
Theory Comput Syst (2018) 62:854–898

DOI 10.1007/s00224-017-9770-0

Document Spanners: From Expressive Power

to Decision Problems

Dominik D. Freydenberger1
· Mario Holldack2

Published online: 22 May 2017

© The Author(s) 2017. This article is an open access publication

Abstract We examine document spanners, a formal framework for information

extraction that was introduced by Fagin, Kimelfeld, Reiss, and Vansummeren

(PODS 2013, JACM 2015). A document spanner is a function that maps an input

string to a relation over spans (intervals of positions of the string). We focus on

document spanners that are defined by regex formulas, which are basically regular

expressions that map matched subexpressions to corresponding spans, and on core

spanners, which extend the former by standard algebraic operators and string equal-

ity selection. First, we compare the expressive power of core spanners to three models

– namely, patterns, word equations, and a rich and natural subclass of extended reg-

ular expressions (regular expressions with a repetition operator). These results are

then used to analyze the complexity of query evaluation and various aspects of static

analysis of core spanners. Finally, we examine the relative succinctness of different

kinds of representations of core spanners and relate this to the simplification of core

spanners that are extended with difference operators.

Keywords Information extraction · Document spanners · Regular expressions ·

Xregex · Patterns · Word equations · Decision problems · Descriptional complexity

This article is part of the Topical Collection on Special Issue on Database Theory

An preliminary version of this article appeared as [14]. Dominik D. Freydenberger was supported by

Deutsche Forschungsgemeinschaft (DFG) under grant FR 3551/1-1.

� Dominik D. Freydenberger

ddfy@ddfy.de

1 Loughborough University, Loughborough, UK

2 Goethe University, Frankfurt am Main, Germany

http://crossmark.crossref.org/dialog/?doi=10.1007/s00224-017-9770-0&domain=pdf
http://orcid.org/0000-0001-5088-0067
mailto:ddfy@ddfy.de

Theory Comput Syst (2018) 62:854–898 855

1 Introduction

Information Extraction (IE) is the task of automatically extracting structured infor-

mation from texts. This paper examines document spanners (also called spanners), a

formalization of the IE query language AQL, which is used in IBM’s SystemT. Doc-

ument spanners were introduced by Fagin et al. [7] in order to allow the theoretical

examination of AQL, and were also used in [8].

A span is an interval on positions of a string w, and a spanner is a function that

maps w to a relation over spans of w. A central topic of [7] and of the present paper

are core spanners (according to Fagin et al., this name was chosen because core

spanners capture the core of AQL).

The primitive building blocks of core spanners are regex formulas, which are

regular expressions with variables. Each of these variables corresponds to a subex-

pression, and whenever a regex formula α matches a string w, each variable is

mapped to the span in w that matches that subexpression. For example, consider the

regex formula α := x{aaa} · a+ · y{a+}, with terminal a, and variables x and y.

When α matches a string w, it maps x to the span that contains the first three posi-

tions of w, and y to a span from some position after the third to the last position of w.

Hence, each match of α on w determines a tuple of spans; and as there can be multi-

ple matches of a regex formula to a string, this process creates a relation over spans

of w. Core spanners are then defined by extending regex formulas with the relational

operations projection, union, natural join, and string equality selection.

One of the two main topics of the present paper is the examination of decision

problems for core spanners, in particular evaluation and static analysis. These results

are mostly derived from the other main topic, the examination of the expressive power

of core spanners in relation to three other models that use repetition operators, which

act similar to the spanners’ string equality selection.

We begin with comparing core spanners to patterns. A pattern is word that con-

sists of variables and terminals, and generates the language of all words that can be

obtained by substitution of the variables with arbitrary terminal words. For example,

the pattern α = xxaby (where x and y are variables, and a and b are terminals)

generates the language of all words that have a prefix that consists of a square, fol-

lowed by the word ab. Although pattern languages have a simple definition, various

decision problems for them are surprisingly hard. For example, their membership

problem is NP-complete (cf. Angluin [1], Jiang et al. [24]), and their inclusion

problem is undecidable (cf. Bremer and Freydenberger [4]). As we show that core

spanners can recognize pattern languages, this allows us to conclude that evaluation

of Boolean core spanners is NP-hard, and that spanner containment is undecidable.

Next, we consider word equations, which are equations of the form α = β, where

α and β are patterns. Word equations can be used to define languages and word rela-

tions. We show that word equations with regular constraints can express all relations

that are expressible with core spanners. By using an improved version of Makanin’s

algorithm (cf. Diekert [6]), this allows us to show that satisfiability and hierarchical-

ity for core spanners can be decided in PSPACE. Moreover, using coding techniques

from word equations, we show that two common relations from combinatorics on

words can be selected with core spanners.

856 Theory Comput Syst (2018) 62:854–898

Finally, we examine the relation of core spanners to xregexes (also called extended

regular expressions, regexes, or regular expressions with backreferences in litera-

ture). These are regular expressions that can use a repetition operator, that is available

in most modern implementations for regular expressions (see, e. g., Friedl [17])

and that allows the definition of non-regular languages. For example, the xregex

x{Σ∗} · &x · &x generates all cubic words over Σ , as x{Σ∗} generates some word

w which is stored in the variable x, and each occurrence of &x repeats that w. As a

consequence of this increase in expressive power, many decision problems are harder

for xregexes than for their “classical” counterparts. In particular, various problems of

static analysis are undecidable (Freydenberger [12]).

But as shown by Fagin et al. [7], core spanners cannot define all languages that

are definable by xregexes. Intuitively, the reason for this is that xregexes can use their

repetition operators inside a Kleene star, which allows them to repeat an arbitrary

word an unbounded number of times – for example, the xregex x{Σ∗}·&x+ generates

the language of all wn, n ≥ 2. In contrast to this, core spanners have to express

repetitions with variables and string equality selections. Inspired by this observation,

we introduce variable-star free (or vstar-free) xregexes as those xregexes that neither

define nor use variables inside a Kleene star. We show that every vstar-free xregex

can be converted into an equivalent core spanner. Since all undecidability results

by Freydenberger [12] also apply to vstar-free xregexes, these undecidability results

carry over to core spanners. This also has various consequences for the minimization

and the relative succinctness of classes of spanner representations. We also show that

complementing a core spanner can lead to a size increase that is not bounded by

any recursive function (for basically all natural notions of size). Although this does

not solve an open problem by Fagin et al. [7] on the simplification of core spanners

with difference operators, it shows that if simplification is possible, it has to be non-

computable. As a further contribution, we also develop tools to prove inexpressibility

for vstar-free regular expressions and for core spanners.

As we shall see, many of the observed lower bounds hold even for comparatively

restricted classes of core spanners (in particular, most of the results hold for spanners

that do not use join). Hence, the authors consider it reasonable to expect that these

results can be easily adapted to other information extraction languages that combine

regular expressions with capture variables and a string equality operator.

In addition to regex formulas, Fagin et al. [7] also consider two types of automata

as basic building blocks of spanner representations. While the present paper does

not discuss these in detail, most of the results on spanner representations that are

based on regex formulas can be directly converted to the respective class of spanner

representations that are based on automata.

Related Work For an overview of related models, we refer to Fagin et al. [7]. In

addition to this, we highlight connections to models with similar properties. In [7],

Fagin et al. showed that there is a language that can be defined by xregexes, but not

by core spanners. Furthermore, they compared the expressive power of core span-

ners and a variant of conjunctive regular path queries (CRPQs), a graph querying

language. Barceló et al. [2] introduced extended CRPQs (ECRPQs), which can com-

pare paths in the graph with regular relations. While there is no direct connection

Theory Comput Syst (2018) 62:854–898 857

between ECRPQs and core spanners, both models share the basic idea of combin-

ing regular languages with a comparison operator that can express string equality. As

shown by Freydenberger and Schweikardt [16], ECRPQs have undecidability results

that are comparable to those in the present paper, and to those for xregexes (cf.

Freydenberger [12]). Furthermore, Barceló and Muñoz [3] have used word equations

with regular constraints for variants of CRPQs.

Also note that Freydenberger [13] extends the results on the connection between

word equations and core spanners from the present paper into a logic on words that

has the same expressive power as core spanners.

Structure of the Paper In Section 2, we give definitions of xregexes and of core

spanners. Section 3 compares the expressive power of core spanners to patterns, word

equations, and vstar-free regular expressions. The results from this section are then

used in Section 4 to examine the complexity of evaluation and static analysis of span-

ners. We also examine the consequences of these results to the relative succinctness

of different spanner representations. Section 5 concludes the paper.

