most members of a filial profile set and therefore

are the terms likely to te removed in Litofsky's original scheme.

Obviously the deleted terms are different in each vector. One additional

difference, of course, is the use of weighted profiles in these experi-

ments. In this regard, the cutoff limits the affected terms to those

with about the same degree of sitmificance in all subordinate information,

This is an important factor in interpreting the eveluation curves in

Figure V-23. In all cases, the test vectors are of the P*(o = -1)
3

variety; the high weight deletion parameter is set at y = 1. On level 1,

the additional deletion removem an average of 15 terms, each occurring in

3 of the 13 profiles. On level 2, an average of 6 terms are remmad,

each occurring in 1.7 of the 4.2 sons in a filial set.

The large performance loss observed in Figure V-23 leads to tale

following observations, First. major profile terms cannot be removed

from some parts of the hierarchy and retained in othersk especially within

268

04

. 02

. 01

Precision Floor

A

0\

LiN
o

-....

NCI

0
"0-0-0-D

V-53.

...011111111m0 0

.20

Symbol Level

Deletion

Parameters

.50 .6o

Recall Ceiling

Average Length

0 1
1
2

2

6
6
6
6

=

=
=

-1,

-1,

-1,

-1,

y=OO
y = 1
y = CO
y = 1

141 (100g)

126 8ag

70 100%

64 91%

Performance Loss Due to Deletion of High Weighted

Profile Terms, Hierarchy 1, P* Profiles
3

Figure V-23

V- 52

the same filial set. All parts of the hierarchy must be treated alike

as shown in the following example. Consider two profiles P and of

which the first contains term T and the second has T elevated to its

parent node. Now consider a query containing T which passes through the

upper hierarchy via some search path and which is matched with both pro-

files. The query matches T in P, but not in P' even though the term is

probably more characteristiC of the latter cluster. In the case of P',

the match is recorded on some previous level and this information might

be carried along in the search, Howeve34 this places a great emphasis

on the problem of relating the importance of T in the parent to its

importance in individual subordinate profiles. This leads to the second

observation namely that individual weights of major profile terms axe

im ortant in differentiatin rofiles from all other vectors, filial or

non-filial, In practice most profiles contain a great many common terms

(e.g., 70) and their weight distribution is the primary differing

characteristic. Under Litofsky's scheme, common term occurrences are

coalesced in the parent in a way that obscures the important weight dif-

ferences in subordinate profiles. The easiest and probably best solution

to this problem is to avoid altering the profile in the beginning. Where-

as Litofsky's scheme may be viable for simple, unweighted profiles, it

is definitely to be avoided in more sophisticated systems.

To summarize, profiles can be sub ected to considerabae deletion of

322ttr,CNltterfweihtlessfruer4ithlittlechange
in theguality of

search output. A number of procedures'are suggested for deriving a dele-

tion cutoff which guarantees that correlations remain reasonably undisturbed.

210

v-

Experiments with one method (0 (p -ci)-1.111) indicate that the deletion

of 80% of the lowest weight terms drops the RC-PF measures only 1% to 3g.

On the other hand, an attempt to remove or combine related occurrences of

high weight profile terms results in much poorer performance. Such pro-

cedures are to be avoided.

6. Frequency Considerations

Up to the present, finding an adequate profile has been handled as a

problem of indexing a "super document" composed of the clustered documents.

Using this analogy, the Pi, P2 and P3 profiles are extensions of conven-

tional indexing techniques. This research suggests modifying the standard

definitinns a bit in order to achieve better results. In all cases,

however, the importance of a term to retrieval--that is, the amount its

match contributes to the total cosine correlation--is non-decreasing with

frequency. Many retrieval experts dislike using a monotonic relationship

between frequency and importance. Consequently, this section considers

profiles in which term il9ortance (correlation contributioa) is not

monotonic but first increases and then decreases with total frequency.

Contrary to expectations, performance decreases under these conditions and

the monotonic relationship is established as a better approximation to the

true association.

As background, consider the work of H. P. Luhn selecting terms for

an indexing vocabulary for a set of documents. Hypothesizing a relation-

ship between frequency and retrieval importance such as that in Figure

V-24, Luhn argues that words with high or low frequency have little

significance and therefore, can be eliminated (3). Recent experiments by

Retrieval Significance

Cutoff Frequencies

V-54

Term Frequency

Luhn's Hypothetical Relationship Between

Retrieval Significance and Term Frequency

Figure V-24

212

V-55

Bonwit and Aste-Tonsman measure the relationship between retrieval results

and the statistical properties of a collection's vocabulary (4). Among

other things, they concur with Luhn that generally the most discriminating

terms have mid-range frequencies.

If the mid-frequency terms are the best descriminators in the entire

collection vocabulary, and therefore are the most important keywords, then

a logical progression is to extend this concept to the mini-vocabularies

of individual profiles. That is, given the profile index terms and their

frequencies, the largest weights should be assigned zo terms with the

middle frequencies. Consequently, the correlation contribution ratio

pi/111 from a matching profile term increases and then decreases as the

term involved has greater frequency. The distribution of contribution

ratios for some of the profiles used in this section are shown in Figures

V-25 and V-26. The method for producing the increasing-decreasing

behavior is given below; for now it is sufficient just to note the general

shape of the curves.

So far, this research has not contradicted Luhn's original concept

as extended to individual clusters or the mini-vocabularies in their pro-

files. Clearly, many low frequency terms can be eliminated without much

effect on retrieval. Deletion of high frequency profile terms was tried

in the previous section and produced very poor results. However, a

small number of very common words (a, the, ase.,.) are removed prior to

experimentation and these are probably.the terms Luhn would eliminate on

the high end of the frequency spectrum.

The remaining task is to evaluate the effectiveness of profiles

whose mid4requency terms provide the largest correlation contributions,

,213

A Contribution Ratio

.16-
Pi_API

50 75 10 0 125 150

Term Frequency

. Max. Weight Number of

Symbol Parameter 0 (rank) Affected Terms

C D (none) 65

o
1

47

0 &me 0 40

0

11

22

35

Contribution Ratios Resulting from Bending

Hierarchy 1, Level 1, Node 5, 105(.5 = -1) Profile, 155 Terms

Figure V-25

2 144

V-56

.25

.20

.15

.10

05

Contribution Ratio

P P I

V-57

10 20

"Bend"

Spbol'axwaeter
Max. Weight

0 (rank)

50 60

Term Frequency

Number of

Affected Terms

A & st 00 (none 31 0

0 4 = 1 26 5

0 22 9

0 C si 0 20 15

Contribution Ratios Resulting from Bending

Hierarchy 1, Level 2, Node 14, P56 = -1) Profile, 62 Terms

Figure V-26

215

V- 58

Ttis condition is approximated in the following experiments by reweight -

ing terms to "bend" the normal monotone contribution curves into an

increasing, then decreasing shape. The input vectors are of the

(P*(6 m -1) variety so weights are based on frequency ranks and some

3

term deletion has occurred. Briefly, a maximum allowable weight 0 is

established for each profile; and any larger term weight 0 + x (x>.0)

has its value lowered to 0 - x. A specific description of the re-weighting

algorithm for an input profile P === (pi, pem, pv) is as follows;

a) calculate the mean p and standard deviationaof all

unique values of contribution ratios pinPl;

b) determine the maximum allowable weight (or bend point)

as e - (A+ co) IP1 where c is a constant parameter

chosen in advance;

c) re-assign term weights according to

Pi if Pi"E 0

12 0 - pi if pi>

Figures V-25 and V-26 show the original and altered contribution curves

for typical profiles (Vco, 1, 0.5, 0). In all cases, the altered pro-

files assign the most importance (largest contribution ratios) to terms

of middle frequencies. The parameter c controls the number of affected

terms.

Evaluation curves for the altered profiles (Figures V-27 and V-28)

suggest that performance drops steadily as the contribution curve

receives greater bending (and 0 decrease). Thus, it appears that

term weights within individualyrofiles should not decrease with.

216

.020

.015

.010

.005

Precision Floor

A
0

DA

V- 59

.20

Symbol

0

o. 0

Recall Ceiling

"Bend" Parameter

= CD (none)
= 1

= 0

Search Performance Resulting from Profiles with Increasing-

Decreasing Contribution Curves-Hierarchy 11 Level 11 16 = -1) Profiles

Figure V-27

217

Precision Floor

\\\cr&

o. *%1:2

,02

19

V- 60

$20 .30 .40 .50 .60

Recall Ceiling

Symbol "Bend" Parameter

(none)
CI & u 1
0 &° 1
0 & in 0

Search Performance Resulting From Profiles with Increasing-

Decreasing Contribution Curves-Hierarchy 1, Level 2, P*(6 0 -1) Profiles
3

Figure V-28

218

V- 61

frequency, but should increase or remain constant. It must be said that

part of the performance loss is due to the fact that the characteristics

of each profile determine its degree of modification. Thus, a term may

have its weight substantially altered in one case and remain unchanged in

another, On one hand, earlier tests advise against afferent treatment

of individual profiles. On the other hand, strict adherence to this rule

neglects natural variations in term importance due to afferent cluster

contents. So, even though Luhn and Bonwit and Aste-Tonsman indicate that

the mid-frequency terms axe the best discriminators within a collectior

vocabulary, this concept does not carry over to the indexing of individual

vectors. In the latter situation, high frequency terms have at least as

much significance as mid-frequency terms. At the very least, term weights

within individual profiles should. be non-decreasing with frequency.

7, Unweighted and Partially Weighted Profiles

From the start, unweighted profiles (P1) .demonstrated poor search

performance and results which were biased in favor of small r.austers. In

spite of this, unweighted profiles merit additional attention because of

_their simplicity and storage economy. :The storage consiAerations are not

minor, in the smArcr system at least, where weights require as much memory

as index term identifiers (a s1360 halfword each). Mils section describes

a number of attempts to correct the .erformance deficiencies of unwei.hted.

profiles while retaining their other idvantages.

To review, Section V.4 develops a technique for detecting seaxch -

results which are biased with respect to a specific profile property.

Tests made on unweighteci profiles show such searches favor the retrieval'

21.9

;

V- 6 2

of small clusters regardless of their relevancy. A straightforward scheme

to remove bias is to alter the cosine matching function to give larger

correlations when large clusters are involved. Specifically, given a

profile P of size S (number of documents in its crown) and a query Q, a

modified cosine value is computed from the equation

MCOS(Q,P) [COS(Q,P)] (v-8)

where is an experimentally determined constant. Figure V-29 shows the

effect of using the MCOS ftuiction on unweighted profiles for Hierarchy 1,

level 1; the P* curve is included for comparison. Figure V-30 shows the

3

data related to biased behavior ir the searches. Combining this informa-

tion yields the following Observations. First, the modified cosine does

improve performance slightly as T increases and. at the same time reduces

bias toward small clusters. It is doubtful, however, that much additional

improvement can be made by increasing T further. Second, the behavior of

P/ profiles with T .2 is an example of unbiased, but poor search

results. Earlier tests show that good performance is free of bias;

obviously the converse does not hold. Third., even though Figure V-30

shows no strong size bias for >0, bias may exist with respect to

another profile property. This is a likely situation since the range of

deviations from En is large and. has a broad distribution of entries.

Additional investigation of bias in unweighted profiles led to the

following insight and experiment. Because the documents are grouped, some

terms in each profile are more characteristic of a cluster than others,

In fact, this work has indicated that a large number of terms are completely

unnecessary. However, an unweighted Vector assigns equal significance to

all terms; in a vector of length k all terms have a correlation

Precision Floor

.020

.015

.010

.005

V- 6 3

.20 .30 .40 .50 .60

Recall Ceiling

Symbol Profile Description MCOS Parameter

0 P unweighted0 P11 unweighted

ID P., unweighted
A 1), weighted

3

Performance of Unweighted Profiles Using a Size Dependent

Cosine Function-Mierarchy 1, Level 1

Figure V-29

.35

.30 -

.25 -1

.20 -

.15 -

. 10 -

.05 -

E
n

0

n
i

E , Deviation from Expected Value
Ni n

3

96

83

92

83

60

110

3

108

93
2

75471

54
1

1-25-
3

120

3

201

0

130
2

122

3
103

201

103

112

152

127

1

148

2

00

5
1114

14.

CI A

MCOS

Symbol Profile Description Parameter E
n

() P unweighted

() P1 unweighted .

P1 unweightedCI

weightedA i

Behavioral Characteristics of Non-Relevant Profiles

Unweighted Vectors, Size Dependent Cosine Function

Hierarchy 1, Level 1

Figure V-30

T.' 0 .246

T ° .1 .234

T ° .2 .231

.214

V-65-,.

contribution of 1/1a, an amount which is considerably smaller for

longer profiles (large clusters) than shorter profiles (small clusters).

Thus for the same number of matching profile and qUery terms, the shorter

profile obtains a larger correlation. Furthermore, prior to deletion,

all Rrofiles contain about the same set of terms so it is quite probable

that several query-profile correlations result in the same number of

matching terms. In the case of P2 or P3 vectors, these terms are

differentiated by their weights; obviously this is not the case for P1

vectors. Consequently, in usual circumstances, small clusters (hence,

short profiles) represented by unweighted profiles usually receive high

correlations and are expanded, regardless of their relevancy. If the

above.conjectures are true, then selective term deletion should improve

performance by reducing the occurrence of query-profile matches which

involve the same number of terms and by making the values of 1/01i more

uniform throughout the profile collection.

In order to test this idea, unweighted profiles are made from

weighted profiles after deleting unimportant low frequency terms as

described earlier. Specifically, Fl(o m .1) vectors have the weights

of all remaining terms set to a constant value. These unweighted profiles

are denoted by 11(6 m -1). Since each vector contains only those

terms which are most characteristic of the corresponding cluster, it is

much less likely that correlations involve the same number of matching

terms. Figures V-3l and V-32 compare the performance of unweighted pro-

files with and without such term deletion. Figures V-33 and V-34 contain

the data related to their bias behavior. On both levels, a performance

improvement and unbiased behavior ic noted so the previous conjectures

,.223

a. .

.020

.015

010

.005

Precision Floor

V-766

0

.20 .30 .40 .50 .6o

Recall Ceiling

Length

37mbol Profile Description Ave. Std. Dev.

() p 6 = -co (no deletion)
1

0 P* 6 = -1 (from
3

P*)
1

0 P* 6 = -1
3

A P* 6 = -co (no deletion)
3

Performance of Unweighted Profiles with Term Deletion

HierarchY 1, Leverl

812 200

141 28

141 28

812 200

Figure V-31

Precision Floor

A
0

C) \\40:N

NN
03

0\ N

\ \311

\E3 A\AJNA

o,o

V-67

.30 .40 .50 .60

Recall Ceiling

Length

Symbol Profile Description Ave. Std. Dev.

0
0
0

P
1

6 es -CO

P* 6 - -1
1

Pt 6. -1

(no deletion)

(from P*)
3

323

71

71

136

23

23

.35

.30

.25

.20

15

.10

.05

E
n

0

-.05

-.10

-.15

-.20

-.25

E
n

Deviation from Expected Value

83
1

142

4

104

6

92

1

Symbol Profile Description E
n

0
0
0

A

P
1

6

P* 6
1

P* 6
3

P* 6
3

= -00

= -1

= -1

= -CO

(from Pii)

.246

.205

205

.214

Behavioral Characteristics of Unweighted Profiles

With Term Deletion

Hierarchy 1, Level 1

Figure .V-33

226

.12

.10

,o8

.06

.04

.02

-.02

-.06

-o8

E. Deviation from Expected Value

15

19

3

38
1

13
2

22

2

21

4

23

4

20

8

5
4

18
6

25

16

27

5
33

15

31
8

23

10

35 31

34
12

43

31

4

22

4

34

6-

30

12

373"
1

25

3

31

43

4

31

13

V-69

22

13

28

13

39 .

2

13
3.

21

13

27

12

30

52

a A

Symbol Profile Description En

0 P
1

6 = -CO .089

p* 6 - -1 (from P5)
1

.082

E3 p* 6 - -1 .079

3
.078

3

Behavioral Characteristics of Unweighted Profiles

With Term Deletion

Hierarchy 1, Level 2

Figure V-34

221

V-70

appear valid. In fact, ithe performance difference between the shortened

weighted and unweighted vectors (curves for PI(6 -1) and P45(45 = -1))

is much smaller than expected. itds suggests, perhaps, that fine frequency

distinctions among important index terms are much less valuable than selec-

tion of good index terms themselves. The selection procedure used here

(deletion) is crude and does not attempt to obtain good index terms, but

tries to eliminate bad ones. However, if an independent procedure can be

found which selects only pertinent terms, then it may be that complex

weighting schemes are completely unnecessary.

From the previous experiment one concludes that once noise terms are

removed from a document or profile, fine term distinctions based on fre-

quency are not particularly useful. In fact, a few broad weight cate-

gories might provide as good a performance as a complete weight range;

hence the notion of partial weighting as opposed to the previous full

range weighting. In orier to test partial weighting, the terms in

13*(6 -1) vectors are placed in one of four weight classes by the
3

following procedure. Given a profile, new values of u and°. are computed,

and the smallest (MIN) and largest MAX) remaining weights are determined.

Bounds on the weight classes ares

Class Lower Limit Upper Limit

1 MIN

2 61-41) IPI IP I

3 I P. I (11411) IPI

4 (why) II MAX

223

V-71

Finally each term Is aSsigned a new weight equal to the midpoint of the

class indicated by its original.weight. Figure V-35 compares the perfo;-

. . .

mance of P*(61 -1) profiles-with full, partial, and no weighting. The
3

results obviously substantiate the usefulnesa of partial weighting, at

least for this hierarchy. This is not surprising considering thit
. .

a) the use of weight classes eliminates correlation

domination from very high frevmmicy terms and

t) deletion of low weight terms removes many terms that

. do not play a part in causing cluster formation.

As expected, unweighted vectors provide somewhat poorer performance in

spite of the improvements caused tor term deletion. More surprising is

the fact that only 4 weight classes appear nearly equivalent to a full

range of weights. A 2-class scheme (LOW and HIGH) could be expected to

provide performance slightly inferior to 4 classes. Two classes would

be the easiest to implement in the SMART system since the sign bit of .

term identifiers (concepts) could denote the weight. An interesting way

of producing weight classes in a document or profile might be to assign the

weight w to a term of frequency f according to the formula:

w MAX fit), rlogjl -y) (V-9)

where x and y are constants. The logarithm function smoothes out the

weight range (similar to the use of ranks); the ceiling function produces

a number of weigfit classes (1, 2,...); and y acts a deletion cutoff if only

terms with positive weights are retained. This scheme appears to produce

a vector with all the desirable properties mentioned so far and uses an

extremely simple mechanism. Und.oubtedly, there are many such schemes.

229

.04

.03

.02

Precision Floor

cs\
CiN

o(3,

\43

V--72

Symbol ,

A
0
*

.20 .30

Level Symbol Level

Recall Ceiling

Profile Description

1
1
1

0
0
N7

2
2
2

Full weighting
Partial weighting (4 classes)
Unweighted

Performance of Profiles with Full, Partial, and No Weights

Hierarchy 1, P*(6 = -1) Profiles
3

Figure V-35

230

This section describes a set of experiments with unweighted. and

partially wei hted profiles. The results indicate that

a) term deletion in unweighted profiles causes significant

performance improvement and reduces their bias with

respect tosluster size and

b) malLasjar11402,ga,JDolritla
(4 classes) can achieve

:performance equivalent to full weighting

with some stomp economy.

Whether or not a system can take advantage of the efficiency in partial

weighting may depend on implementation factors such as machine word size

and the number of bits allocated to term identifiers. Otherwise the

choice lies at the extremes of no weighting or full range weighting. In

either case, the fact that a small number of weight classes (1, 2,...)

works so well points out that fine distinctions among term frequencies

is not needed for document retrieval.

8. Summary of Results for Hierarchy 1

The descriptions, methods, test procedures, and results presented

in the preceding sections all deal with hierarchy 1 and cluster-oriented

evaluation. These are used because the hierarchy contains the number and

size of nodes considered typical and, because the evaluation is independent

of a number of search parameters. The large number of options to be

tested make it impossible to examine them using all three hierarchies

and both evaluation methods available. At this time, it is appropriate

to summarize the findings for Hierarchy 1 and to select several options

for more complete testing in the other clustered collections. Below, the

findings are listed by section.

A. Standard. Profiles

1) Weighted profiles perform significantly better than

unweighted profiles, P3>Pi and P2>-P1.

2) Term weights based on document frequency appear equiva-

lent to weights based on total term occurrence, P3,1:, P2.

3) A slight performance advantage is observed for unweighted

profiles made from the shorter P,. vectors as opposed

to those made from the longer P3 vectors.

B. Rank Value Profiles

1) Base values should be kept small to maintain distinctions

among terms; however too small a value biases search

results,

Use of a minimal weight origin, constant for all pro-

files, enhances performance, eliminates bias, and avoids

the problem of base value selection.

3) Weights based on frequency ranks avoid correlation

domination and. give better performance than weights

based on frequency counts, P5>P3 and pt>P2.

C. Biased Search Results

1) Unweighted. profiles and, rank value pl:ofiles using a

large base value show a definite bias in favor of small

clusters. Reducing the base value decreases the bias

and, to some extent, is accompanied by a performance

improvement.

232

V-75

2) P
2'

P
3'
P'* and P* vectors show very little bias in their
2 3

search performance within the same hierarthy level.

3) PF-RC performance improvement has a high correlation

with a reduction of bias; however, reducing bias does

not necessarily produce an automatic performance

improvement.

4) There is no need to include cluster size as a factor

in determining query-profile correlations within the

same hierarchy level.

D. Profile Length

1) A large number of low frequency terms can be deleted

without greatly reducing search performance,

P*ZP*(6 = -1).
3 3

2) Major profile terms cannot be selectively deleted nor

transfered. to a parent profile

P*(6 -1.)> P*(15 = -11 = 1),

3 3

E. Frequency Considerations

Term weights within ind.ividual profiles should be non-

decreasing with frequency.

F. Unweighted. and Partially Weighted Profiles

1) Term deletion improves performance and. eliminates bias

when using It/Weighted profiles, PI(o = -1)>P1,

2) A limited number of weight classes give performance

which is equivalent to using a full weight range.

3) Fine term distinctions based on frequency are of limited

appropriateness in gauging retrieval significance.

233

It is easy to see that a numter of findings are related. For example,

vector length affects storage considerations and tilt performance of

unweighted and partially weighted profiles. Another example, frequency

ranks and weight classes are both techniques for reducing correlation

domination. And another, the choice of base value (or weight origin) or

the use of unweighted loctors strongly affects the amount of bias in

search results.

The profile types selected for use in the confirmation tests on

Hierarchies 2 and 3 are P
3

9 P' * P*($5 = -1), and P*(45 = -1). The
3 3 1

P
3
vector is a standard profile serving as a basis of comparison. The

P* profile showed the best performance of any in Hierarchy 1. The
3

remaining veetors are more economical versions of the P. All contain

those qualities found to be most beneficial thus fars unbiased behavior,

lack of correlation domination, and storage economy.

9. Confirmation Tests

Tti verify the previous results, a subset of the experiments are

repeated on Hierarchies 2 and. 3. If such confirmation tests yield the

same general results, then the conclusions drawn from the earlier experi-

ments are greatly strengthened. As mentioned earlier, four types of

profiles are used in the confirmation tests thus making possible to

investigate:

a) the superiority of relating profile term weights to

frequency ranks rather than frequency counts (P*
3

versus

P3);

234

V-7-7

b) the ability to delete a large number of low weight

profile terms without a large performance loss

(P*(45 = -1) versus P*); and
3 3

the relative performance of shortened profiles with and

without term weights (P1(6 -1) versus P5(6 = -1)).

.The results of these tests determine, to a large extent, the best profile

for searching a clustered hierarchy.

Since Hierarchies 2 and 3 have received little attention, it is

appropriate to review their properties as described in Section IVO and

summarized in Table V-4. Hierarchy 1, used exclusively so far, has low

overlap (7%) and document clusters which approximately fill one disk

track (28 documents). Hierarchy 2 has high overlap (91%) and document

clusters of about the same size. Because of the high overlap and the

fact there are only a few nodes on level 1, it is possible to make only

very broad distinctions among them. Hierarchy 3 has no overlap and

averages 14 documents per cluster. Since there are a moderately large

number of nodes per level, the search algorithm should have less

difficulty distinguishing relevant profiles than in the other hierarchies.

In all cases the shortened profiles (6 -1) have about 20% of the

length of their original vectors.

The confirmation experiments employ both cluster-oriented evaluation

(RC-PF data gathered from both levels) and SMART evaluation (P-R data

frta narrow and broad searches) as described in Section IV.4. Consequent-

ly, each of the 4 profiles types is involved in 4 searches in 3 hierarchies,

making a total of 48 performance curves. Because of the many variables

235

V-78

Property

1

Hierarchy

2 3

Level 1 (Profiles)

Number of nodes 13 6 28

Average crown _115 446 50

Average sons 4 16 4

Average profile length, P3 or 9 812 908 526

Average profile length,

or PI(o = -1)
3

141

(17%)

207

(23%)

103

(20%)

Level 2 (Profiles)

Number of nodes .55 94 103
Average crown 27 28

Average profile length, P or P*
3 3

323 311 197

Average profile length,

3
pl(6 = -1) (2z%) (2Z%) (24%)

Level 3 (Documents)

Number of nodes 1500 2679 1400

Overlap* 7% 91%

*Overlapa ratio of total nodes on level 3 to collection size (1400)

less one.

Summary of Hierarchy Properties

Table V-4

236

V-79

involved and the large number of curves,..the actual plots are included as

a special section (ArTendix C). A result summary is contained in Table

V-5 which shows the relative merit of each profile in each test case.

For example, in Hierarchy 3 and for a broad iMART search; the P5 profiles

perform best, and P
3

and P*(6 r. -1) vectors give equivalent perfor-
. 3

mance and share an average rank.of 24, and the P*(6 = -1) profiles

performed poorly. The individual results for each case do not differ

greatly from the overall results, thus imitmiting that the findings are

stable and not coincidental. Consequently, it is likely that the effects

oteerved here occur in most other document collections tesides the

Cranfield. Merelative merit of each profile is about the same through-

out all hierarchies, so the following summary conclusions can be made.

a) Weights of_profile terms should be based on frecsensy

ranks, (P5>PP3). The use of ranks is an effective way

of reducing correlation domination and bias in search

results.

A lar e number of low wei ht rofile terms can be deleted

without a large performance loss, (12**>4
3 3
It; P*(45= -1).

3

For the chosen deletion parameter, the performance loss

from using about 20% of the original terms is about the

same as the performance gain made by switching term weights

to ranks. Whereas this amount of deletion is probatay

not optimal, it does indicate that a large length reduc-

tion does not lead to disastrous search results.

V-80

Hierarchy

and Profile Type

Cluster Evaluation*

Level Level

1 1

Smart Evaluation*

Narrow Broad

Search Search

Hierarchy 1.

P*
3

23

3

1

3

2

4

1

3

.2

4

s.

1

3

2

4

1

2

5

4

Hierarchy 2

P*
3
P
3

P56 ow -1)

Pp = -1)

2

2

2

4

1

24

24

4

1

2

3

4

1

2

3

4

Hierarchy 3

P*
3
P
3

1%51)
3

Pt(6 ... -1)

1

21

24

4

1

2

3

4

11

11

)

4

1

24

24

4

Average Rank
.

P *

3

P
3

.1)
3

la

2.3

2.5

*Entries denote merit in terms of rank:. first, second, etc:

Ties are given the average rank:.

Relative Merit of Selected Profiles in Confirmation Tests

Table V-5

238

V- 81

c) Shortened =weighted profiles_performed poorly in every

case and should not be used, PI(o = -1) >,

However, the previous sections suggest that complex

weighting schemes may not be necessary.

In general, the findings for Hierarchy 1 are substantially confirmed by

these tests, a possible exception being the case of unweighted vectors.

In the initial collection the P*(6 -1) profiles gave promising per-
1

formance (still low), which did not show itself in the other hierarchies.

What is missing from this discussion naturally, is the description

of just how profiles are ranked on the basis of relative merit and what

constitutes a significant difference in performance. A detailed discus-

sion of these problems is reserved for Appendix C, but a summary is as

follows. Generally a 2;4-0 difference in measures (PF-RC, P-R, MR, NP,

etc.) is considered significant. This is about half the amount used in

earlier SMART experiments. However since 4 times as many requestg are

involved here, conclusions have alout the same level of confidence. In

cluster-oriented evaluation, the PF-RC curves are compared on a point-to-

point basis and judgment rendered on the merit of each profile type.

Since the curves are generally parallel, this technique poses no problems.

SMART's precision-recall plots and accompanying normalized measures pre-

sent some difficulty because the number of document and profile correlations

differ among searches. At times it is necessary to determine whether

perfanaance should be traded for cost (fewer comparisons). The following

criteria are used in these circumstances:

239

V- 8 2

a) the most desirable profile is that giving superior search

performance for the least effort;

) for the same number of correlations on each level, merit

is determined directly from P-a values and the normalized

measures;

c) profile correlations weigh much more heavily than docu-

ment correlations in determining "equal effort"; and

d) a 2% difference in normalized measures or a ig difference

in P-R curves is considered significant and is offset

only by substantially less search effort (one or fewer

profile correlations).

Using this procedure, the relative merit of each profile type is obtained

for each hierarchy and the entries in Table I1r5. This data, then, leads

to the summary conclusions stated earlier in this section.

10. Discussion

This chapter presents a long series Of experiments related to profile

construction. In the process, new analysis and evaluation methods are

developed which have applications to other studies as well. The results

of the initial experiments_are adequately summarized in Section 8; Section

summarizes the confirmation tests Here it is sufficient to sa that

techniques have been developed for constructing an adequate and economical

profile for a clustered document collection.

This does not imply that there is no room for improvement. If the

best precision-recall curves are compared with a similar curve for a full

search (Figure 1V-5), cluster searching appears to give very poor

. 240

V- 8 3

performance. However, it must be said that cluster searching is not

designed for high recall work, but for flexibility and cost-performance

tradeoff. Still, a comparison of the best PF-RC curves with the best

achievable results for the same collections (Figures IV-7 and IV-8) show

that profiles, search strategies, and correlation functions could be

greatly improved.. Consequently, under the cuxrent situation, search

strategies should be designed on a minimum exclusion principle. That is,

only nodes with very low correlations should be excluded from considera-

tion while the rest are expanded. This contrasts to the current minimum

inclusion philosophy which expands as few nodes as possible to provide a

user with his requested number of documents. The former procedure results

in greater cost, but more effective retrieval. Hopefully on larger collec-

tions (100,000 items), 90% of the documents could be easily excluded while

the rest require detailed examination.

241

7;1

V- 8 4

References

1. L. B. Doyle, Breaking the Cost Barrier in Automatic Classification,

SDC Paper SP-2516, July 1966.

2. B. Litofsky, The Utility of Automatic Classification Systems in

IS&R, Doctoral Thesis, University of Pennsylvania, 1968.

3. IL P. Luhn, The Automatic Creation of Literature Abstracts, IBM

Journal of Research and Development, April 1958.

Paper also reported in: C. T. Meadow, The Analysis of Information
Systems, John Wiley & Sons, New York, 1967.

and in T. C. Lowe, D. C. Roberts, On-Line
Retrieval, RADC Technical Report TR-69-304
from Informatics, Inc., November 1969.

4. K. Bonwit, J. Aste-Tonsman, "Negative Dictionaries," Report ISR-18
to the National Science Foundation, Department of Computer Science,

Cornell University, 1970.

.242

VI-1

Chapter VI

File Maintenance Experiments

1. Introduction

File maintenance (or updating) is the process by which new documents

are added to the data base, including whatever re-organization is required

to maintain standards for search time, storage economy, and quality of

retrieved output. A good updating procedure is especially important in

a clustered collection in order to prolong the useful life of the document

classification. However, Chapter III points out that no hierarchy can

stand unlimited growth without changes to its profiles and structure. One

part of file updating, then, is the alterations to be made to individual

profiles. Presumably, altering a profile shifts it to a position within

the cluster which more adequately represents the combination of new and

old documents. These experiments examine five alteration procedures for

each profile on a document update path:

Original Profile Type

Maintenance Procedure Wei hted r565 -1)

Construct completely

new profiles

Alter weights of only X

existing profile terms

Use existing profrlf, X

(add document to

crown only)

Its_p_mose of the firs.thischaptersteraine

file maintenance schemes are most effective.

218 243

X

VI- 2

At some point, file maintenance requires changes to be made in the

hierarchy structure because new documents alter the character of the

collection and ultimately cause the original classification to lose its

value. For example, 'clusters may become too 'large or polarized and cannot

be represented adequately by a single profile. Or many additions in one
''

part of the collection might indicate a more logical classification would

split various clusters and combine their parts in a different way. With-

out re-structuring (re-clustering), the hierarchy degenerates quite apart

from any changes made to profiles. The purpose of the second study is to

determine how quickly the retrieval quality (precision-recall) diminishes

as the file grows. The rate of hierarchy degeneration is important

because it determines the interval between full or partial re-clustering

of the document collection.

The experimental approach is to divide the document collection into

two groups. One part is clustered and the other is used to update this

"original" hierarchy. After updating, the query collection is processed

through the combined collection while recording performance statistics

(PF-RC, P-R, etc.). Since each request has the potential of recovering

all relevant items, performance differences are directly due to the up-

dating scheme and to the proportion of the collection in the updating

group. If the size of the updating group is held. constant, then the

relative value of the profile maintenance procedures can be studied.

Choosing a single maintenance procedure and varying the size of the up-

dating group shows how the quality of the hierarchy changes with the

addition of new items. The test results show the superiority .of using

244

VI, 3

weighted profiles, but indicate very littld difference among the various

profile maintenance procedures. The policy of modifying the weights of

only existing profile tnms appears to be a good compromise in this

regardl,Finallarteredcollection may increase 25%-50% before

sufficient hierarchy degeneration occurrs to require re-clustering.

2. Method

The following experiments use two partitions of the Cranfield 1400

documents: one separating documents into two equally sized sets referred

to as A and. B, and. another which divides B into the halves C and D. The

result is four collections for testing file maintenance procedures:

Clustered Collection
Update Collection

Set lg of Total Set % oiTotal

AUB 100% 0

AUC 75% D 25%

A 50%
B 50%

25% AU0 79%

The partitions deliberately maximize the number of queries affected by

updating. For example, if 7.9% of the total Cranfield collection is to be

clustered (set AUC), then to the extent possible, 75% of the relevant for

each request are placed in that set, leaving 25% of the relevant for each

request in the updating set. Consequently, searches take full advantage

of the large number of queries and reliatay show the consequences of file

updating. In particular, the variance of behavior among the queries is

greatly reduced,

VI-4

The collection partitioning algorithm is a manual procedure for

dividing a set of documents into two non-overlapping sub-sets, each con-

taining half the relevant for each query. .Initiallyithe scheme is applied

to all 1400 documents to generate sets A and'B and then to set B to obtain

subsets C and D. Actually, the algorithm considers only relevant docu-

ments and splits the non-relevant items afterwards. To control Overall

characteristics, queries are processed in order of decreasing number of

relevant documents. Given a specific query, counts are made to determine

how many of its relevant are already assigned to each partition set. The

remaining relevant are assigned so that

a) for the entire query, all relevant are split evenly

into each partition set;

b) relevant documents with consecutive numbers are not

assigned to the same set; and

c) the cumulative number of items in each partition set

is approximately the same.