2 Preliminaries

Let N and N>0 be the sets of non-negative and positive integers, respectively. Let Σ

be a fixed finite alphabet of (terminal) symbols. Except when stated otherwise, we

assume |Σ | ≥ 2. We use ε to denote the empty word. For every word w ∈ Σ∗ and

every a ∈ Σ , let |w| denote the length of w, and |w|a the number of occurrences of

a in w. A word x ∈ Σ∗ is a subword of a word y ∈ Σ∗ if there exist u, v ∈ Σ∗ with

y = uxv. A word x ∈ Σ∗ is a prefix of a word y ∈ Σ∗ if there exists a v ∈ Σ∗ with

y = xv, and a proper prefix if it is a prefix and x �= y. For every n ∈ N, an n-ary

word relation (over Σ) is a subset of (Σ∗)n.

2.1 Regexes (Extended Regular Expressions)

This section introduces the syntax and semantics of xregexes, which we shall also

use for regex formulas in Section 2.2. We begin with the syntax, which follows the

definition from [7].

Definition 2.1 We fix an infinite set X of variables and define the set M of meta

symbols as M := {ε,∅, (,), {, }, ·, ∨, ∗, &}. Let Σ , X, and M be pairwise disjoint.

The set of xregexes (extended regular expressions) is defined as follows:

1. The symbols ∅ and ε, and every a ∈ Σ are xregexes.

2. If α1 and α2 are xregex, then (α1 · α2) (concatenation), (α1 ∨ α2) (disjunction),

and (α∗
1) (Kleene star) are xregexes.

3. For every x ∈ X and every xregex α that contains neither x{· · · } nor &x as a

subword, x{α} is an xregex (variable binding).

4. For every x ∈ X, we have that &x is an xregex (variable reference).

858 Theory Comput Syst (2018) 62:854–898

If a subword β of an xregex α is an xregex itself, we call β a subexpression (of α).

The set of all subexpressions of α is denoted by Sub (α), and the set of variables

occurring in variable bindings in an xregex α is denoted by Vars (α). If an xregex α

contains neither variable references, nor variable bindings, we call α a proper regular

expression.

In other words, we use the term “proper” to distinguish those expressions that

are usually just called “regular expressions” from the more general extended regular

expressions. We use the notation α+ as a shorthand for α · α∗. Parentheses can be

added freely. We may also omit parentheses and the concatenation operator, where

we assume ∗ and + are taking precedence over concatenation, and concatenation pre-

cedes disjunction. Furthermore, we use Σ as a shorthand for the regular expression
∨

a∈Σ a.

Before introducing the semantics of xregexes formally, we give an intuitive expla-

nation. An expression of the form α = x{β} matches the same strings as β, but

α additionally stores the matched string in the variable x. Using a variable refer-

ence &x, this string can then be repeated. For example, let α := (x{Σ∗} · &x). The

subexpression x{Σ∗} matches any string w ∈ Σ∗ and stores this match in x. The fol-

lowing variable reference &x repeats the stored w. Thus, α defines the (non-regular)

copy-language {ww | w ∈ Σ∗}.

The following definition of the semantics of xregexes is based on the semantics by

Freydenberger [12], which is an adaption of the semantics from Câmpeanu et al. [5]

(the former uses variables, the latter backreferences). In comparison to [12], the case

for Kleene star has been changed, in order to make the definition compatible with the

parse trees for regex formulas from Fagin et al. [7].

Definition 2.2 Let γ be an xregex over Σ and X. A γ -parse tree is a finite, directed,

and ordered tree Tγ . Its nodes are labeled with tuples of the form (w, γ ′) ∈ (Σ∗ ×

Sub (γ)). The root of every γ -parse tree Tγ is labeled (w, γ) with w ∈ Σ∗; and the

following rules must hold for each node v of Tγ :

1) If v is labeled (w, a) with a ∈ (Σ ∪ {ε}), then v is a leaf, and w = a.

2) If v is labeled (w, (β1 · β2)), then v has exactly one left child v1 and exactly one

right child v2 with respective labels (w1, β1) and (w2, β2), and w = w1w2.

3) If v is labeled (w, (β1∨β2)), then v has a single child, labeled (w, β1) or (w, β2).

4) If v is labeled (w, β∗), then one of the following cases holds: (a) w = ε, and v

is a leaf, or (b) w = w1w2 . . . wk for words w1, . . . , wk ∈ Σ+ (with k ≥ 1), and

v has k children v1, . . . , vk (ordered from left to right) that are labeled (w1, β),

. . . , (wk, β).

5) If v is labeled (w, x{β}), then v has a single child, labeled (w, β).

6) If v is labeled (w, &x), let ≺ denote the post-order of the nodes of Tγ (that

results from a left-to-right, depth-first traversal). Then one of the following cases

applies: (a) If there is no node v′ with v′ ≺ v that is labeled (w′, x{β ′}) ∈ Σ∗ ×

Sub(γ), then v is a leaf, and w = ε. (b) Otherwise, let v′ be the node with v′ ≺ v that

is ≺-maximal among nodes labeled (w′, x{β ′}). Then v is a leaf, and w = w′.

Theory Comput Syst (2018) 62:854–898 859

If the root of a γ -parse tree Tγ is labeled (w, γ), we call Tγ a γ -parse tree for w. If

the context is clear, we omit γ and call Tγ a parse tree.

There is no parse tree for ∅, and references to unbound variables (i. e., variables

that were not assigned a value with a variable binding operator) default to ε. For an

example of a parse tree, see Fig. 1.

We use parse trees to define the semantics of xregexes:

Definition 2.3 An xregex γ recognizes the language L(γ) of all w ∈ Σ∗ for which

there exists a γ -parse tree Tγ with (w, γ) as root label.

Example 2.4 Consider the xregexes α := x{Σ+}·(&x)+, β := x{Σ+}·&x ·x{Σ+}·

&x, and γ := x{aa+} · (&x)+ for some a ∈ Σ .

Then L(α) = {wn | w ∈ Σ+, n ≥ 2}, L(β) = {x1x1x2x2 | x1, x2 ∈ Σ+}, and

L(γ) = {an | n ≥ 2, n is not prime}.

2.2 Document Spanners

Let w := a1a2 · · · an be a word over Σ , with n ∈ N and a1, . . . , an ∈ Σ . A span of

w is an interval [i, j 〉 with 1 ≤ i ≤ j ≤ n + 1 and i, j ∈ N. For each span [i, j 〉 of

w, we define a subword w[i,j〉 := ai · · · aj−1. In other words, each span describes a

subword of w by its bounding indices. Two spans [i, j 〉 and [i′, j ′〉 of w are equal if

and only if i = i′ and j = j ′. These spans overlap if i ≤ i′ < j or i′ ≤ i < j ′, and

are disjoint, otherwise. The span [i, j 〉 contains the span [i′, j ′〉 if i ≤ i′ ≤ j ′ ≤ j .

The set of all spans of w is denoted by Spans (w).

Example 2.5 Let w := aabbcabaa. As |w| = 9, both [1, 3〉 and [8, 10〉 are spans

of w, but [10, 11〉 is not. Although w[1,3〉 = w[8,10〉 = aa, the first two spans are not

equal. Likewise, the two spans [3, 3〉 and [5, 5〉 are not equal, even though w[3,3〉 =

w[5,5〉 = ε. The whole word w is described by the span [1, 10〉.

Fig. 1 An α-parse tree for w,

where α := &x · (x{(a ∨ b)∗}·

&x) and w := abab. For these

choices of α and w, this is the

only possible parse tree

860 Theory Comput Syst (2018) 62:854–898

Definition 2.6 Let SVars be a fixed, infinite set of span variables, where Σ and

SVars are disjoint. Let V ⊂ SVars be a finite subset of SVars, and let w ∈ Σ∗.

A (V , w)-tuple is a function µ : V → Spans (w), that maps each variable in V to

a span of w. If context allows, we write w-tuple instead of (V , w)-tuple. A set of

(V , w)-tuples is called a (V , w)-relation.

As V and Spans (w) are finite, every (V , w)-relation is finite by definition. Our

next step is the definition of document spanners, which map words w to (V , w)-

relations:

Definition 2.7 Let V and Σ be alphabets of variables and symbols, respectively. A

(document) spanner is a function P that maps every word w ∈ Σ∗ to a (V , w)-

relation P(w). Let V be denoted by SVars (P). A spanner P is n-ary if |SVars (P)| =

n, and Boolean if SVars (P) = ∅. For all w ∈ Σ∗, we say P(w) = True and

P(w) = False instead of P(w) = {()} and P(w) = ∅, respectively.

A w-tuple µ ∈ P(w) is hierarchical if for all x, y ∈ SVars (P) at least one of the

following holds: (1) The span µ(x) contains µ(y), (2) the span µ(y) contains µ(x),

or (3) the spans µ(x) and µ(y) are disjoint. A spanner P is hierarchical if, for every

w ∈ Σ∗, every µ ∈ P(w) is hierarchical.