Condition b is required since the Cranfield collection is arranged in

subject order (somewhat). Condition c takes care of requests with an odd

number of rEaevant. At times, previous assignments must be reworked to

accommodate new queries; the frequency of these "backtracking" instances

is reduced because of the order of query processing. In the partitions

made for the test experiments, about 24 of the total assignments could not

be made by the above criteria without extensive, prohibitive backtracking.

Even though "erroneous" assignments are made in these cases, the collections

are sufficiently accurate for their intended purpose. Appendix B lists

the members of sets A, C, and D.

246

VT-5

The classification parameters (Dattola's clustering algorithm) for.

these exieriments are designed to produce clusters similar to those of

Hierarchy 1 in the previous chapter. A reasonably constant cluster size

is maintained to provide comparable data coliections and to simulate

adherence to an operational guideline of holdik; to an optimal cluster

size (if an optimum were actually known). These particular paradeters

yield clusters of moderate size and overlap and are considered suitable

for larger files. Hierarchy 1 represents a collection without updating;

its performance statistics are those which would be obtained if an updated

collection were freshly clustered using the chosen parameters. The

hierarchies generated from the other sets are subjected to various amounts

of updating. In both cases nodes are characterized by two types of

profiles; 11(o = -1) vectors forweilthted updating and PI(o = -1)

vectors for unweighted updating. Shortened profiles are selected because

of their smaller storage requirements. Otherwise the profiles are those

giving the best performance for weighted and unweighted vectors. Table

VI-1 compares the properties of the four clustered collections before

updating occurs. In general, the goal of having hierarchies with similar

characteristics is achieved, allowing for the sizes of the collections

involved; The most unfortunate difference is the amount of overlap, being

considerably higher for Hieratchy.4.

The update procedure for each document begins by determining its

update path, that is, the best matching node on the first hierarchy level

and. the best matching node among its sons. As before, the cosine function

is used for matching. If no profile alterations are involved, the new

241

Hierarchy

VI-6

Property 1 4 5 6

Cluster set AUB C A D

Percent of original Cranfield 100% 75% 50% 25%

Collection size 1400 1050 700 350

Level 1 (Profiles)

Number of nodes 13 9 6 3

Average crown 115 133 128 118

Average profile length 141 149 148 150

Average number of sons 4 4 4 4

Level 2 (Profiles)

Number of nodes 55 36 24 12

Average crown 27 38 34 30

Average profile length 70 86 82 83

Level 3 (Documents)

Number of nodes 1500 1367 81 360

Overlap 7% 30% 17%

Properties of the Original Clustered Collections Before Updating

Table VI-1

. 248

VT-7

document is simply associated with the selected nodes as described in

Chapter III. If profiles are modified or re-constructed, there are several

options to exercise. In occasional updating or in real-time operation,

profiles are modified each time a document is processed. If used in these

experiments, profile changes and search results would depend on the order

in which documents are added. Insteadla batch update mode is considered

in which the update paths are determined for all new items and all profiles.

are altered afterward, Because each profile is changed only once, the

final hierarchy configuration is independent of the order in which

documents are added. The extent to which these experiments predict

behavior over many smaller batch updates is unknown. A few documents

would probably join different clusters, however the number of such in-

stances is expected to be small. If profiles are completely re-made

after updating, processing simply follows the rules laid down in Chapter

V. That is, the document vectors in a node's crown are appropriately com-

bined and perhaps re-weighted; and a term deletion cutoff is applied. Such

vectors.represent the best profiles that can be constructed for the updated

hierarchy. In general, new profiles are longer than their previous versions

and cause fragmentation of disk storage since the new vectors cannot

exactly overwrite their predecessors. In the case of weighted profiles,

there is another file maintenance option which alters the weights of only

the existing profile terms. Since no new terms are added, the vectors

maintain their original length and can overwrite their predecessors.

Specifically, consider a set of update documents U = 1)2,...,
Dx}

for a node whose profile is P*(ô = -1).
3

VA 9

The updated profile is

VI-8

H*3 (6 -1) P*(6 -1) (i):EDi
3.

The operatoredenotes normal component-wise vector addition, but

limited to only non-zero elements of the left-hand operand. The resulting

profile is a hybrid in that it combines the eteights of a vector (based

on frequency ranks) with the term weights of 2:Di (summed frequency counts).
Mu.

There is no easy way to remove the hybrid weighting property without pro-

ducing a completely new vector. On one hand, ZDi could be converted to

use rank weighting and then added to the original profile using the®

operation. The result is still not a true P* vector. Instead of a partial
3

solution such as this, the complete hybrid is used in this study. Some

consequences of this choice are discussed in Section VI.3.

Because the experiments are conducted with weighted profiles first

and then with unweighted profiles, there are two different versions of the

updated collections. Table VI-2 compares the properties of the two final,

updated collections and shows that

a) the average new profile length differs little .

in the two collections;

b) there are slightly fewer relevant nodes when weighted

profiles are involved; and .

c) there is 62%40% agreement on the first node of the up-

date path and 47%40% agreement on the complete path.

Comparing collections before and after updating reveals significantly

longer profiles (new) and a lower percentage of overlap. The reduction

in overlap is due to the fact that new documents are associated with only

one node on each level. A fact not shown in the talle is that the amount

Property

Update set

% of original Cranfield

Level 1 (Profiles)

Number of nodes

Average crown

Weighted updating

Average new profile length

Average relevant nodes

Unweighted updating

Average new profile length

Average relevant nodes

Agreement in update path

(first node only)

Level 2 (Profiles)

Number of nodes

Av.:rage crown

Weighted Updating

Average crew profile length

Average relevant nodes 5.3 5.3 4.4 .3.4

Unweighted Updating

Average new profile length 70 89 99 127

Average relevant nodes 5.3 5.4 4.6 3.5

Agreement in update path 47% 52g 60%

(both nodes)

V1-9

Hierarchy

1 4 6

0

Qg 25% 50% 75g

13 9

115 172

141 158

6 3

245. 468
,

185 245

3.9

141

3.9

3.5

156

3.5

2.8

185

2.9

2.0

2.1

62% 71% 76%

55 36 24 12

2? 48 63. 117

70 86 105 118

Leval 3 (Documents)

Numter of nodes 1500 1727 1519 1410

Overlap 7g 23% ag 1%

Properties of the Updated Collections

Table VI-2

251

VI-10

of increase in cluster size varies considerably about its expected value

for each hierarchy. In other words, the update scheme causes some clusters

to receive many additions, some to experience moderate growth, and others

to have only a few changes. However, the amount of growth varies more

widely if unweighted profiles are involved. In all cases, increases in

cluster size are not skewed toward many large increases and a few small

increases or vice versa. Instead the distribution appears uniform, but

with a large standard deviation. Uniform growth is not completely un-

expected because of the way the collection is partitioned, but it is not

a direct consequence of the partitioa either.

3. Profile Maintenance Procedures

As new documents are added to an existing hierarchy, the nature of

clusters changes also. That is, they contain different information or

heavier concentrations of older information, etc. A logical move, then,

is to alter cluster profiles to reflect this change in character. The

purpose of the experiments in this section is to determine which erofile

maintenance procedure is most beneficial. Hence, the constant quantities

are the amount of file updating and the assignments of particular new

documents to clusters within either the weighted (WTD) or unweighted

(UNWTD) profile hierarchies. The variable quantity is the method of pro-

file alteration itself; several schemes are discussed in Sections 111,5

and VI.l and are denoted as follows:.

NEW - make completely new profile vectors, adding new tezms,

re-weighting, etc.;

. 252

ALTER - alter weights of existing profile terms only (i.e.,

produce hybrid vectors); and

NONE - no change to the existing profile terms.

In all cases, new documents are properly linked to the hierarchy so that

all items are retrievatae during searches. Figures VI-1 to VI-5, report

the precision floor and recall ceiling statistics for searches using

these profile maintenance procedures in the various hierarchies. Only

level 1 of Hierarchy 6 is omitted because it contains only two independent

data points. On each level, the results are amazingly consistent.

Obviously updating a collection with weighted profiles is superior to

updating a collection with unweighted profiles, just as predicted by

the distribution of relevant clusters (Table VI-2). This finding closes

the case against the use of unweighted profiles in almost any circum-

stances. Here, the unweighted updated collections perform poorly regard-

less of whether the old profiles or completely new unweighted profiles

are used.

Considering just the weighted profiles, the new (NEW) and hybrid

(ALTER) vectors provide nearly equivalent performance even though the new

vectors are often substantially longer. In most cases the additional

terms are those just below the 6 a -1 cutoff in the original profiles

before any updating occurs. Hence, the terms have only a marginal effect

on performance. It is quite advantageous that the hybrid and new vectors

are nearly equivalent since

a) NEW vectors represent the best reasonable profiles that

.can be made for an updated collection and.

253

.020

.015

.010

.005

Precision Floor

VI-12

o

SymbD1

Maintenance
Procedure

0

Recall Ceiling

Average
Profile Type Length

A.
NEW WTD P*(6 = -1) 158

3
C) ALTER WTD P*(6 = -1) 149

3
13 NONE WTD

3
P*(6 = -1) 149

A NEW UNWTD P*1 (6 = -1) 156

0 NONE UNWTD P*(6 = -1)
1

149

Comparison of Profile Maintenance Procedures

Hierarchy 4, Level 1, 25% Updating

Figure VI-1

254

1

.020

.015

.010

.005

Precision Floor

Ao

VI-13 .

Symbol

V

0

A

0

.40

Maintenance

Procedure

,NIMENII=r=11.

.70 .80

Recall Ceiling

Average

Profile Type Length

NEW WTD P*(6 = -1) 185
3

ALTER WTD P*(6 = -1) 148
3

NONE WTD P*0 = -1) 148
3

NEW map P*(o - -1) 185
1

NONE UNWTD P*1(o = -1) 148

Comparison of Profile Maintenance Procedures

Hierarchy 5, Level 1, 50% Updating

Figure VI-2

. 255

.04

.02

.01

Precision Floor

ger

.20 .50 .6o

Recall Ceiling

Maintenance Average

Symbol Procedure Profile Type Length

V . NEW WTD P*(6 = 1) 86
30 ALTER WTD P*(6 = 1) 86
3

o NONE WTD P*(6 = 1) 86
3

A NEW UNWTD PO.= 1) 89
10 NONE UNWTD P1(6 = 1) 86

Comparison of Profile Maintenance Procedures

Hierarchy 4., Level 2, 25% Updating

Figure la-3

256

. 03

Precision Floor

.02
A ° Q"-

0
.n!

..g

.03.

VI-15

.30 .40 . 60 70

Recall Ceiling

Maintenance Average
Symbol Procedure Profile Type Length

V -
NEW WTD Pip = -1) 105

0 ALTER WTD P*(45 wa -1) 82
3

C I NONE WTD P*(#5 = -1) 82
3

A NEW UNWTD P*(45 = -1) 99
1

0 NONE UNWTD P*1 (6 = -1) 82

Comparison of Profile Maintenance Procedures

Hierarchy 5, Level 2, .5012 Updating

Figure VI-4

257

VI-16

Precision Floor

,30 .50 .60 .70

Recall Ceiling

Maintenance Average

Symbol Procedure Profile Type Length

N7 NEW WTD P*(45 =
3

0 ALTER. WTD P*(6 =
3

13 NONE WTD P*(6 =
3

-1) 118

-1) 83

-1) 83

di NEW UNWTD P*(o = -1) 127
1

0 NONE UNWTD P*(6 = -1) 83
1

Comparison of Profile Maintenance Procedures

Hierarchy 6, Level 2, 75% Updating

Figure VI-5

258

VI-17

b) ALTER profiles maintain their original lengths and

reduce fragmentation of disk space since they can over-

write their predecessors.

Consequently, use of the hybrid (ALTER) profiles is preferable in actual

retrieval systems.

Surprisingly, hybrid vectors do not seem to experience correlation

domination. Since their term weights are based partially on frequency

ranks (from the original profile before updating) and partially on fre-

quency counts (summed over the new documents), some domination could

occur when a node expertences a large number of additions. Under these

conditions, some terms of its profile have their weights considerably

increased. However as suggested in Section V.4, domination involves

only a few terms with very high weights and here the use of ranks in the

original profile may reduce weights enough so that domination is not ob-

served. A less likely explanation holds that all terms have their

weights increased. in proportion to their original values so that contri-

bution ratios remain roughly constant throughout the collection.

Weighted profiles which remain unaltered after updating (NONE option)

perform slightly less well than NEW profiles for modest amounts of up-

dating (25%) and less well otherwise. This demonstrates the suitability

of an update procedure which makes no changes to the profile terms at all.

The effect of no alteration is an important consideration in the use of

partially weighted profiles, for example, (see Section V.?) in which

term weights cannot be altered without destroying the entire vector. In

all cases, updating requires some changes to one or more profiles in

order to link new documents to upper hierarchy levels. Since these vectors

259

v1-18

must be re-written anyway, there is little extra savings from not re-

weighting terms on at least the lowest level where at all possible. As

mentioned above, an exception to this is partially weighted profiles.

Finally because weighted profiles maintained under the NEW and NONE

options do not differ widely, it is apparent that profiles do not need a

great ability to move about their clustered document subspace in order to

characterize new items. Some movement seems advisable, tut not a great

deal is required. This may be related to the fact that the partitioning

and update schemes result in more or less uniformly distributed increases

in cluster size. Even so, the assumption of random subject acquisition

over the entire collection still renders the present results applicable

to practical situations since bulk additions in a single subject area

can be viewed as random acquisition in a subtree of the origlual hierarchy.

A summary of the findings in these experiments includes the following.

a) Weighted profiles are superior to unweighted profiles

with respect to updating, in that they result in fewer

relevant clusters and earlier searching_ofthese clusters.

b) Considering 4ust the use of weighted profiles, there is

little difference among the maintenance options NEW,

ALTER, and NONE. The last option--no changes to profiles--

is slightlyinferiOr for a large number of additions to

the file.

c) The simplest and most reasonable update procedure is that

lbridrofi1E_tL'IofraakinISRoticm.Thatisthe

ifeildsofe)lrofiletermsdationarea

260

VI-19

VI 1 but no terms are added In addition to rovidin

good performance, these vectors retain their original size.

The experimental results presented here are given in terms of RC -PF per-

formance curves. SMART precision-recall plots for 18 narrow and broad

searches using these profiles may be found in Figures VI-6 to V-12 in

the next section. These curves are not repeated here because they provide

no information that changes the above conclusions.

Recent work by Kerchner (3) in this area substantiates these findings.

This work uses a afferent hierarchy, employs slightly different update

procedures, considers a 50% update fraction, and uses a single search

strategy with one iteration of relevance feedback.

4. Degeneration of the Hierarchy

A document classification bases its groupings on the data available

at a single moment of time. Afterward, new items are blended into the

existing structure. In general, updating causes a reduction of search

speed since new documents may be stored in overflow areas away from the

rest of their cluster. Indexed sequential access schemes use a number of

teohniques to handle overflow records such as storing them in the same

cylinder .or pack; writing blocked or unblocked records; and using

dynamic cylinder reorganization (1, 2). Since SMART simulates cluster

searches, it is impossible to measure the exact increase in search time

due to updating. A rough approximation suggests that a ball disk rota

tion might occur between inputs of document records (unblocked) in the

overflow area. In any case, search speed can be increased simply by

re-writing the file in correct physical sequence. Although there is

`AU

VI-20

expense involved in this solution, it involves only data movement and not

a structural re-organization of the file,

In addition, new documents subject a hierarchy to a subtle form of

degeneration that ultimately necessitates partial or fall re-clustering.

The problem stems from the fact that new documents alter the character

of the collection and individual clusters so that the original classifica-

tion loses its value, Regardless of whether updating includes alterations

to profiles, clusters may become polarized or very similar in content

(see Figure 111-5), As a result, users receive poorer output from

searches because profiles no longer accurately represent all the docu-

ments in their clusters and because the classification is no longer a

"logical" partition of the collection, The solution to this protlem is

some form of re-clustering. The experiments in this section attelutto

determine how frequently re-clustering must occur as a fUnction of file

growth, Consequently, a consistent profile maintenance scheme is used

and the amount of updating varies among the tests,

Evaluation of these experiments is extremely difficult because they

involve hierarchies with large differences in cluster sizes, Ideally,

the same search strategy is used throughout, the amount of search effort

is constant, and the amount of hierarchy degeneration is observed in the

precision-recall curves, With small deviations, these conditions are met

in the previous tests because comparisons are made within the same hierarchy.

In the present tests, both the strategy and search effort cannot be held

constant even though the file is always assumed io be freshly re-sequenced

so that maximum search speed is attained (no items reside in overflow

262

VI-21

areas). The difficulty in observing the degeneration arises from the

following conditions:

a) the larger the percentage of updating, the larger the

final cluster sizes;

b) since the same number of clusters are expanded in all

tests, differences in cluster sizes among the hierar-

chies makes it impossitae to keep the number of docu-

ment correlations relatively constant in all cases; and

c) both precision and recall generally increase as the

number of document correlations increase.

The circular nature of these conditions implies that a performance

improvement might be observed with increased amount of updating simply

because more documents are, examined. This is somewhat true if a constant

search strategy is maintained since only large amounts of hierarchy

degeneration would show in P-R curves. Consequently, there are two

schemes for observing the desired effect: (1) to maintain a constant

search strategy and judge degeneration from the P-R differences and the

number of profile and document correlations and (2) to alter the search

strategy among runs to equalize the number of document comparisons before

judging degeneration from P-R differences. The second method equalizes

the number of comparisons, and consequently does not measure degeneration

using exactly the same search procedure in all cases.

In the following experiments, various fractions of the Cranfield

collection are used in updating in conjunction with each of the three

maintenance schemes for weighted profiles (NEW, ALTER, NONE). The original

profiles, before updating, are of the P*(ô = -1) tyfe; afterwards the
3

263

V1-22

vectors are either of the same type (NEW,IONE) orhylcids (ALTER). For

each maintenance scheme two complete searches are made using the narrow

and broad SMART search strategies outlined in Chapter IV. The resulting

P-R curves allow evaluation by method 1. For example, Figures VIr6, 8, 10

, show the P-R plots, normalized measures, and number of correlations per

level, C(x), for four narrow searches on document collections subjected

, various amounts of updating. In all tests, the same search strategy is

used. Figures VI-7, 9, 11 show similar data for a broad search.