A spanner P is total on w if P(w) contains all w-tuples over SVars (P). Let

Y ⊂ SVars be a finite set of variables. The universal spanner over Y is denoted by

ϒY . It is the unique spanner P ′ such that SVars
(

P ′
)

= Y and P ′ is total on every

w ∈ Σ∗. Furthermore, a spanner P is hierarchical total on w if P(w) is exactly

the set of all hierarchical w-tuples over SVars (P); and the universal hierarchical

spanner over a set Y is the unique spanner ϒH
Y that is hierarchical total on every

w ∈ Σ∗.

For two spanners P1 and P2, we write P1 ⊆ P2 if P1(w) ⊆ P2(w) for every

w ∈ Σ∗, and P1 = P2 if P1(w) = P2(w) for every w ∈ Σ∗.

Hence, a spanner can be understood as a function that maps a word w to a set

of functions, each of which assigns spans of w to the variables of the spanner. As

Boolean spanners are functions that map words to truth values, they can be interpreted

as characteristic functions of languages. For every Boolean spanner P , we define the

language recognized by P as L(P) := {w ∈ Σ∗ | P(w) = True}. We extend this

to arbitrary spanners P by L(P) := {w ∈ Σ∗ | P(w) �= ∅}.

Definition 2.8 A regex formula is an xregex α over Σ and X := SVars such that α

does not contain any variable references, and for every β ∈ Sub (α) with β = γ ∗, no

subexpression of γ may be a variable binding.

In other words, a regex formula is a proper regular expression that is extended

with variable binding operators, but these operators may not occur inside a Kleene

star. We define SVars(γ) := Vars(γ) for all regex formulas γ .

To define the semantics of regex formulas, we use the definition of parse trees

for xregexes, see Definition 2.2. Intuitively, the goal of this definition is that each

occurrence of a variable x in a γ -parse tree is matched to the corresponding span.

Theory Comput Syst (2018) 62:854–898 861

Here, two problems can arise. Firstly, a variable might not occur in the parse tree; for

example, when matching the regex formula (x{a} ∨ bb) to the word bb. Secondly, a

variable might be defined too often, as e. g. in the regex formula x{Σ+} · x{Σ+}. In

order to avoid such problems, we introduce the notion of a functional regex formula.

Definition 2.9 Let γ be a regex formula. We call γ functional if for every w ∈ Σ∗

and every γ -parse tree Tγ for w, for each variable x ∈ SVars (γ), there exactly one

node of Tγ has a label of the form (v, x{β}), where v is a subword of w and β is

a sub-regex formula of γ . The class of all functional regex formulas is denoted by

RGX.

As shown in Proposition 3.5 in Fagin et al. [7], functionality has a straightforward

syntactic characterization: Basically, variables may not be redeclared, variables may

not be used inside of Kleene stars, and if variables are used in a disjunction, each

side of a disjunction has to bind exactly the same variables. Consider the following

example:

Example 2.10 The regex formula γ1 := (x{a} ∨ x{b}) is functional even though it

contains two occurrences of variable definitions for x. There are just two γ1-parse

trees, both of which only contain one node labeled (c, x{c}), where c ∈ {a,b}. As a

trivial case, even γ2 := x{∅} is functional (as no γ2-parse tree exists). Furthermore,

the regex formulas γ3 := x{(a∨b)∗} ·x{b+} and γ4 := a
∗ ∨x{b} are not functional.

Finally, γ5 := x{a}∗ is not a regex formula at all.

For functional regex formulas, we use parse trees to define the semantics:

Definition 2.11 Let γ be a functional regex formula and let T be a γ -parse tree for

a word w ∈ Σ∗. For every node v of T , the subtree that is rooted at v naturally

maps to a span p(v) of w. As γ is functional, for every x ∈ SVars (γ), exactly one

node vx of T has a label that contains x. We define µT : SVars (γ) → Spans (w) by

µT (x) := p(vx). Each γ ∈ RGX defines a spanner �γ � by

�γ �(w) := {µT | T is a γ -parse tree for w}

for each w ∈ Σ∗.

Example 2.12 Assume that a,b ∈ Σ . We define the regex formula

α := Σ∗ · x{a · y{Σ∗} · (z{a} ∨ z{b})} · Σ∗.

Let w := baaba. Then �α�(w) consists of ([2, 4〉, [3, 3〉, [3, 4〉), ([2, 5〉, [3, 4〉,

[4, 5〉), ([2, 6〉, [3, 5〉, [5, 6〉), ([3, 5〉, [4, 4〉, [4, 5〉), and ([3, 6〉, [4, 5〉, [5, 6〉).

For every w ∈ Σ∗, a spanner P defines a (V , w)-relation P(w). In order to construct

more sophisticated spanners, we introduce spanner operators.

Definition 2.13 Let P,P1, P2 be spanners and let w ∈ Σ∗. The algebraic operators

union, projection, natural join and selection are defined as follows.

862 Theory Comput Syst (2018) 62:854–898

Union: Two spanners P1 and P2 are union compatible if SVars (P1) = SVars (P2),

and their union (P1 ∪ P2) is defined by SVars (P1 ∪ P2) := SVars (P1) =

SVars(P2) and (P1 ∪ P2)(w) := P1(w) ∪ P2(w) for every w ∈ Σ∗.

Projection: Let Y ⊆ SVars (P). The projection πY P is defined by SVars (πY P) :=

Y and πY P(w) := P(w)|Y for all w ∈ Σ∗, where P(w)|Y is the restriction of all

w-tuples in P(w) to Y .

Natural join: Let Vi := SVars (Pi) for i ∈ {1, 2}. The (natural) join (P1 ⊲⊳ P2)

of P1 and P2 is defined by SVars (P1 ⊲⊳ P2) := SVars (P1) ∪ SVars (P2) and, for

all w ∈ Σ∗, we define (P1 ⊲⊳ P2)(w) as the set of all (V1 ∪ V2, w)-tuples µ for

which there exist (Vi, w)-tuples µ1 and µ2 with µ(w)|V1
= µ1(w) and µ(w)|V2

=

µ2(w).

Selection: Let R ⊆ (Σ∗)k be a k-ary relation over Σ∗. The selection operator

ζR is parameterized by k variables x1, . . . , xk ∈ Vars(P), written as ζR
x1,...,xk

.

The selection ζR
x1,...,xk

P is defined by SVars(ζR
x1,...,xk

P) := SVars (P) and, for

all w ∈ Σ∗, we define ζR
x1,...,xk

P(w) as the set of all µ ∈ P(w) for which
(

wµ(x1), . . . , wµ(xk)

)

∈ R.

Like [7], we mostly consider the string equality selection operator ζ=. Hence, unless

otherwise noted, the term “selection” refers to selection by the n-ary string equality

relation. Note that unlike selection (which compares strings), join requires that the

spans are identical.

The join P1 ⊲⊳ P2 of two spanners P1 and P2 is equivalent to the intersection P1 ∩

P2 if SVars (P1) = SVars (P2), and to the Cartesian Product P1 × P2 if SVars (P1)

and SVars (P2) are disjoint. Hence, if applicable, we write ∩ and × instead of ⊲⊳.

For convenience, we may add and omit parentheses. We assume there is an order

of precedence with projection and selection ranking over join ranking over union,

e.g. we may write πY ζ=
x,yP1 ∪ P2 ⊲⊳ P3 instead of (πY ζ=

x,yP1 ∪ (P2 ⊲⊳ P3)), where

projection and selection are applied to P1, and the result is united with the join of P2

and P3.

Example 2.14 Let P1 := ζ=
x,y�x{Σ∗}y{Σ∗}� and P2 := ζ=

x,y,z�x{Σ∗}y{Σ∗}z{Σ∗}�.

Then L(P1) = {ww | w ∈ Σ∗}, and the variables x and y refer to the span of the first

and second occurrence of w, respectively. Analogously, L(P2) = {w3 |∈ Σ∗} (and z

refers to the third occurrence of w). Assume that we want to construct a spanner for

the language {wn | w ∈ Σ∗, n ∈ {2, 3}}. As P1 and P2 are not union compatible, we

cannot simply define P1 ∪ P2. Union compatibility can be achieved by projecting P2

onto the set of common variables (i. e., π{x,y}P2).

Definition 2.15 A spanner algebra is a finite set of spanner operators. If O is a

spanner algebra, then RGXO denotes the set of all spanner representations that can be

constructed by (repeated) combination of the symbols for the operators from O with

regex formulas from RGX. For each operator o ∈ O and each spanner representation

of the form oρ (if o is unary) or ρ1 o ρ2 (if o is binary), we define �oρ� := o�ρ� or

�ρ1 o ρ2� := �ρ1� o �ρ2�, respectively. Furthermore, �RGXO� is the closure of �RGX�
under the spanner operators in O.