Especially for the narrow strategy, performance drops off steadily as the

amount of updating increases, even though the latter searches are helped

in that they examine more documents (120-150). In order to employ evalua-

, . tion method:2, the same number of document correlations must be performed

in all cases. Fortunately the narrow searches for 50% and 75% updating

and the broad searches for 0% and 25% updating examine aboUt the same

number of documents so it is possible to observe the performance loss from

updating in this way also. (The applicable curves are joined by dashed

lines in pairs of figuress V-6 and 7, V-8 and 9, V-10 and 11.) Both

evaluation schemes suggest there is degeneration of the hierarchy, but

their estimates differ moderately.

The precision-recall curves for the complete set of searches under all

three profiles maintenance options are contained in Figures VI-6 to VI-11.

As always, a number of comparisons and.observations can be made. First,

consider the curves for 0% and 25% updating. In all broad searches the

number of document correlations is approximately the same, and there is

virtually no performance difference with this percentage of file growth.

For narrow searches, about 20 more document correlations are involved In

`464

.20

.15

.10

.05

Precision

1

VI-23

Symbol

Hier-
archy

.10

%

Update

.20

NR

V 1 0 .627
0 .

4. 25 .650

0 5 50 .621

0 6 75 .613

NP

.370

.399

.360

.345

.30 .03 .50

Recall

C(1) C(2) C(3)

13 8.0 86

9 5.2 103

6 4.7 120

.3 4.7 150

Hierarchy Degeneration.Resulting from Updating

Narrow Search, Maintenance Procedure NEW

Figure VI-6

265

ay.

. 20

. 15

.10

05

Precision

VI-24

.10 .20 .40 .50

S bol
Hier-
arch

%

U. te NR NP

Recall

C 1 C 2 C

NI 1 0 .695 .440 13 13 162

a 4 25 .696 .449 9 7.9 166

0 5 50 .673 .417 6 6.9 182

0 6 75 .671 .419 3 6.6 247

4
Hierarchy Degeneration Resulting from Updating

Broad Search, Maintenance Procedure NEW

Figure VI-7

266

Precision

.20

.15

0

1
\

\ \c° \
\

b \ 0
\ V \

.10

0 1..

o "`

v \
\ \v \o

b c \ \
.05 \ o...0

`o Er\
o FY"o

Symbol

N7

0
0
0

VI-25

.10 .20 .30 .40

Recall

Hier-
archy Update NR

1 o .627

4. 25 .664

5 50 .620

6 75 ,593

NP C(1) C(2) C(3)

.370 13 8.0 86

.413 9 5.7 107

058 6 4,5 118

,326 3 4,4 143

Hi erarchy Degeneration Resulting from Updating

Narrow Search, Maintenance Procedure ALTER

Figure VI78

267

VI--26

.20

.15

.10

.05

Precision

r--

Symbol

Hier-

archy

10

%
Update

.20

:41.1

.30

NP

.40

Recall

C(1) C(2) C(3)

N7 1 0 .695 440 13 13 162

0 4 25 .706 .457 9 8.1 167

0 5 50 .676 .423 6 6.9 177

0 6 75 .652 .398 3 7.6 241

Hierarchy Degeneriltion Resulting from Updating

Broad Search, Maintenance Procedure = ALTER

Figure VI-9

268

.20

.15

.10

\)0

N7 \\

0
\

\b N%\
b

43°\
.05

\\\
s.

by r6

S.

Symbol

o
0

o

Hier-

archy

.10

Update

.20

NR

.30

NP

.4 0

Recall

C(1) C(2)

50

C(3)

1 0 .627 .370 13 8.0 86

4 25 .656 .402 9 5.8 103

5 .50 .657 .397 6 5.4 159

6 75 .618 .348 3 4.7 142

Hierarchy Degeneration Resulting from Updating

Narrow Search, Maintenance Procedure = NONE

Figure VI-10

269

Precision

.15

.10

.05

0

VT-28

Symbol

V

I

.10 .20 .30 AO ,50

Recall

Hier-

archy

%
Update NR NP

1 0 .695 .440

4 25 .700 .451

5 50 .697 .445

6 75 .667 .412

00.) 0(2) COI_

13 13 162

9 8.4

6 7.5

3 8.2

Hierarchy Degeneration Resulting from Updating

Broad Search, Maintenance Procedure = NONE

Fivire VI-11

167

247

241

the 25% update searches and their P-R curves are better, as expected.

Still, the collection seems to accommodate at least 25% updating with

little or no performanco loss. Second, in. nearly all cases the curves for

50% and 75g updating lie substantially belowsihe search simulating a

freshly re-clustered collection (0% update). The P-R differences are

generally smaller in the broader searches, but the corresponding incroase

in the number of document correlations to achieve that performance

assures that significant degeneration has occurred with this many new

additions. This observation is substantiated further by comparing per-

formance between the paired narrow and broad searches mentioned earlier

(evaluation method 2). Roughly speaking, the normalized measures drop

about 4% for 50% updating and 8% for 75% updating, and the P-R curves

remain far apart. Third, all results are somewhat invariant with the

profile maintenance procedure. This emphasizes the findings in the

preiious section; namely that all profile maintenance procedures are

roughly equivalent with some preference, perhaps, for hybrid vectors.

The conclusion of these experiments is that enough hierarchy delay

occurs H11.21225:501.221ating_to warrant re-clustering. The "break even"

point is plabably on the low side of this range. The implications for

partial re-clustering are obvious. To review, under this procedure each

profile includes the number of documents in its current crown and the

number of additions since the latest classification (update count). Con-

sequently whenever the ratio of update count to crown size exceeds .25-

.50, then all items beneath the node are re-clustered. An alternative

to this scheme is to re-cluster all documents in the node's filial set

as well.

(

-

5. summary

VI-30

This chapter considers the problem of updating a clustered file and

two very important questions* (1) how profiles should be altered to

more accurately represent both new and old documents and (2) how fre-

quently the collection (or node) must be re-clustered in order to recover

from the performance loss inherent in the classification-update process.

The results from both sets of experiments contain the following informa-

tion.

a) Weighted profiles have updating characteristics su erior

to those of unweighted profiles in that they result in

fewer relevant clusters which are expanded earlier in

searchinK.

b) A clustered collection can tolerate 2510-50% updating

:before partial or total re-clustering_isucessary.

c) All profile maintenance procedures testec_INFIALTER,

NONE) performed about equivalently. In particular, new

terms do not need to be added to profiles even if the

original vectors have undergone earlier term deletion.

The recommended scheme is that of forming hybrid vectors

as a result of updating (ALTER option). This scheme

allows changes to weights of existing profile terms, but

keeps the original profile length so the updated vector

may overwrite its predecessor.

These conclusions are based on test procedures which use a deliberate

partition of the collection and somewhat unique ways of comparing precision-

272

VI-31

recall curves. It is hoped that neither of these techniques unfairly

bias the results.

273

V1-32

1. V. Lum, H. Ling, M. Senko, Analysis of a Complex Data Management

Method of Simulation Modeling, Information Services Department, IBM

Research Laboratory, San Jose, California, 1970.

2. A Description of AMIGOS, Comress Corporation, Rockville, Maryland, 1970.

3. M. Kerchner, Dynamic Document Processing in Clustered Collections,

Doctoral Thesis, Scientific Report No, ISR-19, Department of Com-

puter Science, Cornell University, October 1971.

vTI-1

Chapter VII

Experiments with Hierarchy Storage

1. Introduction

As stated in Chapter II, the physical file organization of interest

is the indexed sequential access method (ISAM) as opposed to the logical

file organization which, of course, is based on clustering. The experi-

ments in this cha ter have a dual u ose related to h sical organiza-

tions (1) to determine the I/0 delays while searching a clustered file

and (?) to compare the appropriateness of storing profiles in level and

heir-filial order. I/0 delays are measured by the number of disk accesses

for obtaining index information and actual data items. The previaus

experiments measure search effort by the number of expanded clusters or

correlations per hierarchy level. This is acceptable since the purpose

of the tests is to maximize performance (PF-RC, P-R, etc.) for a given

amount of work rather than to study search effort itself. Furthermore,

specifying the parameter settings for actual file storage would have made

previous conclusions less general than desired. This chapter considers

the problem of minimizing search I/0 time while maintaining a given per-

formance.level. The experimental procedure is to determine disk locations

for all documents and profiles using the storage algorithm in Section 111.6

and to simulate query processing while monitoring track and cylinder

positions. Changing the order of item storage allows comparison of the

level and heir-filial sequences. Processing is handled so that the

searches resemble those made earlier with SMART using Hierarchy 1 and

P*(6 -1) profiles.
3

Consequently, the precision-recall performance

250

275

VTT-7

of the earlier tests can be associated with the amount of disk I/0

determined here.

2. Procedure

The following experiments are designed. to monitor the I/0 activity

while processing queries through a clustered file. Actual disk storage

and access is not involved. Instead, a disk is simulated by constructing

a storage map of "cylinder and track locations" for data records, ISAM

indexes, and overflow areas. Data from previous searches and other

sources is used, to construct the map and, then employ it in such a way

as to accurately approximate an actual disk search. The general organiza-

tion of an ISAM file is outlined in Section 11.3. This section sets forth

the specific parameters used in the simulation and in the record storage

algorithm as well as the chosen evaluation measures. It also discusses

a number of difficult problems associated with physical file organization.

Disk space management is simulated according to the ISAM philosophy

using the parameters and data characteristics in Table V1I-1. Eighteen

tracks of each cylinder are allocated to profile, document, and index

storage while the remaining tracks are reserved for future documents (over-

flow areas). Each cylinder of data is preceded by a track index and the

first record of the entire file is the cylinder index (each index size

is 300 bytes)'. The profile sizes are those of P*(6 = -1) vectors for
3

Hierarchy 1. In the SMART implementation, each index term is stored as

a weighted concept number (term identifier) which requires 14. bytes of

storage; other storage requirements per document total 96 bytes for header

information, citation, etc. The same memory requirements are used here,

276

VII-3

resulting in the average record sizes shown in the tatae.

In making the map of record locations on the simulated disk, each

track is treated as one physical record and data items are packed onto

it using the storage algorithm in Section 111.6. This algorithm attempts

to balance the amount of wasted disk space and the frequency of storing

filial records on more tracks than necessary (thereby requiring extra

accesses during retrieval). In cases where it makes a difference, space

is traded for access time only if the amount of waste is beneath a chosen

threshold (0 bytes per track). Consequently, in actual, tests, the perti-

nent evaluation data is the percent of wasted data space and the percent

of filial record sets requiring extra accesses. Table VII-2 shows the

results of applying this storage procedure to the profiles for Hierarchy

1. Data is given.for the case of sequencing items by level as well as in

heir-filial order, although there is little difference in the outcomes.

In both cases, 1SAM indexes are stored in their appropriate locations and

the threshold for waste is 10 of the track size (8. 720). Therefore

when less than 720 bytes remain on the current track, the next filial set

of records begins on a new track. This is a rather infrequent situation

here since the size of a typical filial set is large relative to 0. In

actuality less than I% of the file space is wasted even though up to 1C%

is allowed. About 30% of the filial sets are split across an unnecessarily

large number of tracks thereby requiring extra accesses in retriev-

Whereas this percentage depends heavily on 0, simulations show it is

practically independent of the distritution of filial set size, once this

size exceeds track capacity. Overall, the document collection and its 68

profiles require 69 tracks of which 65 are allocated to documents.

2;1 rl

VII-4

Number of disk tracks/cylinder 20

Tracks/cylinder for data and ISAM indexes 18

Tracks/cylinder for overflow (1016) 2

Track size 7294 bytes

ISAM index size (track or cylinder) 300 bytes
-.

Average record size

level 1 - profiles (141 terms)

level 2 - profiles (70 terms)

level 3 - documents (54 terms)

660 bytes

376 bytes

312 bytes

Parameters Related to Management of Disk Storage

Table VII-1

Property

1

Store Items

by Level

Heir-Filial

Order

Threshold for wasted space (bytes) 720 720

Level 1, profiles (13) ,

Size of average filial set (bytes) 8580 8580

Total storage (tracks) 1 1

Level 2, profiles (55)
Size of average filial set (bytes) 1616 1616

- Total Storage . (tracks) 3 3 .

Level 3, documents (1500)

Size of average filial set (bytes) 8480 8480

Total St orage (tracks) 65 65

1Percent of disk space wasted 0.72% 0,60

1 Percent of filial sets requiring

69)
30% 35%

I

an extra access (100% is

I

Hierarchy Storage in Level and Heir-filial Order

Table VII-2

278

VII-5

File management requires considering record retrieval as well as

storage. For a clustered file accessed through ISAM, most of the retrieval

options concern the handling of indexes. The conventions adopted here

retain the cylinder index in core memory, once it is accessed, as well as

the track index for the current cylinder (only). Each query is processed

independently of others in the following manner. Initially the disk arm

(set of read/write heads) is positioned just outside the clustered file,

as if serving another program. The search begins by obtaining the

cylinder index, first track index, and all level I. profiles. Thereafter,

profiles and documents are accessed as nodes are expanded; new indices

are fetched as cylinder boundaries are crossed. Only one optimization

technique is employed. Because several nodes may be expanded simultane-

ously, it is possible to know, in advance, the next few desired records.

When this is the case, it is assumed that records are obtained in a

single sweep across the disk surface rather than by jumping forward and

backward.

Several measures of I/0 activity are used, all being related to track

and cylinder changes; the term access refers to either type of change.

Actual timings or conversion of accesses to milliseconds are not made,

since they can be misleading. For example, real time I/0 delays are a

function of the traffic volume in a computing system and are therefore

quite variable, particularly for the IBM 2314 (1). Moreover delays vary

with file size since a track change in a small'file may correspond to a

cylinder change in a big file. In this research the average number of

disk accesses er ue search is used as a measure of I 0 activit beili

279

VII-6

reasonably accurate and easily converted to milliseconds in specific

computing environments. The averages are subdivided into the number of

track and cylinder chan es er hierarch level and the number of tracks

and cylinders traversed in each change (step size). This breakdown helps

relate the results to files of different° sizes or located on different

storage devices.

Search strategy has a major influence on the amount of I/0 and con-

sequently on the optimum storage sequence for a clustered file. Here, data

from previous cluster-oriented evaluation runs are used to simulate actual

searches. First, all level 1 nodes are "accessed" from the simulated

disk. Second, the top ranked nodes--as identified in the.cluster-oriented

evaluation--axe expanded by accessing their sons. Finally, the level 2

no..;,..3 are expanded in the order specified by their cluster-oriented

evaluation ranking and the appropriate documents are accessed. Through-

out this discussion, access implies fetching an item stored on the

simulated disk while monitoring the track and cylinder changes. The

number of expanded nodes is controlled.to approximate the SMART narrow

and broad searches used earlier, Thus, it is possible to approximate the

I/0 delays connected with the 7.-R curves for these searches (Figures V-38

and V-39, P5(6 = -1) profiles). Tables VII -3 and V11-4 show how well

the expansion data for these tests (simulated searches) matches the actual

SMART searches. The small discrepancies are due to the fact that SMART

has complex expansion criteria (dee Table IV-2) whereas the simulated

search uses only cluster size.

The extent to whicll the 225 Cranfield requests evenly cover Hierarchy

1 is unknown. That is, some clusters may be examined a disproportionate

280

VII-7

Property Search Strategy
Narrow Btoad

Level 1

Number of profile correlations 13 13

Number of expanded nodes 1.7 3.1

Level 2

Number of profile correlations 8.0 13.0

Number of expanded nodes 3.0 5.3

Level 3
Number of document correlations 86 162

Average Expansion Characteristics of SMART Searches

Hierarchy 1$ 121(ô al -1) Piofiles

Table V11-3 .

Property Search Strategy

Narrow Bkoad

Level 1

Number of

Number of

Level 2

Number of

Number of

Level 3
Number of

profile correlations

expanded nodes

profile correlations

expanded nodes

document correlations

13

1.8

7.9
2.9

85

13

3.0

13.9

5.6

. 167

Average Expansion Characteristics Of Simulated Searches

Using the Cranfield Query Set

Table VII-4

281

number of times. To alleviate deviations from this source, a "simulated

query set" is also used in these tests, although no queries are actually

involved. Instead, for 598 trials, random. nodes are accessed on each

level while track and cylinder changes are reCorded. To be realistic,

all level 1 profiles are accessed and randomly selected nodes are expanded.

Thereafter, selections ire limited to the sons of previous nodes.- Compar-

ing the data in Tables VII -3 and VIII -5 verifies that the simulated

queries behave like the actual Cranfield requests in that the same number

of nodes are expanded in both searches. Corroborated results from both

query sets gives additional confidence to the findings of these investiga-

tions.

To summarize, the following experiments try to relate I/0 activity

to P-R performance levels and to select an optimal storage sequence for

a clustered file. The test procedure depends heavily on the accurate

simulation of the indexed sequential access method. Briefly, the follow-

ing steps are involved.

a) Select parameters for record sizes and management of

disk space (Table VII-1).

b) Prepare the disk map using the proposed storage algorithm

and either level or heir-filial item sequence (Table VII -2).

c) Using either real or simulated requests and the expansion

parameters of previous searches (Table VII -3), process

each request while monitoring its simulated I/0 activity.

Processing includes obtaining cylinder and track indexes,

profiles on level 1, and the sons of all expanded nodes

VII-9

Property

1

Search Strategy

Narrow Broad

Level 1

Number

Number

Level 2

Number

Number

of profile correlations

of expanded nodes

of profile correlations

of expanded nodes

Level 3

Number of document correlations

13 13

1.8 3.0

8.0 13.1

3,1 5.9

85 164

Average Expansion Characteristics of Simulated Searches

Using Random Selection of Expanded Nodes (Simulated Queries)

Table VII -5

263

thereafter. The primary evaluation measures include a

breakdown of the number of accesses per hierarchy level

(track ana cylinder changes) and the average step size

between these changes.