Theory Comput Syst (2018) 62:854–898 863

We define L(ρ) := L(�ρ�) for every spanner representation ρ. Fagin et al. [7] refer

to �RGX� as the class of hierarchical regular spanners and to �RGX{π,∪,⊲⊳}� as the

class of regular spanners. In addition to (hierarchical) regular spanners, Fagin et al.

also introduced the so-called core spanners, which are obtained by combining regex

formulas with the four algebraic operators projection, selection, union, and join – in

other words, the class of core spanners is the class �RGX{π,ζ=,∪,⊲⊳}�. Analogously,

RGX{π,ζ=,∪,⊲⊳} is the class of core spanner representations.

3 Expressibility Results

3.1 Pattern Languages

We begin our examination of the expressive power of core spanners by comparing

them to one of the simplest mechanisms with repetition operators:

Definition 3.1 Let X be an infinite variable alphabet that is disjoint from Σ . A

pattern is a word α ∈ (Σ ∪ X)+ that generates the language

L(α) := {σ(α) | σ is a pattern substitution},

where a pattern substitution is a homomorphism σ : (Σ ∪X)∗ → Σ∗ with σ(a) = a

for all a ∈ Σ . We denote the set of all variables in α by Vars (α).

Intuitively, a pattern α generates exactly those words that can be obtained by

replacing the variables in α with terminal words homomorphically (i. e., multiple

occurrences of the same variable have to be replaced in the same way). This type of

pattern languages is also called erasing pattern language (cf. Jiang et al. [24]).

Example 3.2 Let x, y ∈ X and a,b ∈ Σ . The patterns α := xx and β := xaybx

generate the languages L(α) = {ww | w ∈ Σ∗} and L(β) = {vawbv | v,w ∈ Σ∗}.

From every pattern α, we can straightforwardly construct an xregex for L(α). A

similar observation holds for core spanners:

Theorem 3.3 There is an algorithm that, given a pattern α, computes in polynomial

time ρα ∈ RGX{ζ=} such that L(ρα) = L(α).

Proof Let α = α1 · · · αn with n ∈ N>0 and α1, . . . , αn ∈ (Σ ∪X). We rewrite α into

a regex formula α̂, by replacing the i-th occurrence of a variable x with a binding

xi{Σ
∗}. More formally, we define α̂ := α̂1 · · · α̂n, where for each i ∈ {1, . . . , n}, the

regex formula α̂i is defined as follows:

1. If αi is a terminal (i. e., there is an a ∈ Σ with αi = a), let α̂i := a.

2. If αi is the j -th occurrence of a variable x ∈ X in α, let α̂i := xj {Σ
∗}.

864 Theory Comput Syst (2018) 62:854–898

Hence, no variable occurs twice in α̂; and as α̂ contains no disjunctions on variables,

α̂ is functional.

We now define S to be a sequence of selections; where S contains exactly the

selections ζ=
x1,...,xk

for each x ∈ Vars (α) with |α|x = k and k ≥ 2. In other words,

for each x that occurs more than once in α, we include a selection of all xi .

Finally, we define ρα := Sα̂. It is easy to see that L(ρα) = L(α): For every

w ∈ L(α), we can use a pattern substitution σ with σ(α) to construct a corresponding

w-tuple µ for ρα . Likewise, for every w ∈ L(ρα), there exists a corresponding w-

tuple µ from which we can reconstruct a pattern substitution σ with σ(α) = w: By

the construction of ρα , for each pair of variables xi, xj in α̂, the words wµ(xi) and

wµ(xj) must be identical. This allows us to define σ(x) := wµ(x1).

Example 3.4 Let x, y, z ∈ X, a,b ∈ Σ , and define the pattern α := xayybxzx.

The construction in the proof of Theorem 3.3 leads to the spanner representation

ζ=
x1,x2,x3

ζ=
y1,y2

γ , where γ = x1{Σ
∗}·a ·y1{Σ

∗}·y2{Σ
∗}·b ·x2{Σ

∗}·z1{Σ
∗}·x3{Σ

∗}.

While the construction in the proof of Theorem 3.3 is so simple that it might not

seem noteworthy, it will prove quite useful: In contrast to their simple definition,

many canonical decision problems for them are surprisingly hard. Via Theorem 3.3,

the corresponding lower bounds also apply to spanners, as we discuss in Sections 4.1

and 4.2.

3.2 Word Equations and Existential Concatenation Formulas

In this section, we introduce word equations, which are equations of patterns (cf.

Definition 3.1) and can be used to define languages and relations, cf. Karhumäki

et al. [26]:

Definition 3.5 A word equation is a pair η := (ηL, ηR) of patterns ηL and ηR . A

pattern substitution σ is a solution of η if σ(ηL) = σ(ηR). We define Vars (η) :=

Vars (ηL) ∪ Vars (ηR). For k ≥ 1, a relation R ⊆ (Σ∗)k is defined by a word

equation η := (ηL, ηR) if there exist variables x1, . . . , xk ∈ Vars (η) such that

R = {(σ (x1), . . . , σ (xk)) | σ is a solution of η} .

We also write (ηL, ηR) as ηL = ηR . As we shall see just after the next definition

both sides of the equation may have common variables. The following relations are

well known examples of relations that are definable by word equations:

Definition 3.6 Over Σ∗, we define relations

Rcom := {(x, y) | x, y ∈ {u}∗ for some u ∈ Σ∗},

Rcyc := {(x, y) | x is a cyclic permutation of y}.

As shown in Lothaire [30], the relation Rcom is defined by the equation xy = yx,

and Rcyc is defined by the equation xz = zy.

Theory Comput Syst (2018) 62:854–898 865

Let R be a k-ary string relation, and let C be a class of spanners. We say that

R is selectable by C, if for every spanner P ∈ C and every sequence of variables

x = (x1, . . . , xk) with x1, . . . , xk ∈ SVars (P), the spanner ζR
x P is also in C.

Proposition 3.7 The relations Rcom and Rcyc are selectable by core spanners.

Proof Both parts of the proof use a technique from [7]. Let x = x1, ..., xk be a

sequence of distinct span variables (k ≥ 1), and let X := {x1, . . . , xk}. The spanner

ζR
x ϒX is called the R-restricted universal spanner over x, and is denoted by ϒR

x .

According to Proposition 4.15 in [7], in order to show that a R is selectable by core

spanners, it suffices to show that ϒR
x is a core spanner for every x ∈ SVarsk .

Rcyc: Note that for all x, y ∈ Σ∗, the word x is a cyclic permutation of y (and

vice versa) if and only if there exist u, v ∈ Σ∗ with x = uv and y = vu (see e. g.

Lothaire [30]). Hence we can define the core spanner Pcyc := π{x,y}P̂ , where

P̂ := ζ=
u1,u2

ζ=
v1,v2

�αx × αy�,

and the regex formulas αx and αy are defined as

αx := Σ∗x
{

u1{Σ
∗} · v1{Σ

∗}
}

Σ∗,

αy := Σ∗y
{

v2{Σ
∗} · u2{Σ

∗}
}

Σ∗.

In order to prove that Pcyc = ϒ
Rcyc
x,y , we first observe that, for every w ∈ Σ∗ and

every µ ∈ Pcyc(w), there exists a µ̂ ∈ P̂ (w) with µ(x) = µ̂(x) and µ(y) = µ̂(y).

The selections enforce u := wµ̂(u1) = wµ̂(u2) and v := wµ̂(v1) = wµ̂(v2). Hence,

wµ(x) = uv and wµ(y) = vu, which means that (wµ(x), wµ(y)) ∈ Rcyc, and µ ∈

ϒ
Rcyc
x,y (w). For the other direction, we can show analogously that every µ ∈ ϒ

Rcyc
x,y (w)

can be extended into a µ̂ ∈ P̂ (w), which then proves µ ∈ Pcyc(w).

Rcom: This proof relies on another fact from combinatorics on words. For all

x, y ∈ Σ∗, the equation xy = yx holds if and only if (x, y) ∈ Rcom (again, see

Lothaire [30]). We define a core spanner Pcom := π{x,y}P̂ , where

P̂ := ζ=
r1,r2,r3,r4

ζ=
x,x2

ζ=
y,y2

ζ=
x̂,x̂2

ζ=
ŷ,ŷ2

�α1 × α2 × α3 × α4�,

and the regex formulas α1, . . . , α4 are defined as

α1 := Σ∗x
{

x̂{Σ∗} · r1{Σ
∗}

}

Σ∗,

α2 := Σ∗x2

{

r2{Σ
∗} · x̂2{Σ

∗}
}

Σ∗,

α3 := Σ∗y
{

ŷ{Σ∗} · r3{Σ
∗}

}

Σ∗,

α4 := Σ∗y2

{

r4{Σ
∗} · ŷ2{Σ

∗}
}

Σ∗.

In order to prove that Pcom = ϒ
Rcom
x,y , first assume that µ ∈ Pcom(w) for some

w ∈ Σ∗. Again, this means that there exists a µ̂ ∈ P̂ (w) with µ(x) = µ̂(x) and

µ(y) = µ̂(y). In a slight abuse of notation, we identify the variables x, x̂, y, ŷ with

the corresponding subwords of w. In other words, we define x, x̂, y, ŷ ∈ Σ∗ by

866 Theory Comput Syst (2018) 62:854–898

z := wµ̂(z) for z ∈ {x, x̂, y, ŷ}. Furthermore, let r = wµ̂(r1). Due to the equality

selections, we obtain the following word equations from α1 to α4:

x = x̂r = rx̂,

y = ŷr = rŷ.

We explain this in detail for the first equation: First, note that due to the structure of

α1, we know that wµ(x) = wµ(x̂) · wµ(r1) holds. Likewise, the structure of α2 ensures

that wµ(x2) = wµ(r2) · wµ(x̂2). Due to the selections ζ=
r1,r2,r3,r4

, ζ=
x,x2

, and ζ=
x̂,x̂2

, the

latter can be expressed as wµ(x) = wµ(r1)·wµ(x̂), and by combining the two equations

while abusing the notation as explained above, we obtain x = x̂r = rx̂. The second

equation is obtained analogously.

As x̂r = rx̂, there exists a word u ∈ Σ∗ with r, x̂ ∈ {u}∗. We choose the shortest

u for which r ∈ {u}∗. Then, due to ŷr = rŷ, we have that ŷ ∈ {u}∗ holds as well.

This implies x, y ∈ {u}∗, (wµ(x), wµ(y)) ∈ Rcom, and µ ∈ ϒ
Rcom
x,y (w). Again we can

show analogously that every µ ∈ ϒ
Rcom
x,y (w) can be extended into a µ̂ ∈ P̂ (w), which

then proves µ ∈ Pcom(w).

In particular, this means that we can add ζRcom and ζRcyc to core spanner

representations, without leaving the class �RGX{π,ζ=,∪,⊲⊳}�.

Example 3.8 Define Limp := {wn | w ∈ Σ+, n ≥ 2} and ρ := ζ
Rcom
x,y (x{Σ+} · · ·

y{Σ+}). Then L(ρ) = Limp.

This does not imply that Rcom can be used to select relations like Rpow :=

{(x, xn) | n ≥ 0}. For example, if x := abab, then (x, y) ∈ Rcom holds for all

y ∈ {ab}∗. The authors conjecture that Rpow is not selectable by core spanners.

Furthermore, the spanner that is constructed for Rcom in the proof of Proposi-

tion 3.7 is more complicated than the corresponding word equation xy = yx. In fact,

we constructed both spanners not from the equations, but from a characterization of

the solutions. This appears to be necessary, due the fact that spanners need to relate

their variables to an input w, while word equations use their variables without such

restrictions. We shall see in Theorem 3.13 that, if this is kept in mind, core spanners

can be used to simulate word equations.

Before we consider this topic further, we examine how word equations can simu-

late spanners, as this shall provide useful insights on some question of static analysis

in Section 4.2. One drawback of word equations is that they are unable to express

many comparatively simple regular languages; like A∗ for any non-empty A ⊂ Σ∗

(cf. Karhumäki et al. [26]). In order to overcome this problem, we consider the

following extension:

Definition 3.9 Let η := (ηL, ηR) be a word equation. A regular constraints func-

tion1 is a function C that maps each x ∈ Vars (η) to a nondeterministic finite

1Following the terminology of [3]; literature also uses the term rational constraints.

Theory Comput Syst (2018) 62:854–898 867

automaton C(x). A solution σ of η is a solution of η under constraints C if σ(x) ∈

L(C(x)) holds for every x ∈ Vars (η).

Hence, regular constraints restrict the possible substitutions of a variable x to a

regular language L(C(x)).

A syntactic extension of word equations is EC, the existential theory of concate-

nation, which is obtained by extending word equations with ∨, ∧, and existential

quantification over variables. For example, Rcyc is expressed by the EC-formula

ϕcyc(x, y) := ∃z : (xz = zy).

Using appropriate coding techniques, one can transform every EC-formula into an

equivalent word equation (see Diekert [6]). Although the transformations given

in [6] can result in an exponential blowup, satisfiability of word equations and of

EC-formulas can still be decided in PSPACE.

Like word equations, these formulas can be further extended by adding regular

constraints. For each variable x and each nondeterministic finite automaton (NFA)

A, the (regular) constraint LA(x) is satisfied for a solution σ if σ(x) ∈ L(A). We

call the resulting class of formulas ECreg, the existential theory of concatenation with

regular constraints.

Example 3.10 Let A be an NFA with L(A) = {abi
a | i ≥ 1}, and define the ECreg-

formula ϕ(x, y) := ∃z : (LA(z) ∧ (∃z1, z2 : x = z1zz2) ∧ (∃z1, z2 : y = z1zz2)).

Then ϕ expresses the relation of all (x, y) that have a common subword z

from L(A).

Note that we intentionally use LA(x) for constraint symbols instead of C, to

emphasize the following distinction in the use of constraints: In word equations,

every variable x is constrained to one language L(C(x)). In contrast to this, an ECreg-

formula can use multiple constraint symbols for one variable (e. g., in the form of

LA(x) ∧ LA′(x)), or none at all.

Using the same techniques as for EC, one can transform ECreg-formulas into

equivalent word equations with regular constraints. Again, the construction can result

in an exponential blowup, but satisfiability of ECreg-formulas can still be decided in

PSPACE (cf. Diekert [6]).

In order to simulate core spanners with ECreg-formulas, we introduce the follow-

ing definition:

Definition 3.11 Let P be a core spanner with SVars (P) = {x1, . . . , xn}, n ≥ 0, and

let ϕ(xw, xP
1 , xC

1 , . . . xP
n , xC

n) be an ECreg-formula. We say that ϕ realizes P if, for all

w, wP
1 , wC

1 , . . . , wP
n , wC

n ∈ Σ∗, we have that ϕ(w, wP
1 , wC

1 , . . . , wP
n , wC

n) = True

holds if and only if there is a µ ∈ P(w) with wP
k = w[1,ik〉 and wC

k = w[ik,jk〉 for

each 1 ≤ k ≤ n, where [ik, jk〉 = µ(xk).

This definition uses the fact that spans are always defined in relation to a word

w. Note that every span [i, j 〉 ∈ Spans (w) is characterized by the words w[1,i〉 and

868 Theory Comput Syst (2018) 62:854–898

w[i,j〉. Hence, if µ ∈ �ρ�(w), the ECreg-formula models µ(xk) = [ik, jk〉 by mapping

xw to w, xP
k to w[1,ik〉, and xC

k to w[ik,jk〉. In the naming of the variables, C stands for

content, and P for prefix. This allows us to model spanners in ECreg-formulas:

Theorem 3.12 There is an algorithm that, given ρ ∈ RGX{π,ζ=,∪,⊲⊳}, computes in

polynomial time an ECreg-formula ϕρ that realizes �ρ�.

Proof Before presenting the construction that is the main part of proof, we briefly

consider a technical detail of functional regex formulas. On an intuitive level, func-

tional regex formulas guarantee that in each parse tree, every variable is assigned

exactly once (hence, x{a} ·x{a} is not functional). Consequently, it seems reasonable

to conjecture that, if a functional regex formula contains a subformula of the form

α1 · α2, then SVars (α1) ∩ SVars (α2) = ∅ must hold.

While this conjecture is true for regex formulas that do not contain ∅, it does not

hold in general. For example, consider α := α1 · α2 with α1 := x{a} and α2 :=

(x{∅} ∨ b). Then x ∈ SVars (α1) ∩ SVars (α2), but as x{∅} can never be part of the

label of a parse tree, the regex formula α is functional.

In order to exclude these fringe cases and simplify the construction of ECreg-

formulas, we introduce the following concept: A regex formula α is ∅-reduced if

α = ∅, or if α does not contain any occurrence of ∅. Using simple rewrite rules, we

can observe the following.

Claim 1 There is an algorithm that, given a regex formula α, computes in polynomial

time an ∅-reduced regex formula αR with �αR� = �α�.

Proof In order to compute αR , it suffices to rewrite α according to the following

rewrite rules:

1. ∅∗ → ε,

2. (α̂ ∨ ∅) → α̂ and (∅ ∨ α̂) → α̂ for all regex formulas α̂,

3. (α̂ · ∅) → ∅ and (∅ · α̂) → ∅ for all regex formulas α̂,

4. x{∅} → ∅ for all variables x.