The resulting data is used to evaluate file storage and retrieval options

in the forthcoming sections.

3. Test Results

The previous section outlines the simulation and evaluation proce-

dures for studying the I/0 activity connected with searches of a clustered

file. .Aue results for Hierarchy 1 and P(6 is -1) profiles are shown

in Tables VII-6 and VII-7. Regarding terminology, the total number of

accesses is the average number of track or cylinder changes per query for

obtaining index, profile, and document data. This is separated into track

and cylinder changes per level; the amount of data moved,over between

accesses (average step size) is included also. For example, a cylinder

step size of 1.5 implies that an average of 1.5 cylinders is passed over

each time a change is made. An analogous statement applies to track step

size, but is obviously bounded by the number of data tracks per cylinder

(18). .

By nearly everx measure!, storing the hierarchy in order by level*

appears more economical for forward search strate ies. The difference is

1-2 accesses for the narrow search and 3Lj. accesses for the broad search.

The largest contribution to these differencei comes from the nodes on level

2, both in the number of track and cylinder changes and in their step

sizes. To review, both storage sequences keep filial record sets

264

V11-11

Property

A
s.

B

Search Run

C D

Query Set Real Simulated Real Simulated

Storage Sequence Level Level Heir-filial Heir-filial

Total Number of Accesses

Level 1 2.00 2.00 2.00 2.00

Level 2 1.39 1.42 2.82 3.06

Level 3

Total

6.34, 6.62 6.24 6,73

9.73 10.0 11.0 11.8

Number of Cylinder Changes

Level 1 1.00 1.00 1.00 1.00

Level 2 0 0 1.23 1.18

Level 3 1.24 1.22 1.14 1.36

Step Size of Cylinder Changes

Level 1 1.00 1.00 1.00 1.00
I

Level 2

Level 3

0

1.59

0

1.59

1.35

1.52

1.48
1

1.57

Number of Track Changes

Level 1 1.00 1.00 1.00 1.00

Level 2 1.39 1.42 1.59 1.19

Level 3 5.10 5.41 5.09 5.36

Step Size of Track Changes

Level 1 1.00 1.00 1.00 1.00

Level 2

Level 3

1.21

2.89

1.27

3.04

8.50

2.64 2.84

71-___]

I/0 Activity in a Simulated Narrow Cluster Search

Table VII -6

285

VII-42

Property

Query Set

Storage Sequence

Total Number of Accesses

Level 1

Level 2

Level 3

Total

A

Real

Level

2.00

1.88

11,5

Simulated I

Level I

2.00

1.90

11

Search Run

Real

Heir-filial

2.00

4,36

12 0

Simulated

Heir-filial

2.00

4.86

121.12._

19.415.4 15 18.3

Number of Cylinder Changes

Level 1 1,00 1.00 1.00 1.00

Level 2 0 1.66 1.74

Level 3 1.86 1.85 2,14 2.51

Step Size of Cylinder Changes

Level 1 1.00 1.00 1.00. 1.00

Level 2 0 0 1.23 1.25

Level 3 1.08 1.29 1.43 1.48

Number of Track Changes

Level 1 1.00 1.00 1.00 1.00

Level 2 1.88 1.90 2.70 3.12

Level 3 9.64 9.85 9.81 10.0

Step Size of Track Changes

Level 1 1,00 1.00 1.00 .1.00

Level 2 1.24 1.12 7.99 ?.09

Level 3 2,45 2.62 2.67 2.88

I/0 Activity in a Simulated Broad Cluster Search

Table VII-7

286

VII-13

together. In addition, order by levels p3ices all nodes on the same

level in adjacent disk locations. Heir-filial order keeps parent nodes

and their sons somewhat close at the expense of storing structurally un-

related nodes in separated areas. Consequently, heir-filial order should

be more economical in forward, narrow searches since all data resides in

a localized area. The choice of the better sequence should hinge on the

relative frequency of narrow and broad searches in an actual operating

environment. However, it is doubtfUl that a significant proportion of

actual searches are narrower than those used here and thus able to take

advantage of the economics of heir-filial order. Most searches involve

expansions of one or more unrelated nodes asd thereby benefit from storing

the hierarchy by levels even more than shown here.

If the file were larger than the 1400 Cranfield documents, the con-

clusions should be roughly the same even though there are more nodes.

With order by levels, there would be greater distance between parent and

sons (more space for the read heads to travel), while heir-filial order

still confines related data to a localized area. On the other hand, if

heir-filial order were used, structurally unrelated nodes have even

greatee separations and jockeying back and forth between them in a search

is quite costly. For example, it is likely the large track step sizes in

the tables would turn into steps over cylinders. Figuring both storage

schemes are penalized equally, the choice of optimal order comes down to

the frequency of extremely narrow searches. As mentioned, few searches

aro assumed to be as narrow as the one used here, so storage order by

levels probably remains the better choice even for larger collections.

287

VIT-111

These conclusions hold for the case of forward search strategies.

Backtracking or plunge-first strategies make a better fit with heir-filial

order since it localizes structurally related records. In fact, the SMART

searches use a small amount of backtracking and their I/0 requirements

are only approximated by the present forward searches. The actual I/0

is a bit more than the figures quoted in the tables, say 2-3 additional

accesses.

It is instructive to compare.these cluster searches with a full

search in terms of their performance (normalized measures) and the number

of correlations and accesses. Such a comparison is given Table VII-8,

using the full search in Figure IV-5, the cluster searches in Figures

V-38 and V-39, and the I/0 data in Table VII-6 and VII-7. In general,

the comparison shows that cluster searching achieves its primary goal of

recovering a good share of the relevant documents at much less cost than

a full search. The narrow cluSter search results in NR-NP values which

are 60%-703 of those for a full search, but does 8%-15% of the work.

A broad cluster search achieves 70%-80/1 of the fUll search NR-NP perfor-

mance for 13%24% of the effort. Clearly the quality of performance

increases as the amount of work increases, but with diminishing returns.

Assuming that I/0 delays are the dominant factor in determining response

time and that one access is made per second, then the cluster searches

should finish in 10-16 seconds while the full search requires over a

minute. In any case, the actual computer cost and time delay should be

predicted rather accurately by the combination of the number of correla-

tions (CPU computation) and 'disk accesses (I/0 and system overhead).

288

:t

Property
Narrow
Cluster
Search

Broad
Cluster
Search

Full
Search

Normalized Recall . .63 .70 .88
Normalized Precision . .37 .44 .61
Recall Ceiling .32 .4,6 1.00

Number of Correlations
Level 1 - Profiles 13 13 0

Level 2 - Profiles 8 33 0

Level 3 - Documents 86 162 1400

Total 107 188 1400

% of Full Search 896 13% 10C%

Number of Disk Accesses
Level 1 - Profiles 2.0 2.0 0

Level 2 - Profiles
Leve1.3 - Documents

1.4
1.2

1.9
11.5

0

.0_1
Total 9.7 13.4

_5_6
65.0

I% of Full Search

Relation of Performance and I/0 Activity for

VTI-1G

4. Summary

The present chapter describes a series of experiments related to the

indexed sequential access method for managing a disk resident clustered

file. Their results are as follows.

a) For forward search strate

tuccessive levels gives the most economical searches under

A

di.

a variety of conditions. This finding is likely to hold

for larger collections and search strategies with some

backtracking also.

Cluster searchinz can retrieve many relevant documents

with much less system effort than a full search. In the

.test cases, a cluster search using 10-16 accesses achieves

about 70% of the performance (NR, NP) of a full search

requiring 65 accesses.

number of other issues related to physical file organization are

cussed--.handling of ISAI4 indexes and overflow space, space-time trade-

offs in file storage, and evaluation measures for disk I/O.

280

References

VII-17

1. J. Abate, H. Dubner, S. Weinberg, Queueing Analysis of the IBM 2314

Disk Storage Facility, JACM. Vol. 15, ;40. 4, October 1968.

'11

!i

;;

VIII-1

Chapter VIII

Experiments with a Query Alteration Scheme Based on a Cluster Hierarchy

1. Introduction

Chapter III states that a clustered document file is economical only

if it reduces search time or provides facilities not available in other

organizations. It also outlines several alternate uses of a cluster

hierarchy in an attempt to help justify its construction. Particular

attention is given to the concept of associating a substitute (closely

related term)_mith each base profile term. The result is a structure

which combines the functions of a thesaurus for query expansion and a

directory for file searches. The use of thesaurus classes (substitutes)

in combination with clustering is new and holds two distinct advantages.

First, since eaCh node is equipped with its own set of substitutes, there

is a unique opportunity for using term-term associations from a group of

highly related documents (those beneath the node). Consequently, local,

narrow term relationships are accommodated on lower hierarchy levels and

broader, general relationships are handled on upper levels. Second,

substitutes can be used in several ways depending on which ones are

applied and how they are matched. If term substitutes improve ret7Aeval,

then the utility of a clustered file is increased.

This cha ter seeks to establish the validit of an automatic ue

alteration scheme usin term substitutes. Consideration is limited to

the TIED matchin o tion mentioned in Section III 8 That is onl the

substitutes of matching base terms ma alter a auer rofile correlation.

The recall experimenysiortsemlosubstitutesfronl

VITI-2

experiments use substitutes from nodes on the current level. In all cases,

term substitutes are generated by the same algorithm, although certain

minor changes are allowed. Briefly,for any given profile term (base),

the algorithm identifies its substitute as another term in the same.ppfile

which has the largest term-term correlation in the documents beneath

that node. Consequently, the derivation could involve computing large

similarity matrices. Fortunately, the magnitude of this task can be

reduced. Specifically, the upper level matrices can be formed from those

on lower levels. FUrthermore, the previous experiments suggest that only

the most important profile terms need be considered and the use of

shortened profiles, P5.(5 .1)9 in the experiments reduces the effort

further. These reductions are important since most work with thesaurus

construction and term-term relationships is greatly hampered by computing,

storing, and handling large matrices.

In the final anal sis the ro osed alteration scheme does not

im rove retrieval at least for the options tested. However, it appears

usefUl as part of a search feedback scheme, The concept of augmenting each

profile with its own thesaurus (term substitutes) remains intriguing; in

view of success in similar experiments with unclustered collections,

further work is warranted.

2. Deriving Base-Substitute Pairs

Base substitute pairs are profile terms with maximum term-term

correlation among the documents in a node's crown For a detailed'explana-

tion of this concept, consider a hierarchy without overlap such as that

in Figure VIII-la, For any node n with profile P, let T be the term-

293

VIII-3

document matrix representing the documents in its crown. As shown in

Figure VIII-lb, the element Tij is the weight of the jth concept in the

1
th

document and a row T
1*

corresponds to a complete document. Suppose

an association matrix A = T T is formed, where the ' indicates matrix

transpose. Then the cosine similarity between the i
th

and j
th

terms with

respect to node n is

ij
u A

ij
//71A

jj
(vizi-1)

Once the matrix S is obtained, the substitute for the base profile term

i is another profile term j such that

MAX tS
ik

I k k 1, 27.-goose v} (VIII-2)

In practice, there are more terms in T than in P because of term deletion

in profile construction. Consequently, the association matrix A can be

limited to those terms in P. This saves a considerable number of term-

term correlations and does not alter the above computations.

The real problem is finding an economical algorithm for obtaining

the similarity matrix S for each node. The difficulty is that T is avail-

able only by rows (document vectors) while direct calculation of S

requires its columns. Transposing T to make its.columns accessibae re-

quires a.moderate amount of computation; this operation is equivalent to

inverting the set of document vectors to get term vectors. Another algori-

thm for obtaining A is to accumulate its elements as documents are input

and to avoid forming T altogether. The following steps would be

executed*

a) initialize A = 0;

b) read the next document D (dl,

224

Level 0

Dwury node

Level 1

Profiles

Level 2

Profiles

Level 3

Documents

a) Sample Cluster Hierarchy

terms

1 2

VIII -4

--- term vector T .*3

b) Term-Document Matrix

A T T gr

document

vector Ti*

weight of term

j in document i

term vectoms

c) Association Matrix

Figure VIII -1

225

V111-5

c) set A
i

w. A + d d. for itj 1, 2, v;
j j

d) repeat steps b) and c) for all documents in the crown

of node n.

For a small number of profile terms, either technique is acceptable.

For a moderate number of terms, accumulation is preferable since each

document is handled only once. However, if the association matrix cannot

be made core resident, the inversion technique must be used regardless

of other considerations.

The similarity matrices for the lowest level nodes can be obtained

economically by one of the above algorithms since only a few documents

are involved in the computation. Matrices for upper level nodes could be

derived in the same way, but with considerable duplication of effort.

The fact is that the association matrices on level i are calculable

directly from those on level i+ 1. To illustrate, consider node n, and

its sons n
2
and n

3
in Figure VIII -la. Since there is no further need to

refer to specific elements of matrices, let Tk, Ak, and Sk denote the

document-term, association, and similarity matrices in conjunction with

node nk Using the assumption that the hierarchy contains no overlap, Tl

can be viewed as partitioned so that

A, TiTi (T2 [Ty

3

T
2
T2 + T

3
T3

= A2 + A3

(VIII-3)

If A
2

and
5

are saved in magnetic tape files, for example, then A
1

can

2S6

VTIT-6

be obtained by summing corresponding records in each file.

In practice, a clustered collection contains overlap. This can be

dealt with also. In the example, let U2 and u3 denote the documents

unique to nodes.n
2

and n
3
res'pectively, and let X denote their common

documents. Then

T = (U2)
2 X

X
TT,=H

3
1 IT

3

Al = T1 T1 =02

2
+XX+UU

= A2 + A3 - X x

3 3

(VIII-4)

Thus, the effects of overlap can be removed by subtracting a small

correction matrix made from the overlapping documents. It is not neces-

sary to actually compute X X since corrections can be made in place as

described in the accumulation technique above. In the case of a document

having membership in several clusters, the correction must be applied

each time the overlap occurs. Overlap is easily detected if each tape

file (association matrix) is preceded by a list of documents used in its

preparation. Merging and checking these lists discloses overlap and

allows for corrections. Complete flowcharts for finding base-substitute

pairs are shown in Figures VIII-2 and NIII-3. Following the previous

example, it is assumed that all documents reside on disk and that extra

257

Read Profile

P for Node

VI11-7

Invert document

vectors for the sons

of n
k'

Disregard

terms not in P.

Compute

A
k

)\\Write to tape

the list of

documents and

the rows of Ak

Compute

S
k

411110.

Find the terms

leading to the

maximum row ele-

ments in S, and

define pairs

Format

New Profile

Legend: T
k

is a term-document matrix
1

Ak TkTk is a term-term association matrix'

S
k

is the matrix of cosine term-term similarities

Figure VIII -2

2S8

14

..;

No more nodes

Initialize merged

document list

and set Ak 0

1

Read documents

in the crown

\
of the next

No

Save identifiers

of overlapping

documents

Read

association

matrix

Add rows to A
k

disregarding terms

not in P

more sons

Correct Ak

for

overlap

Write to tape

the list of

documents and

rows of Ak

VIII-8

Find, the terms leading

to the maximum element

in each row of Sk and

define substitute pairs

Format new

profile and

write to disk

Formation of Term Substitutes on Upper Hierarchy Levels

Figure

vIII-9

tape or other storage is available as needed.

The discussion alxrre suggests that corrections should be made for

the effects of cluster overlap via equation VIII-4. It can be argued that

a small amount of overlap could be neglected since it has little effect

on the final similarity matrix. However, it may not be desirable to cor-

rect for overlap on the grounds that terms in these documents chaiacterize

several topics (clusters) and thus should receive additional emphasis

when determining the substitute sets for upper level nodes. Generally

speaking, neglecting the correction factor -X X in equation VIII-4 in-

creases similarities S
ij

when both the 1
th

and j
th

terms occur in over-

lapping documents. Consequently, the desired similarity increases are

made and the computation of association matrices is simplified at the

same time.

This section presents several methods for deriving base-substitute

pairs. It is a bit difficult to quantify the savings from using the

computation schemes suggested here. However, if a typical shorten-

ed TaNxrile contains 20% of terms represented in its term-document matrix

T then its association matrix contains.only 4% of the entries in the full

matrix T T. The fact that upper level similarity matrices can be obtained

from those on lower levels, clearly saves sutetantial sort or calculation

time regardless of how overlap is handled. In the following experiments,

4E,

substitutes are obtalned for each term in 1'3(6 = -l) profiles for

Hierarchy 1. In all cases, similarity matrices are computed by inverting

the documents in a node's crown and finding the cosine correlations

directly. Corrections are always made for cluster overlap. Several

300

vIII-lo

complete sets of substitutes are generated by applying different

frequency and other restrictions to the participating terms. Each set

consists of 69 groups of base-substitute pairs--55 for the nodes on level

2, 13 for the nodes on level 1, and one for a dummy node on level 0 as

illustrated in Figure VIII-1. Since there is no profile corresponding

to the dummy node, the terms used for its base-substitute pairs are the

most frequent keywords in the collection, up to 20 of the entire

vocabulary.

3. Term Substitutes as Precision and Recall Devices

Previous sections outline various ways of using term substitutes in

query searches. Wiitsenision devices; substitutes of one node

hol distinquish it from all others b alterin correlations which involve

matches on both a base term and its substitute. Presumably it is reason-

able to increase the correlation since 1) the base and substitute terms

.are highly related in the documents beneath the node and 2) both terms

are used in the request. The intent, then, is to improve precision by

giving more emphasis to combinations of matches on existing query terms

rather than by adding new or related terms as in a normal.thesaurus expan-

sion. The specific algorithm for modifying a correlation contains the

following steps:

a) determine the set of base profile terms B which match

the query;

b) using the terms in B, compute an initial cosine correlaiion

C
1

between the query and profile;

301

c) determine the set B CB whose elements are base terms and

their substitutes provided, that both are already elements

of B;

d) using the terms in B , compute *an additional cosine

correlation C2 between the query and profile; and

e) compute the final correlation value C = C1 + eC2 *fere

e is an experimentally determined emphasis factor.

Clearly, the case of e 0 is the same as not using substitutes; e>0

gives higher correlations to vector matches involving bases and their

substitutes; e <0 does just the opposite. Another explanation and an

example of this algorithm is given in Section III.8.B. Using the termi-

nology developed there, substitutes are obtained from nodes on the

current hierarchy level rather than previous levels and they are TIED to

their bases since matches must occur on both a base and its substitute

before a correlation is altered,

The precision experiments involve three sets of substitutes for the

base terms on level 1 of Hierarchy 1 (P5(6 .1) profiles). Each set

is generated by the procedure outlined in the previous section, but sub-

jected to one of the following restrictions:

a) no restrictions;

b) only base profile terms of medium frequency are permitted

to have substitutes; or

c) the correlation between a base and substitute must lie

in the interval (0.45,0.75).

The intent of these restrictions is to alleviate effects from terms of

little importance and those having chance relationships with other terms.

Figure VIII -4 contains the PF -RC evaluation curves for searches 'with and

without the use of substitutes as precision devices. Unfortunately for

the options tested, substitutes do not help discriminate among nodes.

Neither frequency nor correlation restrictions nor changes in the emphasis

factor (e) have much ability in raising the overall performance tb that

of a search maxie without substitutes. It is not the case that all re-

quests do poorly; a substantial number do slightly better and a few see

spectacular improvement. However, the overall trend is on the downward

side. For the case of e = 1 correlations Are probably dominated by

matching bases and substitutes since the weight of both terms is

effectively doulbled (see Chapter V). For e = 4, the correlation probably

depends too much on random term matches. Although e = 0 is certainly not

an optimal value, these tests indicate there is little to be gained from

using substitutes as precision devices.

More ftwolency, a thesaurus or term substitutes are employed as recall

devices that is as a source of new ke ords for broadenin the sco e of

request, The additional terms increase the op.ortur-

profile matches and therefore result in higher recall searches, Generally

a thesaurus contains term relations appropriate to the entire collection

(1). However, with clustered documents, substitutes may be associated

with each node (small set of documents) and requests can be altered in a

selective careful manner. In the next experiment, the only substitutes

influencing a profile correlation are those in the prcdlle's parent nodes;

and this set is limited further to those substitutes whose bases have

303

.020

.015

010

.005

Precision Floor

V

VIII-13

.20

S mbol

N7

A
0
0

.30

Emphasis

Factor e

0

4
1

1

1

.40

1

.50 .60

Recall Ceiling

0 41

Descri tion of Substitute Set

None used

No restrictions

No restrictions

Medium frequency terms only

Correlation restrictions (.45,.75)

Relative Merit of Using Substitutes as Precision Devices

P*(6 = 1) Profiles, Hierarchy 1, level 1
3

.Figure VIII-4

304

VIII-14

already matched the request. Obviously, nodes on level I have no parent;

in this case, the substitutes in the hierarchy's dummy node are used a3

suggested in Section VIII.2. For a precise illustration of the correla-

tion procedure, consider a search which expands only one node on level I.

When the request is matched with this node's profile, a set of matching

base terms is obtained; let S be the substitutes for these terms which

do not already appear in the query. Each element of S is assigned a weight

w and temporarily appended to the request. Using the broadened query,

the following matching procedure is applied to each subordinate profile

of the expanded. node (those on level i + 1):

a) compute an initial profile-query correlation C1 without

using the substitutes in S;

determine a set of substitutes S CS whose bases took

part in the correlation C
1

;

c) compute a secondary correlation value C
2
(w) using only

the substitutes in S ; and

d) compute the final correlation C Cl. +.C2(w),

C
2
is clearly a function of w since.the substitutes have pre-assigned

weights. Clearly w ag 0 is the case of not altering correlation values

and 'as w increases so does the importance of the terms used to broaden

the request. The above procedure is applicable to searches which expand

more than one node; it is a bookkeeping matter to determine which sub-

stitutes are to be used. The intent of this seemingly complicated pro-

cedure is the careful addition of new request terms from the parent nodes.

Furthermore the new terms (substitutes) have an opportunity of affect

305

VI/I-15

correlations only when there is a match on the corresponding base (TIED

option). An example of this seheme is.given in Section III.8.B. One

additional remark is required for a complete description. The substitutes

added to a request have a temporary existence. That is to say they are

replaced by substitutes from expanded nodes on lower levels. Thus the

request is altered more and more selectively as the search proceeds and

the query vector does not become unnecessarily long.

.The paragraphs above describe how term substitutes are used as recall

devices in these experiments. As tefore, Hierarchy 1 and P5(6 = -1)

profiles provide the test c011ection. Two different sets of substitutes

are employed, the first of which has no restrictions. In the second set,

.only medium and high frequency profile terms are permitted to have sub-

stitutes and then only if the correlation between each base and substitute

exceeds 0.25. Figures VIII-5 and VIII-6 show the PF -RC evaluation curves

for searches with and without the use of substitutes as recall devices.

In each ease, less favorable performance is obtained when terms are

.added to requests. A. smaller performance loss is noted when frequency

restrictions are applied, mostly because there are fewer cases in which

correlations are altered. Neither changes in the restrictions on the

sutetitute set nor in the weight of terms added to request increase the

recall level as desired. Again, it is not the case that all requests do

poorly; some show great improvement. ConsequentlY, these techniques

could be used as an automatic feedback procedure, particularly when no

relevant documents are retrieved in an initial search. For example, the

use of substitutes improves the performance of about half the requests

306

.020

.015

.010

.005

Precision

Floor

.20 .30

Symbol

ci
N7

0
0

Substitute

Weight (w)

0

1

1

2

.50 .60

Recall Ceiling

Description of Substitute Set

None used

No restrictions

No restrictions

Medium-high frequency

Medium-high frequency

Relative Merit of Using Substitutes as Recall Devices

P(* -1) Profiles, Hierarchy 1, Level 1
3

Figure

3 (37

.25

Precision

Floor

.020 6, 0 \

\A N6I. th,

.20 .30 .40 .50 .60

Recall Ceiling

Substitute

Symbol Weight (w) Description of Substitute Set

0 None used

1 No restrictions

0 .1 Medium-high frequency terms

Sij> .25

Relative.Merit of Substitutes Used as Recall Devices

P*(6 = -1) Profiles, Hierarchy 1, Level 2
3'

Figure VIII -6 .

308

for which no relevant are contained in the 2 top-ranked clusters in a

normal search.

One protaem in both the precision and recall experiments is the

modest number of Cases in which substitute terms actually influence

correlations. The number of eases could be increased,in part, by switch-

ing to the UNTIED matching option, that isogiving substitutes the same

opportunity for matches as any other term. Another problem is that in

many instances, the same base-substitute pair occurs in Many nodes and

thus gives little discrimination. A partial solution to this may lie in

placing different restriction on the terms allowed to have substitutes

and the strength of associations among terms. However, it may be that

no substitutes can adequately discriminate among profiles because they

represent a large number of documents. This might explain why more

success occurs when term-term relations are used to distinguish individual

documents from each other as in the experiments by Jones (1, 2). Of

course these experiments are not intended to address this broader question.

Summary

This chapter describes a, query alteration procedure based on sets of

term substitutes associated with each node of a cluster hierarchy. The

substitute for each base profile term is another profile term which is

strongly related to the base in the documents beneath the node under con-

sideration, Depending on how they.are applied, base-substitute pairs

function as either precisica or recall devices. Unfortunately for the

o tions tested here, the use of substitutes result in performance losses

3439

VTIT-19

rather than gains. ,Consequent215 substitutes should not be included in

refiles in their resent form. They might be used profitably as part of

a feedback procedure or presented to a user browsing through the collec-

tion, however. In spite of the results, the'lasic idea of combining a

thesaures and a profile is appealing since both are tailored to the con-

tents of a specific group of documents.

Two significant contributions of this chapter relate to the computa-

tion of term-term similarity matrices. It is shown that a complete

matrix can be obtained from a set of smaller matrices representing only

part of the collection. FUrthermore under certain conditions, it is

unnecessary to invert the document set to obtain term vectors required in

the calculation. Both of these techniques provide reductions in the

amount of computer time for generating similarity matrices.

0

:.

References

VIII-20

1. K. Sparck Jones, E. 0. Barber, What Makes an Automatic Classifica-

tion Effective? Technical Report, University Mathematical Laboratory,

Cambridge, England, 1970

2. K. Sparck Jones, Automatic Keyword Classification for Information

Retrieval, Butterworths, 1971.

Chapter IX

Comparison of Inverted and Clustered Document Files

1. Introduction

The most widely used file organization in document retrieval systems

is the inverted organization. Chapter II discusses the principles of this

technique and the space-time tradeoffs involved. The basic idea is to

construct a data base which lists a document under entries for each of

its index terms. The file is inverted in that it is maintained in term

order rather than document order. Actual implementations generally use

a combined file appavad6 That is, documents are stored consecutively

on disk, but in such a way as.to be individually accessible, for example,

through their accession number. In addition, an inverted directory is

constructed with one entry per vocabUlary term; each entry is a list of

accession numbers of documents containing that term. An alternate scheae

might place disk addresses in the directory rather than accession numbers.

In either case, the search program computes correlations with all docu-

ments on directory lists corresponding to query terms. In some instances,

including "within document weights" in directory entries allows correla-

tions to be accumulated during the directory scan; therefore, only the

highest ranking document citations are ever taken from storage. This is

the case for the cosine function; consequently the directory scan is of

primary importance in the comparisons made here.

The purpose of this chapter is:

a) to compare the storage requirements for inverted and

clustered files,

287

. 312

I X- 2

b) to examine tha search speed of an inverted directory as

function of query length and, collection size, and.

c) to com hare the s eed and effectiveness of inverted and

cluster searches.

The test procedure is similar to that in Chapter VII, Briefly, disk

storage and retrieval is simulated for a given collection of documents

and requests while monitoting simulated I/0 activity, Data is tabulated

by query length or by hierarchy level in order to make the necessary

()caparisons. The tests result in the following conclusions,

a) The inverted organization requires twice as much storage

ce as a clustered file in .order to rovide e uivalent

retrieval services. However., if relevance feedback or

document space modification are not included in the

system, both file organizations require about the same

amount of storage,

b) Search time (disk accesses) in an inverted file increases

24.111...ins.11xL, collection size; and the

number of documents retrieved. The directory scan re-

quires 1-2 accesses per term, depending on the colleczion

size, Search time in a clustered file is basically a

function of the number of expanded clusters (i.e., search

strategy) , and somewhat independent of query length and.

number of retrieved items.

c) For specific number of disk accesses, the inverted file

search retrieves a fixed number of documents and achieves

313

IX-3

high precision at a specific recall level. For the same

number of accesses, the cluster search provides the user

with man or few cilcuments Genera 11 the recision is

less, but the recall level may be higher or lower depend-

ing or1 the number of retrieved documents,

Naturally, these conclusions are subject to the assumptions, conditions,

and search strategies in the various tests. Neither scheme is superior

on all points, each one has its own strengths. The least that can be

said is that the clustered organization uses no more storage space and

provides more flexible searches, That is, searches can be quick and.

inexpensive, thorough and. costly, or aimed at high or low recall. How-

ever, they are less precise than inverted searches, in most instances.

2. The Inverted Directory--Storage and Search

In the following experiments the inverted organization is a combina-

tion of two files. The first is a consecutive disk file of all. documents

including citation data, index terms, and. weights. The citation is

retrieved for user printouts while the terms and weights are required

only if relevance feedback or space modification is included in the

system capabilities. (See Chapter II for a discussion of this point.)

The second part is the inverted directory containing one entry per vocabu-

lary term. Each entry is a list of accession numbers of documents con-

taining a given term and the "normalized term weights" within those

documents. For example, a document D with term i of weight di adds the

following data to the directory list of that term:

Term i

I X-

Previous list a di/1D I

Accession number of document D

Normalized weight of term i in D

Given a query vector Q = (q1,q2,...,qv) where qi is the weight of term i,

document correlations are accumulated one term at a time in the following

waiys

cos(q,D) -1(1-41:

from query vector

from inverted directory entry

Since each directory list contains data pertaining to many documents,

sufficient core storage must be available to hold the partial sums related

to each document. After accessing all appropriate lists and accumulating

sums as illustrated, correlations are sorted and citations retrieved and

printed in decreasing order of similarity. A complete example of this

process is aven in Figure 11-3.

Tho precision-reeall data for a search using an inverted file is the

same as that for a full search since correlations are computed for all

documents D such that COS4,D)>,.10. The number of correlations and disk

accesses is much less than for a full search. In particular, the number

of accesses is proportional to the query length (directory scan) and the

number of documents the user wishes to view. The remainder of this

section considers only the I/0 activity in the directory scan, however.

In order to determine how directory scan time varies with query

length, a simulation is made similar to those in Chapter VII. That is,

disk storage map is constructed. containing the track and cylinder locations

315

IX-5

of inverted directory records as though they were actually stored on

disk. During the simulated searches, the number of disk accesses is

calculated from the changes in track and cylinder locations as directory

lists are obtained. Averaging this data and plotting it versus query

length shows the desired relationship between I/0 activity and the number

of query terms. The storage map is made assuming either (1) indexed

sequential access (ISAM) to records or (2) direct access to records, for

example, through a scatter storwge scheme. In either case, each track of

the simulated disk is treated as one physical record and the inverted lists

(records) are packed onto it using the storage algorithm in Section 111.6.

This algorithm balances the amount of wasted disk space and the splitting

of records on an unnecessarily large number of tracks (thereby requiring

extra accesses during retrieval). Where necessary, space is traded for

time only if the waste is less than a threshold amount (0 bytes per track).

The parameters for the storage algorithm are shown in Table IX-1 and are

the same as those used in tests with clustered files.

The size of each inverted directory list is calculated from the

number of uses of the corresponding term. It is assumed that 4 bytes of

storage are sufficient to hold a documqnt accession number and normalized

weight and that of each list is preceded by 20 bytes of header information.
1

Thus, since term number 4155 appears in 138 documents, its directory list

requkes 20+4*138 572 bytes. When the storage map is actually made,

directory records are stored. in alphabetical order by keyword. In the

case of ISAM access, cylinder and track indices are interspersed at

appropriate locations. Table IX-2 shows storage statistics for the

316

IX-6

Number of data tracks/cylinder

Track size

Threshold for wasted space (0 bytes/irack)

ISAM index size (track or cylinder)

Direct access index size

18

7294 bytes

720

300 bytes

0

Parameters for the Management of the Inverted Document File

Table IX-1

Property 1400

Documents
14000

Documents

Number of inverted directory lists (records) 5030 5030

Storage for record header (bytes) 20 20

Storage for accession number and weight

(bytes)

4 4

Average total record size (bytes) 80 620

Total directory size (tracks) 57 432

Percent of disk space wasted 1,8% 1,3%

Percent of records requiring an extra

access (100% ... 5030)

0,04% 3.3%

Results of Storing the Inverted Directory

Table IX-2

317

T X-7

inverted directories of two collections. The smaller collection repre-

sents the actual Cranfield documents. The larger collection approximates

what the Cranfield collection might look like after a tenfold size in-

crease. Assuming each term continues to occur with its present relative

frequency, each list is simply 10 times larger than before. This is

somewhat tenuous when applied to individual terms, but might be ah ade-

quate overall approximation. The new terms that would enter the vocabulary

are not considered here. The table data shows only a 1%-g% waste of disk

space for either collection even though up to 10% is allowed (720 bytes/

track). Because the inverted lists are longer in the larger file, the

storage algorithm splits a greater percentage of them over an unneces-

sarily large number of tracks. This increases retrieval time significantly

since the lists which are split usually correspond to frequent document

and request terms. Overall, the inverted directory for the 1400 Cranfield

documents requires 57 disk tracks. Using the complete combined file takes

another 62 tracks for document vectors (citation data, terms, and weights).

If relevance feedback and space modification are not desired, the con-

secutive file could be limited to citation data only, For the Cranfield

collection this requires about 14 disk tracks so the total storage space

under the inverted organization is either 119 or 71 disk tracks (a 92g

or a 15% overhead). By comparison, the entire clustered file in Chapter

VII nses 69 tracks (lig overhead) and provides for feedback, space modi-

fication, and more flexible searches.

To collect data on the I/0 activity during the scan of the inverted

directory, simulated searches are made using the Cranfield query set. For

. 318

IX-8

each query, the disk arm is "positioned" just outside the directory and

track and cylinder changes are monitored as each directory list is

accessed. For the ISAM case, the first access picks 1113 the cylinder and

first track indices. Thereafter, moving to a new cylinder includes an

additional access to obtain the necessary track index, Fer the case of

direct access, it is assumed that either no indices are required or that

they are permanently core resident. This may or may not reflect a situa.

tion that can actually be implemented. The intent is simply to discover

how much overhead is involved in obtaining the ISAM indexes. In both

cases one optimization technique is employed. Because the query vector

identiftes all the directory lists to be accessed, it is assumed that

the lists are obtained in a single sweep across the disk surface rather

than by jumping forward and backward. During the simulated searches,

the evaluation data collected is:

a) the average number of accession for queries of a given

length;

b) the average number of track and cylinder changes for

queries of each length; and

c) the average stepsize per change (number of tracks or

cylinders traversed per change),

Figure IX-1 shows how the average number of disk accesses in an inverted

directory scan varies with query length for both the large and small

collections. The tests use all 225 requests; however, only a few

requests have more than 13 terms, so the points at the right hand end

, 319

IX-9,

of the curves are somewhat less reliable than the others. In all eases

there is a linear relationship between query length and the average number

of directory accesses. For 1400 documents, each query term requires

0.9-1.0 disk accesses (average); overall, a penalty of 2.7 accesses is

paid for using ISAM. The amount of I/0 increases considerably for the

lar er collectioni roughly doubling when 10 times as man- documents are

added. In this case each term results in 1.6-2.4 accesses and the ISAM

overhead is 4-10 accesses. Other collections probably exhibit a similar

linear relationship as well as I/0 requirements which increase.as those

observed here. It must be remembered, however, that these figures apply

only to the directory scan and not the entire retrieval process. In actual

searches, additional accesses are required to obtain and print citation

data.