As ∅ is never part of a parse tree, we can observe that for all regex formulas α and

β, where β is obtained by applying any number of these rewrite rules, �β� = �α�
holds. Furthermore, one can use these rules to convert α into an equivalent and ∅-

reduced αR in polynomial time: If α is stored in a tree structure, it suffices to apply

all applicable rules in bottom-up manner. � (Claim 1)

This allows us to proceed to the main part of the proof. Recall that our goal is a

procedure that, given a ρ ∈ RGX{π,ζ=,∪,⊲⊳} with SVars (ρ) = {x1, . . . , xn}, constructs

an ECreg-formula ϕρ(xw, xP
1 , xC

1 , . . . xP
n , xC

n) such that for all w, wP
1 , wC

1 , . . . , wP
n ,

wC
n ∈ Σ∗, we have that ϕρ(w, wP

1 , wC
1 , . . . , wP

n , wC
n) = True holds if and only if

there is some µ ∈ P(w) with wP
k = w[1,ik〉 and wC

k = w[ik,jk〉 for each 1 ≤ k ≤ n,

where [ik, jk〉 = µ(xk).

Theory Comput Syst (2018) 62:854–898 869

In fact, this µ is always uniquely defined by w, the wP
k , and the wC

k . Based

on this, we introduce some notation that simplifies our reasoning. Given w ∈ Σ∗

and µ ∈ P(w), we define the (2n + 1)-tuple wµ := (w, wP
1 , wC

1 , . . . , wP
n , wC

n)

by wP
k := w[1,ik〉 and wC

k := w[ik,jk〉 as in the previous paragraph. For the other

direction, we say that a (2n + 1)-tuple w = (w, wP
1 , wC

1 , . . . , wP
n , wC

n) over Σ∗ is

spanner compatible if, for all 1 ≤ k ≤ n the concatenated word wP
k · wC

k is a pre-

fix of w. In this case, we define µw through µw(xk) = [ik, jk〉 with ik := |wP
k | + 1

and jk := |wP
k wC

k | + 1 for 1 ≤ k ≤ n. Note that these are one-to-one conversions

if w is fixed: Every µ defines its unique spanner compatible wµ, and every span-

ner compatible w defines its unique µw. We can now rephrase Definition 3.11 using

this terminology, and observe that ϕρ realizes �ρ� if and only if the following two

statements hold:

1. For all w ∈ (Σ∗)2n+1, we have that ϕρ(w) = True implies that w is spanner

compatible and µw ∈ P(w).

2. If µ ∈ P(w), then ϕρ(wµ) = True.

We now proceed to the most complicated part of this proof, the construction of

ECreg-formulas from regex formulas. (The following sub-proof is rather lengthy, as

it contains the full induction for the correctness proof. The main part of the proof

continues on page 17).

Claim 2 There is an algorithm that, given a functional regex formula ρ ∈ RGX,

constructs in polynomial time an ECreg-formula ϕρ that realizes �ρ�.

Proof Due to Claim 1, we can assume without loss of generality that ρ is ∅-reduced.

We define ϕρ recursively as follows:

1. If ρ does not contain any variables (i. e., n = 0), ρ is a proper regular expression.

Using canonical transformation techniques, we can construct in polynomial time

a non-deterministic finite automaton A with L(A) = L(ρ), and we define

ϕρ(xw) := LA(xw).

Then ϕρ realizes �ρ�, as ϕρ(w) = True holds if and only if w ∈ L(A) = L(ρ),

which holds if and only if µw ∈ �ρ�(w).

2. If ρ contains variables, we assume that SVars (ρ) = {x1, . . . , xn} with n ≥ 1.

By definition of regex formulas, no variable of ρ may occur inside of a Kleene

star. Hence, we can distinguish three cases:

(a) ρ = ρ1 ∨ ρ2, where ρ1, ρ2 are functional regex formulas with SVars(ρ1) =

SVars(ρ2) = SVars(ρ). We define

ϕρ

(

xw, xP
1 , xC

1 , . . . , xP
n , xC

n

)

:=
(

ϕρ1

(

xw, xP
1 , xC

1 , . . . , xP
n , xC

n

)

∨ ϕρ2

(

xw, xP
1 , xC

1 , . . . , xP
n , xC

n

))

.

The intuition behind this formula should be clear; we proceed directly to

proving the correctness. Assume that ϕρ1
and ϕρ2

realize �ρ1� and �ρ1�,

870 Theory Comput Syst (2018) 62:854–898

respectively. We choose any w ∈ Σ∗. To show the direction from logic to

spanners, we extend w into a tuple w. By definition, ϕρ(w) = True holds if

and only if ϕρi
(w) = True for an i ∈ {1, 2}. As ϕρi

realizes �ρi�, the tuple

w is spanner compatible, and µw ∈ �ρi�(w) holds. For the other direction,

we proceed analogously: If µ ∈ �ρi�(w), then ϕρi
(wµ) = True; hence,

ϕρ(wµ) = True. We conclude that ϕρ realizes �ρ�.

(b) ρ = ρ1 · ρ2, where ρ1, ρ2 are functional regex formulas with SVars(ρ1) ∪

SVars(ρ2) = SVars(ρ) and SVars(ρ1) ∩ SVars(ρ2) = ∅. Without loss of

generality, we can assume

SVars (ρ1) = {x1, . . . , xm},

SVars (ρ2) = {xm+1, . . . , xn}

with 0 ≤ m ≤ n. We define

ϕρ

(

xw, xP
1 , xC

1 , . . . , xP
n , xC

n

)

:=

∃y1, y2, z
P
m+1, . . . , z

P
n : ϕI

(

xw, xP
1 , xC

1 , . . . , xP
n , xC

n , y1, y2, z
P
m+1, . . . , z

P
n

)

,

where

ϕI (xw, xP
1 , xC

1 , . . . , xP
n , xC

n , y1, y2, z
P
m+1, . . . , z

P
n) :=

⎛

⎝(xw = y1 · y2) ∧ ϕρ1

(

y1, x
P
1 , xC

1 , . . . , xP
m , xC

m

)

∧ϕρ2

(

y2, z
P
m+1, x

C
m+1, . . . , z

P
n , xC

n

)

∧
∧

m+1≤i≤n

(

xP
i = y1 · zP

i

)

⎞

⎠ .

The idea behind this formula is as follows: As ρ = ρ1 · ρ2, whenever

�ρ�(w) �= ∅ holds, w can be decomposed into w = w1 · w2, where w1 is

parsed in ρ1, and w2 in ρ2. We store these words in the variables y1 and y2,

respectively. For all variables in SVars (ρ1), the spans of the µ ∈ �ρ1�(w1)

are also spans in w (as w1 is a prefix of w). Hence, we can use the results

from ρ1 unchanged. On the other hand, �ρ2�(w2) determines spans in rela-

tion to w2. Hence, each span [i, j 〉 ∈ Spans (w2) corresponds to the span

[i + c, j + c〉 ∈ Spans (w), where c := |w1|. The variables zP
i represent

the start of the span with respect to y2, and the conjunction of the equations

(xP
i = y1 · zP

i) converts these starts into spans with respect to xw.

The correctness proof is a little lengthy, but straightforward. Assume that

ϕρ1
and ϕρ2

realize �ρ1� and �ρ2�. Assume that ϕρ(w) = True for some

tuple w = (w, wP
1 , wC

1 , . . . , wP
n , wC

n). By definition of ϕρ , the tuple w can

be extended into w′ = (w, wP
1 , wC

1 , . . . , wP
n , wC

n , u1, u2, v
P
m+1, . . . , v

P
n)

with ϕI (w
′) = True. By observing the structure of ϕI , we obtain:

i. w = u1 · u2,

Theory Comput Syst (2018) 62:854–898 871

ii. wP
i = u1 · vP

i for m + 1 ≤ i ≤ n,

iii. ϕρ1
(u1) = True and ϕρ2

(u2) = True, where

u1 :=
(

u1, w
P
1 , wC

1 , . . . , wP
m, wC

m

)

,

u2 :=
(

u2, v
P
m+1, w

C
m+1, . . . , v

P
n , wC

n

)

.

From this and our initial assumption, we can conclude that w is spanner

compatible, and that µu1
∈ �ρ1�(u1) and µu2

∈ �ρ2�(u2) must hold. Thus,

there exits corresponding parse trees T1 and T2 with respective root labels

(u1, ρ1) and (u2, ρ2). We combine these into a new parse tree T by adding

a new root node (w, ρ1 · ρ2) that has T1 as left and T2 as right child. As

described in Definition 2.11, this tree T defines the w-tuple

µT (xk)=

{

[ik, jk〉 if 1 ≤ k ≤ m and µ1(xk) = [ik, jk〉,

[ik+|u1|, jk + |u1|〉 if m + 1 ≤ k ≤ n and µ2(xk) = [ik, jk〉.