The fact that scan time in an inverted directory increases with query

length has good and bad aspects. On one hand, it supplies a convenient and

reasonably equitable scheme for recovering search costs, namely by.charging

a fixed dollar amount for each query term. On the other hand it is dif-

ficult to obtain an inexpensive high-precision search, since more accurate

searf:hes generally require a moderate number.of query terms and thereby

incur greater costs. This is especially unfortunate when relevance feed-

back is used since this process expands a request considerabay. Consequent-

ly feedback searches could become quite costly. From the users standpoint,

it is more satisfactory to separate query formulation and search conditions.

For example, a users first task.should be to prepare a complete, accurate

statement of his information needs. Only then should he consider the amount

320

Number of

Accesses (Ave.)

4.0

0-0'

30 13/

ci/
0/ 46(

/ A6(

13 JO(0
20 II A/

/
,o-po. 6,...

o ad/ Z 6

cip A
.A/

10
7/

Or

Symbol

0
0

Access Method

10 15

Number of Query Terms

Number of Documents Average Accesses

20

ISAM 14,000 23.3

Direct 14,000 16.6

ISAM 1,400 (Cranfield) 10.9

Direct 1,400 (Cranfield) 8.2

Diverted Director I/o (Disk Accesses) as a

FUnction of Query Length

Figure IX-1

of desired output, dollar cost, and other constraints on searching. Un-

fortunately, this type of separation is difficult to iwovide with an invert-

ed file since the query formulation controls the search strategy, to a

large degree.

3. Comparison of Inverted. and Clustered Document Files

This chapter section compares inverted and clustered document files

with respect to search speed and quality of retrieval, The previous section

considers storage requirements and shows that the inverted scheme needs

about twice the space as the clustered scheme if a combined file is used.

Regarding quality of retrieval, the precision-recall mdues from an invert-

ed file search are the same as those for a full search. In a clustered

organization, precision-recall data vary with the search strategy; compar-

isons here are based on the narrow and broad searches of Hierarchy 1

(P*(6 n -I) profiles) as described in Chapters IV and V. Figure IX-2

3

shows P-R plots for these searches; following previous practice, the points

depict document level averages computed at cutoffs of 5,10,15,20,30,50, and

75. It is seen that at every point, the inverted curve lies significantly

above the curve for either cluster search.

What remains is to determine the I/0 delay associated with each point

of the curve and to evaluate the combined sets of data. To obtain data on

I/0 activity, searches are simulated for the clustered and inverted files

as described in Chapter VII and Section IX.2, respectively. It must be

emphasized that even though storage and retrieval are simulated, the experi-

mental paxameters are based on properties of the actual Cranfield collections,

SMART search system, and IBM 2314 Disk Storage Facility. It is believed

,322

.25

.20

.15

.10

05

IX-12

S mbol

.10 .20 .30 40 .50

Recall

Search Descri tion

0 Inverted File (Same As Full Search)
0 Clustered File--Broad Search

A Clustered. File--Narrow Search

Comparison of Precision-Recall Data From

Inverted and Clustered. File Searches

Figure IX-2

IX-13

the results accurately predict actual searches made under the specified

conditions.

Since a compamison among file organizations is difficult to make, it

is helpful to state the underlying assumptions.

General Assumptions.

a) ISAM access to all data items. Both organizations would

benefit from direct access, i.e. use of absolute disk

addresses, but it is unrealistic to assume use of direct

access in operational systems.

b) freshly constructed files. This implies all directory

lists arid clustered items are physically contiguous in

starage rather than having "tacked on" elements due to

updating.

The following discussion describes additional considerations for the

individual organizations. The I/0 data collected in the simulations are

summarized in Table IX-3 along with the P-R data shown previously. It will

be helpfUl to refer to this summary as the discussion proceeds.

First, consider the inverted search. The number of disk accesses in

the directory scan depends on the query length; a typical query contains 9

terms and therefore requires 11.3 accesses (See Figure IX-1). The I/0 for

retrieving citations depends on the organization of consecutive file and on

the number of citations printed. Recall that the consecutive file in the

inverted organization consists of complete document vectors, whereas only

the citations are required at the end of a search. Consequently the file

miett, actually consist of two distinct sub-files--one for citations and one

. 324

IX-14

for terms and weights. The higher density of citations per track results

in fewer disk accesses when the subfile scheme is used, Table Ix-3

includes da.ta for both approaches. Another problem in collecting this

data is caused by the fact that the identifier's of all retrieved, non-

relevant documents are unknown. To circumvent this situation all documents

are assumed to have an equal probability of being retrieved and data is

based on random selections from the file. Even under these conditions,

it is quite probably that the simulated I/O is close to its true value. As

an example from the table, consider a typical Cranfield. request having 9

terms and 7 relevant documents. A search retrieving 10 documents (2

relevant 8 non-relevant) wauld require a total of 19 or 24 accesses depend-

ing on whether a citation subfile is used. In either case, 11 accesses

are spent in the directory scan and the remainder in obtaining document

citations (here, arbitrarity selected). A summary of the additional

assumptions for the inverted file search includes

a) itgrms per request (the average for the Cranfield queries);

b) sufficient core storage to hold all partial correlations

during the directory scan;

c) equi-probable retrieval of all documents.

The cluster search assumes the same file and, search arameters as in

Chapter VII. namely Hierarchy 1, P*(6111 -1) profiles stored by levels, and
3

the narrow and broad strategies used throughout the research. As shown in

the table, the narrow search requires an average of 9.7 accesses per query

for correlations while the broad search uses 15.4 accesses per query. In

many cases, enough core storage is available to contain the citations of

325

IX-15

Inverted File Search

Retrieval
Cutoff Recall Precision

Directory
Accesses

Total Accesses/Query
2-Subfiles No Subfiles

5 .216 .266 11.3 16 19
10 .318 .23.8 11.3 19 24
15 .377 .3.86 11.3 21 28
20 .429 .172 11.3 22
30 .493 .3.48 11.3 24. 38
50 .563 .126 11.3 25 48

75 .634 .144 11.3 26 57

Clustered File - Narrow Search

Retrieval
Cutoff

5

10
15
20
30
50

75

Recall

.156

.208

.239

.261

.284

.307

.316

Precision

.190

.130

.102

.083

:063

.042

.029

Correlation
Accesses

9.7

9.7

9.7

9.7

9.7

9.7

9.7

Total AccessesAuery
No-rescan Rescan

9.7 16

9.7 16

9.7 16

9.7 16

9.7 16

9.7 16

9.7 16

Clustered File-Broad Search

Retrieval Correlation
Cutoff Recall Precision Accesses

5 .185 .226 15.4 15.4 27
10 .24.5 .153. 15.4 15.4 27

15 .286 .123. 15.4 15.4 27
20 011 .101 15.4 . 15.4 27
30 349 .077 15.4 3.5.4 27

50 .406 .055 15.4. 15.4 27

I

75 .429 .039 15.4 15.4 27

Total Accesses/Query
No-rescan Rescan

Comparison of I/0 Requirements in Inverted and Clustered File Searches

Table IX-3

.1

IX-16

all documents to be retrieved, thereby avoiding a rescan of level-3 items.

nxr example, if the user requests 30 documents, the search program might

alvays maintain in core the citations of the 30 documents with the highest

correlations. As the search progresses, higher scoring documents are added

to this "active" list and others are deleted. If memory space is limited,

just the highest correlations need be kept along with the corresponding

document accession numbers. At the end of the correlation phase, citations

are obtained from disk. In most cases, this rescan requires a considerable

numter of additional disk accesses (6.3 or 11.5) accesses depending on the

search strategy). For example, suppose 5 clusters are expanded, resulting

in 150 document correlations. If 30 documents are returned to the user,

they will undoubtedly come from all 5 clusters. Hence fetching their

citations involves about the same amount of I/0 as the initial scan of

level-3. Consequently an additional economy in a clustered file is realized,

when a reasonable amount of core storage is available. Data for both

cases--no resean and rescan--is shown in Table IX-3. It would appear that

a Similar procedure would apply to the inverted search. Ttis is not the

case, however, since correlations are accumulated and none can be discarded

until the very end. Saving all citations would require a prohibitive

amount of core storage.

Contrasting the I/0 requirements reveals that the inverted search

obtains its superior P-R performance with si gnificant1y more disk accesses

than a cluster search. Consequently, the response time to an on-line

user is expected to be greater. However, the clustered file provides

either high recall or low recall searches for approximately the same number

of accesses. The inverted file gives a single type of search, but at

327

IX-17

higher precision. Of note is the fact thaf the scan of the inverted

directory or profile hierarchy tikes approximately the same effort, depend-

ing on the search strategy. The essential difference in the schemes is

that at some point, the inverted search makes random accesses into the

data base for individual items, for example, to obtain citations. The

cluster search also makes random accesses, but orqy for groups of documents.

Its economy results fivm having concentrated, in a few locations, all

documents having a high probability of being relevant. Furthermore this

economy is likely to remain or even increase in larger collections. For

example, a cluster hierarchy need not grow in direct proportion to collec-

tion size, but an inverted directory must increase proportionately in

order to maintain updated term entry lists. In addition, a larger collec-

tion implies relevant documents are spread over more disk space in an

inverted file since documents have more or less arbitrary locations.

Clusters, however, retain their high density of relevamt to a large extent.

These are at least two reasons whY a clustered file should be'superior on

a larger collection also,

However, it cannot be denied that an inverted file gives higher

precision searches whereas a clustered file is more economical of storage

space and provides more flexitae searches. .The ideal situation is to com-

bine both tchemes, i,e, _provide an inverted directory to clusters of docu-

ments. Thisiight be feasible if the directory size could be reduced to

lO% of collection size, for example. The problem, naturally, is to make

an accurate differentiation among clusters on so little information. This

is exactly the problem considered in Chapter V where profiles are found

to provide an adequate solution.

1X-18

4. Summary

This chapter compares the inverted and clustered file organizations

for the Cranfield collection on the basis of storage requirements, search

speed, and quality of retrieved output and attempts to generalize the

findings to larger document collections. As depicted here, the inverted

organization consists of a directory and consecutive files with a storage

overhead of 15% or 923g. The latter figure applies if relevance feedback

or S. ce modifications is included in the s stem The clustered file incurs

an lrg storage overhead.

The search tiMe (cost) and quality of retrieved output are harder to

compare 'because they are interdependent. For inverted files, search time

is a function of query length and the number of retrieved documents. For

2,....glyen query, the directory scan takes a fixed number of disk accesses

about I access per term for the Cranfield collection Thereafter, the

search cost and precision-recall values are determined by the number of

documents retrieved. (See Tables IX-2 and IX-3.) Prtsumably high precision

or feedback searches are expensive since they involve requests having

many terms and thus spend a lot of time in the directory scan. High re-

call searches axe.costly because they generally require accessing a large

number of documents from arbitrary disk locations. The cluster search uses

a number of disk accesses proportional to the number of expanded clusters.

Search time is not dependent on the length or complexity of a request, but

on the broadness or narrowness of the search strategy, Profile correlations

are an overhead cost and serve to select several general areas of the disk

from which to begin retrieving documents. Once this phase is completed) a

search at any recall level may be obtained, for about the same cost,

simply by retrieving additional documents. The overall precision is less

than in the inverted search, however.

As noted earlier, the economics of the clustered file organization

should be present and perhaps more apparent in larger files. There is

every reason to believe that the profile hierarchy grows slower than the

inverted directory, since each new document does not necessarily increase

the size of any profile. In addition, with limited re-clustering, it

should.be possible to maintain reasonable groupings of relevant documerms

and, therefore, quick, successful searches.

a

.. 330

X-1

Chapter X

Summary, Conclusions, Discussion, and Suggestions for Future Work

There are several ways to summarize this research and its importance

to information retrieval. A simple listing of chapter contents is a good

starting point.

plapter Contents

1 Introduction to document retrieval systems, auto-

mated text processing, search techniques, file

organization, and disk storage devices

2 Survey of logical file organizations (sequential,

chained, inverted, caldulated access, clustered)

and physical organizations (serial direct, indexed

sequential)

3 Detailed description of clustered files including

classification schemes, hierarchy structure,

profile definition, search strategies, updatinci

pocodures, storage considerations, query cluster-

ing, and alternate uses of the cluster hierarchy

(underlined topics are the basis of experiments

in later chapters)

4 Development of evaluation procedures; description

of the experimental collections

Experiments with profile definition, specifically

examining standard and rank value profiles, search

bias, vector length, frequency considerations, as

306

X- 2

Chapter Contents Cont'd.

well as unweighted and partially weighted vectors

6 Experiments related to updating a clustered document

collection (profile maintenance schemes and rate

of hierarchy degeneration)

7 Experiments with schemes for storing the hierarchy

on disk in conjunction with ISAM indices; develop-

ment of a disk storage and retrieval simulation

model

8 Experiments with automatic query alteration using

information within the profile hierarchy

9 Comparison of clustered and inverted files with

respect to storage, speed, and quality of retrieved

output

10 Summary and conclusions

The results of this work are applicable to various types of research

in information retrieval. Within the SMART project, these efforts produced

a new document collection--the Cranfield 1400 stem. The parameters for

the collection preparation and a summary of its properties are contained

in Chapter IV and Appendix A. In addition, Chapter VI contains an algorithm

for splitting a collection into special test subcollections needed for

these and other experiments (see Appendix B).

On a higher level, some of the genuine contributions of this work

reside in its test and evaluation methods. The cluster-oriented evalua-

tion scheme developed in Chapter IV and used throughout is unique in that

332

/-N

X- 3

it is independent of search strategy, accoUnts more accurately for system

effort (disk accesses), and cost relatively little to run. Chapter V

introduces the concept of biased search results and sets forth a procedure

for detecting bias with respect to a given profile property. The technique

can be extended to other properties and many types of searches (fUll,

inverted, etc.) and should be useful in many experimental setups. Chapter

VII utilizes an interesting disk storage algorithm and simulation scheme

for examining questions related to search speed and space utilization.

Finally, the work in Chapter VIII includes a new way of computing similarity

matrices, namely by summing matrices for subsets of desired items.

A large number of results are directly related to the use of clustered

document files. These are explained in detail and adequately summarized

in Chapters V to VIII. Only a general summary will be given here. First,

the experiments in Chapter V show that it is possible to make a reasonably

accurate, economical cluster profile, which is free from correlation

domination and bias. Specifically, its term weights should be based on

frequency ranks and therefore be non-decreasing with the number of occur-

rences. A large number of low weighted terms can be deleted with a con-

siderable saving in storage space. Second, the most satisfactory update

procedure in a clustered file alters the weights of only existing profile

terms. Even so, the hierarchy degenerates with the addition of new items

and should undergo at least partial re-clustering when it increases 25%-5%

in size. (This percentage is figured as the ratio of additions to the

current file size.) Third, a cluster hierarchy should be stored by levels

to facilitate rapid searching. Finally, term substitutes within profiles

should not be used to automatically alter requests as described in Chapter

VIII. However, there are other alternate ways of using the cluster

hierarchy which can help justify the expense of document classification.

These results do not suggest that no further improvements might be

made in profile definition. For example, a large discrepancy remains

between the best achievable performance curve (not the ideal curve) and

those actually obtained in these experiments. It is felt that additional

improvements can be made, perhaps by using partial weighting teChniques

or a completely different scheme altogether. Some problems undoubtedly

are related to the document indexing. If changes are made in profiles,

the optimal updating scheme may change also and the general hierarchy

quality might become more sensitive to new additions. With less specula-

tion it can be said that there is a genuine need for developing new,

additional uses for a cluster hierarchy. A few are suggested in Chapter

III; for example, using a hierarchy in selective dissemination of informa-

tion and. document browsing.

In the final analysis, this investigation attempts to answer the

question "Is a clustered file organization suitable for on-line document

retrieval?", Part of the answer is obtained from the comparison with in-

verted organization in Chapter IX. A clustered file is found to compare

favorably in terms of search speed and storage economy. Search precision

is less, but compensated by a flexible level of recall (low or high).

In general, the clustered organization provides a great deal of flexibility,

allowing any type of request-document matching, search strategy, or feedback.

Part of this is due to the fact that the entire document remains intact in

334

X- 5

storage, rather than being split up and stored in pieces. Thus all

information is available for use by matching coefficients, feedback

schemes, etc. Furthermore, it is certain that on-line retrieval must

move away frcua making arbitraxy accesses into a data base for individual

records. A clustered file solves this problem by concentrating, those

records with a high probability of satisfying a rave:Ain a few ask

areas. Therein lies its greatest value,

A-1

Appe:Aix A

Common Word List

The forms of the Cranfield document and query collection used in this

research are produced by removing common words from the original document

and query texts and by applying a analysis scheme to reduce variants of a

word to the same stem. The common word. list (restriction list) includes

360 prepositions, pronouns, conjunctions, and verbs of the following types.

1. Prepositions (of, on, at, in,

2. Pronouns

a) Personal (he, she, they, . . 4.)

b) Possessive (his, hers, my, .)

c) Reflexive (myself, herself, .

d) Interrogative (who, which, . .)

e) Demonstrative (this, that, . . .)

f) Indefinite (all, any, both, each, many, .)

3, Conjunctions

a) Cmodination (and, IRA, or, . .)

b) Correlative (either, whether, not only,

c) Subordinating (after, because, how, unless,

4. Verbs

a) Auxiliaries and their forms (be, do, have, can,

mays

b) Non-content (begin, choose, make, come, give, keep,

meet, put, say, see, show, take, . .)

311

336

A-2

5. Other

a) Individual letters

b) Punctuation

o) Numbers

The suffix removal program uses the standani SMART suffix listiand will not

be described here.

337

B-1

Appendix B

Sutcollections for the Updating Experiments

In order to conduct the uixiating experiments in Chapter VI, the

Cranfield documents are separated into subsets with special properties.

Initially the 1400 documents are divided into halvessots A and B - -each

containing documents chosen in such a way that half the relevant for each

query lie in each subset. Then, the B subcollection is split halves

again--set C and D--each containing one quarter of the total relevant

for each query. The documents in sets A, C, and D are listed below; the

algorithm by which they are derived is given in Chapter VI.

A subcollection

2 4 6 8 10 13 15

24 26 28 30 32 34 37

.44 46 48 50 52 54 56

64 65 67 69 70 72 74

82 84. 86 88 90 92 94

101 103 105 107 109 111 113

122 124 126 129 131 133 135

143 146 148 151 153 155 156

163 165 167 169 171 173 175

183 185 18? 189 192 194 196

206 208 210 212 214 216 218

228 231 233 236 238 240 241

250 252 254 257 259 262 264

273 275 277 279 281 283 285

293 295 297 299 300 302 304

312 315 317 319 321 323 325

334 336 338 340 342 345 347

355 357 359 361 363 365 367

374 376 378 380 382 384 386

393 395 397 399 401 403 406

411 415 416 418 420 422 424

432 434 437 439 441 443 445

454 456 458 460 462 464 466

474 4.75 477 478 479 482 484

491 4.92 494 496 497 500 503

510 512 514 516 518 520 522

313
. 33g

17 19 21

39 41 43

59 62 63

76 78 80

96 97 99

114 116 120

137 140 142

157 159 161

177 179 181

199 201 204

220 223 226

243 245 247

267 269 271

287 289 291

306 308 310

327 329 331

349 351 353

369 371 372

387 389 390

408 410 411

426 428 430

447 449 452

468 470 472

486 487 489

504 506 508

524 526 528

A Cont'd.

B- 2

530 532 534 536 538 540 514.1 543 545 547

549 550 552 555 557 559 561 563 565 567
571 573 574. 575 577 579 581 583 585 587

589 592 593 596 597 599 6w. 603 605 607
609 613 615 617 619 621 623 625 627 630
632 634 636 639 641 643 645 647 64.9 651
654. 655 657 659 660 661 663 665 667 670
672 674 677 679 681 683 686 690 692 _6914.

696 698 700 702 705 707 708 no 711 713
716 718 721. 723 725 727 729 731 733 735
737 739 741 743 7146 748 750 752 754 756

758 760 762 763 765 766 768 770 772 774
776 778 780 782 7814. 786 788 790 792 7914.

796 798 800 802 804 806 808 810 812 814
816 817 819 821 823 825 827 828 829 831
833 335 837 839 841 84.3 845 847 849 851
853 .854. 856 858 860 862 864. 866 868 870
872 874 876 877 879 881 883 885 887 889
893. 893 895 897 898 900 902 .904 906 909

911 913 914 917 919 923. 922 924. 925 928

930 931 933 935 937 939 941 943 945 947

949 951 953 955 957 959 962 963 964 966
968 970 972 974. 975 976 979 980 982 984
986 988 990 993 995 996 997 999 1001 1003

1005 1007 1009 1011 1013 1015 1017 1019 1022 1024
1026 1028 1031 1033 1035 1036 1039 1041 1043 104.5

1047 1049 1051 3.053 1055 1057 1059 1060 1063 1065
1067 1069 1070 1071 1073 1075 1077 1079 1081 1083
1085 1087 1089 1091 1093 1095 1097 1099 1101 1103
1105 1107 1110 1112 1114 1116 1118 1120 1122 1124
13.25 1127 1129 1130 1132 1134 1136 1138 1139 1142
13.44 1114.7 1149 1151 1153 1155 1157 1158 1160 1162
1164 1166 1168 1170 1172 1174 1178 1180 1182 1134
1186 1189 1192 1194 1195 1197 1199 1200 1202 1204.

1206 1208 1210 1212 1214 1216 1218 1220 1222 1224
1226 1228 1230 1236 1238 1240 1242 1243 1214.5 1248
1250 1252 1254 1255 1257 1259 1261 1264 1265 1267

1269 1271 1273 1274 1276 1278 1280 1282 1284 1286
1289 1291 1293 1295 1298 1300 1302 1303 1305 1307

1309 1310 1311 1314 1315 1317 1319 1321 1323 1.325

1327 1329 1331 1332 1333 1334 1335 1337 1338 1340
1343 1345 1347 1349 1351 1353 1355 1357 1358 1360
1362 1365 1367 1369 1371 1372 1373 1375 1377 1379
1382. 1383 1385 1387 1388 1390 1392 1394 1397 1399

C Subcollection

B- 3

1 5 9 12 16 20 22 23 25 29

33 35 38 45 49 51 58 61 71 73

77 81 87 91 95 loo 104 108 112 118

121 125 130 132 136 141 ,149 152 160 164

168 174 178 184 188 190 193 197 200 203

207 211 213 216 221 224 225 229 232 235

239 244 245 251 253 258 261 266 270 272

276 280 284 288 290 294 298 301 305 307

311 314 318 322 324 328 332 333 337 -341

346 350 356 362 366 370 375 379 383 391

394 398 402 404 409 417 419 423 425 429

435 438 444 448 450 453 459 463 467 471

480 483 490 495 501 507 511 515 519 523

527 529 533 537 539 542 546 48 551 554

558 562 566 572 . 576 580 582 586 590 594

595 598 600 604 608 .611 614 616 622 624

628 631 635 638 642 646 650 653 658 664

666 668 671 676 680 685 688 691 695 697

701 704 709 714 717 720 722 726 730 734

738 740 744 747 751 755 759 764 769 773

777 781 785 789 793 797 801 805 809 813

818 822 826 830 834 838 844 848 855 859

861 863 865 869 .871 880 884 890 892 899

903 907 910 916 918 923 927 934 938 942

946 950 952 956 958 961 967 971 978 981

985 989 992 998 1002 1004 1008 1012 1016 1021

1023 1027 1030 1032 1038 1042 1046 1050 1052 1058

1062 1066 1069 1074 1078 1080 1086 1088 1092 1096

1098 1100 1104 1106 1111 1115 1119 1121 1128 1133

11'37 1141 1146 1152 1156 1161 1165 1169 1176 1177

1181 1185 1190 1196 1201 1205 1209 1213 1217 1221

1225 1229 1232 1234 1241 1246 1249 1253 1260 1263

1268 1272 1277 1283 1288 1292 1296 1299 1300 1306

1313 1318 1320 1326 1330 1339 1342 1348 1350 1354

1399 1364 1366 1374 1378 1382 1386 1389 1395 1398

13-4

D Subcollection

3 7 11 14 18 27 31 36 40 42

47 53 55 57 60 66 68 75 79 83

85 89 93 98 102 106 110 115 117 119

123 127 128 134 138 139 144 145 147 150

154 158 162 166 170 172 176 180 182 186

191 195 198 202 205 209 215 219 222 227

230 234 237 242 246 249 255 256 260 263

265 268 274 278 282 286 292 296 303 309

313 316 320 326 330 335 339 343 344 343

352 354 358 360 364 368 373 377 381 585

388 392 396 400 405 407 412 414 421 427.

431 433 436 440 442 446 451 455 457 461

465 469 473 476 481 435 488 493 498 499

502 505 509 513 517 521 525 531 535 544

553 556 560 564 568 569 570 578 584 588

591 602 606 610 612 618 620 626 629 633

637 640 644 648 652 656 662 669 673 675

08 682 684 687 689 693 699 703 706 712

715 719 724 728 732 736 742 745 749 753

757 761 767 771 775 779 783 787 791 795

799 803 807 811 815 820 824 832 836 840

842 846 850 852 857 867 873 875 878 882

886 888 894 896 901 905 908 912 915 920

926 929 932 936 940 944 948 954 960 965

969 973 977 983 987 991 994 l000 1006 1010

1014 1018 1020 1025 1029 1034 1037 1040 1044 1048

1052 1056 1061 1064 1072 1076 1082 1084 1090 1094

1102 1108 1109 1113 1117 1123 1126 1131 1135 1140

1143 1145 1148 1150 1154 1159 1163 1167, 1171 1173

1175 1179 1183 1187 1188 1191 1193 1198 1203 1207

1211 1215 1219 1223 1227 1231 1233 1235 1237 1239

1244 1247 1251 1256 1258 1262 1266 1270 1275 1279

1281 1285 1287 1290 1294 1297 1304 1308 1312 1316

1322 1324 1328 1336 1341 1344 1346 1352 1356 1361

1363 1368 1370 1376 1380 1384 1391 1393 1396 1400

Appendix C

Confirmation Test Evaluation Curves

section 9 of Chapter V summarizes a set of tests confirming that pro-

files for various cluster hierarchies behave in approximately the same

way. That is, the preliminary conclusions drawn from the experiments on

Hierarchy I are supported by the experiments on Hierarchies 2 and 3. Those

preliminary conclusions are:

a) profile term weights based on frequency ranks are

superior to those based on frequency counts P41>P
3 3

b) a large number of low weight profile terms can be de-

leted without adversely affecting performance

P4(15 -1)2**; and
3 3

c) shortened unweighted profiles are roughly equivalent to

weighted profiles.P1(15 = -1)14.$1(6 = -1).

In accordance with the scheme set up in Chapter IV, the confirmation tests

involve both cluster-oriented evaluation (PR-PF data from levels 1 and 2)

as well as SMART evaluation P-R data from narrow and broad searches). In

each of these four trials, an attempt is made to fairly judge the relative

merit of four profile types in the three hierarchies. Thus, there are a

total of 12 plots of performance, each showing 4 curves. A consistent

notation is used in these plots which is explained in Table C-1 along with

some properties of each hierarchy. 'It is worth remarking that the

absolute values of the performance measures differ substantially among

the collections. However, the piimary concern here is with the relative

317

342

C- 2

positions of performance curves and not the actual measured values; hence

different scales are of secondary importance.

First, consider the RC-PF plot for any collection and hierarchy level

(Figures C-1, C-2, C-5, C-6, C-9, C-10). Corresponding points on the 4

curves re:12E2ml the same amount of s stem effort--the average number of

disk accesses to expand one additional "luster (amount not shown)--and

its placement indicates the resulting recall ceiling and 'precision floor

of the search. Therefore, the curves can be compared on a point-to-point

basis and profiles ranked accordingly. Since the curves do not usually

overlap, the judgments are made with considerable confidence. Ranks are

listed beneath each figure; a composite ranking is shown in Table V-5. As

in all comparisons there must be a criteria for determining when curves are

significantly different. Here, a 2%-4% difference is considered significant,

this amount being about half that used in some SMART experiments. However,

4 times as many queries are used in these tests, so the confidence level

for the conclusions remains about the same in both cases.

Accurate judgments are a bit more difficult to make using the SMART

precision-recall curves and normalized measures (Figures C-3, C-4, C-?,

C-8, C-11, C-12). The basic problem is that of comparing searches involv-

ing the same amount of work. Unfortunately, it is impossible to ascertain

the number of disk accesses per search. The number of profile and document

correlations is available instead and is shown beneath each figure. Small

differences in the number of document correlations can be neglected since

entire clusters of iteis are fetched at a time. Differences in the number

343

Symbol

0

CI

NR

NP

C(x)

RANK

C-3

Description

Denotes curves for P
3
profiles--term weights are pro-

portional to frequency counts

Denotes curves for P5 profilesterm weights are pro-

portional to frequency ranks

Denotes curves for P*
3

114 but includes deletion of terms with low weights

Denotes curves for P*
1

vectors based on P5

normalized recall

normalized precision

average number of correlations on hierarchy level x

relative evaluation rank of profile types taking

into account performance and search effort

a) Notation Used. Throughout Confirmation Tests

Hierarchy Level

Number of

Profiles

Average Length

Before Deletion

Average Length

After Deletion

(a = -1)

1 1 13 812 141 (17)

1 2 55 323 70 (22%)

2 6 9o8 207 23g)

2 2 914. 311 69 22%)

3 1 28 526 103 20%)

3 2 103 197 47 24%)

b) Selected Properties of Profiles

Table C-1

C- 4

of profile correlations are more serious since these records are obtained

from more or less arbitrary disk locations (1 access per node). Consequent-

ly, an equal number of profile correlations is more important in determining

expenditure of "equal system effort," Obviously, the most desirable

profile provides a superior precision-recall curve for the smallest amount

of work. As a practical matter in these comparisons, tt is necessary to

decide not only what performance difference is significant, but also when

superior performance (P-R) must be downgraded because of excess search

effort. Here a 2% difference in normalized measures or a 4% difference

in P-R curves is considered significant and is offset only by one or

fewer profile correlations in the next lower ranking search.

The following evaluation curves are presented using these methods

for determining the relative merit of each profile type in the indicated

collection. A summary of the rankings and a discussion of the test

conclusions are given in Section V.9.

.345

.020

.015

.010

.005

C-5

Precision

Floor

.20 .30 .40 .50 .6o

Recall Ceiling

Simbol T.--------re Raz*

0 P3 3

0 P* 1
30 p*(a, - -1) 2
3

1

Confirmation Test Results--Cluster-oriented Evaluation

Hierarchy 1, Level 1

Figure C-1

Precision

Floor

405

AB
.04

C-6 -

\
A 0 N

,03 \\orC(N

N\ (3.,
cp

8 \t)NA \
'Isto0

.02

.20 .30 .40 .50 .60

Recall Ceiling

5 mbol Profile Rank

o
o
a

P
3

P*
3

P56

-1)
-1)

3

1

2

4

Confirmation Test Results--Cluster-oriented Evaluation

Hierarchy 1, Level 2

Figure C-2

*. 347

20

.15

.10

.05

.1

Precision

0

C - 7 .

.10 . .20 .30 40 .50

Recall

Symbol Prcdlle NR NP C 1 C 2 C Rank

P3

i4
3

P*(6 in -1)
3,

PKA6 a -1)
1

.616

644

.627

,633

.353

.390

.370

.376

13

13

13

13

7.2

7,5

8.0

9.7

90

89

86

89

3

1

2

4

Confirmation Test ResultsSMART Evaluation

Hierarchy 11 Narrow Search

Figure C-3

348

.05

oCit

C-8

.10 .20

Symbol Profile
0 P3

0 P*
30 Pol. (6 ...
3

A 1:41 (6 ...1

.40 .50

NR NP C(1) C(2)

Recall

C(3) Rank

.672 .422 13 11.5 160 2

.689 .440 13 12.1 161 1

-1) . 695 '.440 13 13.0 162 3

-1) .674 .433 13 14.5 164, 4

Confirmation Test Results--SMART Evaluation

Hierarchy 1, Broad Search

Figure C-4

. 349

Precision Floor

C- 9

Symbol Profile : Rank

()

()

0

A

P3

P*
3

. 141(6 = -l)

P?($5 - -l)

2

2

2

ii,

.80 .90

Recall Ceiling

Confirmation Test Results --Cluster-oriented Evaluation

Hierarchy 2, Level 1

Figure C-5

350

.05

.03

.02

Precision Floor

A 0 \
%RAN. 0

wQ--;..- N
C)

.

.20

A

c-i6.

ratzmwmobb

.30 .40 .50 .60

Recall Ceiling

Profile

P3

P*
3

P*(5 -1)
3

P*(45 - -1)
1

Rank

24

1

21

4

Confirmation Test Results--Cluster-oriented Evaluation

Hierarchy 2, Level 2

Figure C-6

351

Symbol

0
0
D

.10

Profile NH

.20

NP C(1) C(2)

.40

Recall

C(3)

.50

Rank

P3

1*
3

p*(45 =
3

1

-1)

.635

.660

.650

.617

.380

.409

.393

.352

6

'6

6

6

19.3

21.0

21.0

21.6

85

90

89

88

2

1

3

4

Confirmation Test Results- -SMART Evaluation

Hierarchy 2, Narrow Search

Figure C-7

352

Symbol

.10

Profile NR

.20

NP

.30

C(1)

.40

C(2)

Recall

C(3)

.50

Rank

A

.

()

()

E3

P

P*
3

1(6 - -1)

.693

.1707

1.695

.4643

.441

.456

.449

.392

6

6

6

6

26.5

27.1

29.1

28.9

146

150

150

150

2

1

3

4

Confirmation Test Results- -SMART Evaluation

Hierarchy 2, Broad Search

Figure C-8

353

.-

1

1

.0201

.015

.010

.005

Precision Floor

CID

ci

0,

---...

A

C-13

.40 .50 .60

Recall Ceiling

Szmbol Profile Rank

C) P
3

zi
0 P* 1

3
C] P*(6 a -1) 2i

3
& P*(ô so -1)

1
4

Confirmation Test ResultsCluster-oriented. Evaluation

Hierarchy 3, Level 1

Figure C-9

1 354

C-14

Precision Flo6

.10 .20

Symbol Profile Rank

0 P3 2

0 P* 1
3

0 P56 m -1) 3

El(14 m -1) 4

.40 .50

Recall Ceiling

Confirmation Test Results - -Clusten-oriented Evaluation

Hierarchy 3, Level 2

Figure C-10

ass

Symbol

C-15

.10

Profile

.20 .30 .40

Recall

.50

P3

P*
3

3
14(6 - -1)
1

.615

.613

.609

.577

.357

.361

.342

.320

28

28

28

28

15.7

16.1

16.2

16.2

79

81

80

79

3.4.

3

4

Confirmation Test Results--SMART Evaluation

Hierarchy 3, Narrow Search

Figure C-11

Precision
C4.6

labol
0
0
0
A

.10 .30 .40

Recall

Profile KR

.659

.674

.652

.639

NP

412
.430

.405

.392

Coll_ C(2)
28 25.9

28 26.0

28 26.3

28 26.9

C(3)

153

155

153

154

Rank

21

1

21

4

P3
P*

3
1:4.(6 ... -I)

3
P*(6 - -1)

1

Confirmation Test Results--SMART Evaluation

Hierarchy 3, Broad Search

Figure C-12