In other words, for the variables x1 to xm, the w-tuple µT simulates µ1 in

u1, the left part of w; and for the variables xm+1 to xn, it simulates µ2 in

u2, the right part of w. Hence, all spans for the latter variables are shifted by

|u1|. Using the equalities wP
i = u1 · vP

i from above, we obtain µT = µw,

which concludes this direction of the correctness proof. The other direction

proceeds analogously: Given µ ∈ �ρ�, we can use the corresponding parse

tree T to factorize w into u1 and u2. We then shift the spans of the variables

xm+1 to xn by |u1|, and use this to obtain u2 with ϕρ2
(u2) = True. No

effort is necessary for u1, and we can then combine u1 and u2 into a tuple w

with ϕρ(w) = True and w = wµ. Thus, ϕρ realizes �ρ�.

(c) ρ = x{ρ̂} for some x ∈ {x1, . . . , xn}, and ρ̂ is a functional regex formula

with SVars(ρ̂) = SVars(ρ) \ {x}. Without loss of generality, let x = x1. We

define

ϕρ(xw, xP
1 , xC

1 , . . . , xP
n , xC

n) :=
((

xP
1 = ε

)

∧
(

xC
1 = xw

)

∧ ϕρ̂

(

xw, xP
2 , xC

2 , . . . , xP
n , xC

n

))

.

The formula uses the fact that in this case, for each µ ∈ �ρ�(w), we have that

µ(x1) = [1, |w| + 1〉 must hold. This is encoded by xP
1 = ε and xC

1 = w.

For the correctness proof, assume that ϕρ̂ realizes �ρ̂�. Going from logic to

spanners, assume that w = (w, wP
1 , wC

1 , . . . , wP
n , wC

n) and ϕρ(w) = True.

Due to the structure of the formula, we know that wP
1 = ε, wC

1 = w, and

ϕρ̂(ŵ) = True for ŵ = (w, wP
2 , wC

2 , . . . , wP
n , wC

n). As ϕρ̂ realizes �ρ̂�, we

know that ŵ is spanner compatible, and µŵ ∈ �ρ̂�(w). Due to this and the

definition of ρ, we observe µ ∈ �ρ�(w) for the w-tuple

µ(xk) :=

{

[1, |w| + 1〉 if k = 1,

µŵ(xk) if k > 1.

As µ = µw, we conclude this direction of the proof. For the other direc-

tion, let µ ∈ �ρ�(w). By definition, µ(x1) = [1, |w| + 1〉 and µ̂ ∈ �ρ̂�
for µ̂ = µ|{x2,...,xn}. Due to our initial assumption, ϕρ̂(wµ̂) = True

872 Theory Comput Syst (2018) 62:854–898

must hold. Note that wµ̂ = (w, wP
2 , wC

2 , . . . , wP
n , wC

n), and let w :=

(w, ε, w, wP
2 , wC

2 , . . . , wP
n , wC

n). Then ϕρ(w) = True; and as w = wµ,

this concludes this direction. Thus, ϕρ realizes �ρ�.

Finally, note that the size of ϕρ is polynomial in the size of ρ. More importantly, the

construction of ϕρ follows the syntax of ρ, and does not requires expensive additional

computations. Hence, ϕρ can be computed in polynomial time. � (Claim 2)

Using Claim 2, we have the conversion for RGX, the class of (functional) regex for-

mulas. As final step of the proof, we extended this to all core spanner representations

(i. e., the full class RGX{π,ζ=,∪,⊲⊳}). Consider an arbitrary core spanner representa-

tions ρ ∈ RGX{π,ζ=,∪,⊲⊳} with SVars (ρ) = {x1, . . . , xn}, n ≥ 0. We distinguish the

following cases:

1. ρ is a regex formula. This case is covered in Claim 2.

2. ρ = πY ρ̂, with Y = SVars (ρ) and SVars
(

ρ̂
)

⊇ SVars (ρ). Assume without loss

of generality that SVars(ρ̂) = {x1, . . . , xn+m} with m ≥ 0. We define

ϕρ

(

xw, xP
1 , xC

1 , . . . , xP
n , xC

n

)

:=

∃xP
n+1, x

C
n+1, . . . , x

P
n+m, xC

n+m : ϕρ̂

(

xw, xP
1 , xC

1 , . . . , xP
n+m, xC

n+m

)

Regarding the correctness, assume that ϕρ̂ realizes �ρ̂�. Hence, if µ̂ ∈ �ρ̂�(w),

we have ϕρ̂(wµ̂) = True. This means that for µ := µ̂|Y , we know that

ϕρ(wµ) = True holds as well. Likewise, if ϕρ(w) = True, there exists an

extension ŵ of w with µŵ ∈ �ρ̂�(w). As ŵ is spanner compatible, so is w. Thus,

we observe µw = µŵ|Y and µw ∈ �ρ�(w). Hence, ϕρ realizes �ρ�.

3. ρ = ζ=
x ρ̂, with x ∈ (SVars

(

ρ̂
)

)m, 2 ≤ m ≤ n, and SVars(ρ) = SVars(ρ̂).

Assume without loss of generality that x = (x1, . . . , xm). We define

ϕρ

(

xw, xP
1 , xC

1 , . . . , xP
n , xC

n

)

:=
⎛

⎝ϕρ̂

(

xw, xP
1 , xC

1 , . . . , xP
n , xC

n

)

∧
∧

2≤i≤m

(

xC
1 =xC

i

)

⎞

⎠ .

Recall that ζ=
xi ,xj

only checks whether wµ(xi) = wµ(xj) holds, not whether

µ(xi) = µ(xj). This is equivalent to checking whether xC
i = xC

j holds.

We only proof the correctness for m = 2, the other cases proceed analogously

(or by reducing them to this binary case). Assume that ϕρ̂ realizes �ρ̂�. Let µ ∈

�ρ�(w). Then wµ(x1) = wµ(x2) and µ ∈ �ρ̂�(w) hold by definition. The latter

implies ϕρ̂(w) = True. Together with the former and the structure of ϕρ , we

conclude ϕρ(w) = True.

For the other direction, let ϕρ(w) = True. By the structure of ϕρ , we know

that ϕρ̂(w) = True and wC
1 = wC

2 . As ϕρ̂ realizes �ρ̂�, we have that w is spanner

compatible, and µw ∈ �ρ̂�(w). Due to wC
1 = wC

2 , this implies µw ∈ �ρ�(w) and

concludes the proof that ϕρ realizes �ρ�.

Theory Comput Syst (2018) 62:854–898 873

4. ρ = (ρ1 ∪ ρ2), with SVars (ρ1) = SVars (ρ2) = SVars (ρ). Let

ϕρ

(

xw, xP
1 , xC

1 , . . . , xP
n , xC

n

)

:=
(

ϕρ1

(

xw, xP
1 , xC

1 , . . . , xP
n , xC

n

)

∨ϕρ2

(

xw, xP
1 , xC

1 , . . . , xP
n , xC

n

))

.

In this case, the construction and the correctness proof are identical to case 2a

(disjunction) in the proof of Claim 2.

5. ρ = (ρ1 ⊲⊳ ρ2) with SVars (ρ) = SVars (ρ1) ∪ SVars (ρ2). We assume without

loss of generality that SVars(ρ1) = {x1, . . . , xl} and SVars(ρ2) = {xm, . . . , xn}

with 0 ≤ l ≤ n, 1 ≤ m ≤ n + 1, and m ≤ l + 1. Note that this implies

SVars(ρ1) ∩ SVars(ρ2) = {xm, . . . , xl}, and SVars(ρ1) ∩ SVars(ρ2) = ∅ if and

only if m = l + 1. We define

ϕρ

(

xw, xP
1 , xC

1 , . . . , xP
n , xC

n

)

:=
(

ϕρ1

(

xw, xP
1 , xC

1 , . . . , xP
l , xC

l

)

∧ϕρ2

(

xw, xP
m , xC

m, . . . , xP
n , xC

n

))

.

The definition of ⊲⊳ requires that µ ∈ �ρ�(w) holds if and only if there are

µ1 ∈ �ρ1�(w) and µ2 ∈ �ρ2�(w) with µ1(xi) = µ2(xi) for all i ∈ {m, . . . , l}.

For each of these variables xi , we have that ϕρ1
and ϕρ2

model the span with the

same variables xP
i and xC

i .

To prove the correctness, assume that ϕρ1
and ϕρ2

realize �ρ1� and �ρ2�,

respectively. Let µ ∈ �ρ�(w). Then there exist µ1 ∈ �ρ1�(w) and µ2 ∈ �ρ2�(w)

with µ1 = µ|{x1,...,xl} and µ2 = µ|{xm,...,xn}, which implies µ1(xk) = µ2(xk)

for m ≤ k ≤ l. Now, in order to talk about the components of wµ1
and wµ2

, we

name the components of the tuples as wµ1
= (w, wP

1 , wC
1 , . . . , wP

l , wC
l) and

wµ2
= (w, wP

m, wC
m, . . . , wP

n , wC
n). As µ1 and µ2 agree on their common vari-

ables, we can combine this to w := (w, wP
1 , wC

1 , . . . , wP
n , wC

n) = wµ. As each

ϕρi
realizes �ρi�, we know that ϕρi

(wµi
) = True. Hence, ϕρ(wµ) = ϕρ(w) =

True. This concludes this direction.

For the other direction, assume that ϕρ(w) = True. Due to the

structure of the formula, this implies ϕρi
(wi) = True, where w1 :=

(w, wP
1 , wC

1 , . . . , wP
l , wC

l) and w2 := (w, wP
m, wC

m, . . . , wP
n , wC

n). As ϕρi
real-

izes �ρi�, we know that wi is spanner compatible, and µwi
∈ �ρi�(w). Due

to the former, w is also spanner compatible. Due to the latter, we know that

µw ∈ �ρ�(w), as µw(xk) = µw1
(xk) = µw2

(xk) for all m ≤ k ≤ l. Hence, ϕρ

realizes �ρ�.

The formula ϕρ can be derived from ρ without requiring further computation, and its

size is polynomial in the size of ρ. Hence, ϕρ can be constructed in polynomial time.

As we shall see in Section 4.2, this result allows us to find upper bounds on two

problems from the static analysis of spanners. We now examine how spanners can

simulate word equations (and, thereby, also ECreg-formulas). As discussed above,

spanners need to relate their variables to an input word. Hence, we only state the

following result, which is a weaker form of simulation than for the other direction:

874 Theory Comput Syst (2018) 62:854–898

Theorem 3.13 Every word equation η := (ηL, ηR) with regular constraints C can

be converted effectively into a ρ ∈ RGX{ζ=,×} with SVars(ρ) ⊇ Vars(η) such that for

all w ∈ Σ∗, there is a solution σ of η under constraints C with w = σ(ηL) = σ(ηR)

if and only if there is a µ ∈ �ρ�(w) with σ(x) = wµ(x) for all x ∈ Vars(η).

Proof As each of the two sides of a word equation is a pattern, we can transform those

into regex formulas by using the a slightly adapted version of the conversion proce-

dure from the proof of Theorem 3.3. Only two changes are made. Firstly, instead of

binding a variable x to some Σ∗, we respect the constraints by using a regular expres-

sion for the language L(C(x)). Secondly, in order to ensure SVars (ρ) ⊇ Vars (η),

the first occurrence of a variable x is not represented by x1, but by x.

Assume that ηL = α1 · · · αm and ηR = αm+1 · · · αn with m, n ∈ N, m + 1 ≤ n,

and α1, . . . , αn ∈ (Σ ∪ X). We construct regex formulas η̂L := α̂1 · · · α̂m and η̂R :=

α̂m+1 · · · α̂n, where for each position in 1 ≤ i ≤ n, we define α̂i as follows:

1. If αi is a terminal (i. e., there is an a ∈ Σ with αi = a), let α̂i := a.

2. If αi is a variable (i. e., there is an x ∈ X with αi = x), let γ be a regular

expression with L(γ) = L(C(x)). Furthermore, let j := |α1 · · · αi |x .

(a) If j = 1, define α̂i := x{γ }

(b) If j ≥ 2, define α̂i := xj {γ } (where xj ∈ SVars is a new variable).

This ensures that SVars
(

η̂L

)

and SVars
(

η̂R

)

are disjoint. We then construct a

sequence S of string equality selections appropriately: For every x ∈ Vars (η) with

k := |ηLηR|x ≥ 2, the sequence S includes a selection ζ=
x,x2,...,xk

.

Finally, we define ρ := S(η̂L × η̂R).

In order to prove that this construction is correct, we show that for all w ∈ Σ∗,

µ ∈ �ρ�(w) holds if and only if there is a solution σ of η under constraints C with

1. w = σ(ηL) = σ(ηR), and

2. σ(x) = wµ(x) for all x ∈ Vars (η).

We begin with the if -direction. Assume that σ is a solution of η under constraints C.

Let w := σ(ηL) (which implies w = σ(ηR), as σ is a solution of η). We use this to

define a w-tuple µ as follows: Due to our construction, each variable x̂ ∈ SVars (ρ)

corresponds to a uniquely defined αi with αi = x. If 1 ≤ i ≤ m, then x̂ occurs in η̂L,

and if m + 1 ≤ i ≤ n, then x̂ occurs in η̂R . We now define µ(x̂) := [l, r〉, where the

choice of l and r depends on this distinction:

– If x̂ occurs in η̂L, let l := |σ(α1 · · · αi−1)| + 1 and r := |σ(α1 · · · αi)| + 1,

– If x̂ occurs in η̂R , let l := |σ(αm+1 · · · αi−1)| + 1 and r := |σ(αm+1 · · · αi)| + 1.

Either way, we know that wµ(x̂) = σ(x) holds, which implies wµ(x̂) ∈ L(C(x)).

Analogously, we can use σ to construct parse trees for (w, η̂L) and (w, η̂R). This

allows us to conclude µ ∈ �η̂L × η̂R�(w). Furthermore, for every selection ζ=
x,x2,...,xk

in S, we know from the construction that x and all xi (1 ≤ i ≤ k) refer to the

same x ∈ Vars (η), which means that wµ(x) = wµ(xi) = σ(x) holds. Hence, for

each of these selections, µ ∈ �η̂L × η̂R�(w) implies µ ∈ �ζ=
x,x2,...,xk

(η̂L × η̂R)�(w).

Theory Comput Syst (2018) 62:854–898 875

Thus, µ ∈ �S(η̂L × η̂R)�(w), which is equivalent to µ ∈ �ρ�(w) and concludes this

direction of the proof.

For the only if -direction, assume that µ ∈ �ρ�(w). We now define a pattern sub-

stitution σ by σ(a) := a for all a ∈ Σ , and σ(x) := wµ(x) for all x ∈ Vars (η).

By our construction, µ(x) is derived from x{γ }, where L(γ) = L(C(x)) must hold,

which means that wµ(x) ∈ L(C(x)), and hence σ(x) ∈ L(C(x)). All that remains

to be shown is that σ(ηL) = σ(ηR) = w. In order to prove this, we first define

ŵL = ŵ1 · · · ŵm and ŵR = ŵm+1 · · · ŵn, where the ŵi with 1 ≤ i ≤ n are defined

as follows:

1. If αi = a ∈ Σ , let ŵi := a. Then ŵi = α̂i and ŵ = σ(αi) hold by definition.

2. If αi = x ∈ X, let j := |α1 · · · αi |x . We distinguish two cases.

(a) If j = 1, let ŵi = wµ(x). Then σ(αi) = ŵi holds by definition.

(b) If j ≥ 2, let ŵi = wµ(xj). Observe that S contains the selection ζ=
x,x2,...,xk

.

Hence, wµ(xj) = wµ(x) holds, which implies σ(αi) = ŵi .

Now note that the ŵi correspond to the labels of the parse trees that have root labels

(w, η̂L) and (w, η̂R). Hence, ŵL = w and ŵR = w must hold. Furthermore, we have

ŵi = σ(αi) for all 1 ≤ i ≤ m. This allows us to conclude

σ(ηL) = σ(α1 · · · αm) σ (ηR) = σ(αm+1 · · · αn)

= ŵ1 · · · ŵm = ŵL, = ŵm+1 · · · ŵn = ŵR.

We observe σ(ηL) = σ(ηR) = w, which concludes this direction of the proof.

While this form of simulation is weaker (as w has to be present), it still shows

that the constructed spanner is satisfiable if and only if the word equation (with con-

straints) is satisfiable. Furthermore, the computed (V , w)-relations encode solutions

of the equation.

Example 3.10 Let a,b ∈ Σ and define η := (xy, yx) with L(C(x)) = L(aab+)

and L(C(y)) = Σ+. The construction from the proof of Theorem 3.13 results in

ρ := ζ=
x,x2

ζ=
y,y2

(η̂L × η̂R),

where η̂L := x{aab+} · y{Σ+} and η̂R := y2{Σ
+} · x2{aab

+}.

The only reason that this construction is not necessarily possible in polynomial

time is that regular constraints are specified with NFAs, while core spanners use

regular expressions, which can lead to an exponential increase in the size.

There is a similar construction that does not use the join operator: By adding new

variables z1, z2, we can construct

ρ̂ := ζ=
x,x2

ζ=
y,y2

ζ=
z1,z2

(z1{η̂L}z2{η̂R}),

which behaves almost like ρ; the only difference that the solution is encoded in w =

σ(ηL · ηR), instead of σ(ηL).

876 Theory Comput Syst (2018) 62:854–898

3.3 Xregexes

As shown by Fagin et al. [7], there are languages that are recognized by xregexes, but

not by core spanners. In order to prove this, [7] introduced the so-called “uniform-

0-chunk”-language Luzc: Assuming 0, 1 ∈ Σ , Luzc is defined as the language of all

w = s1 · t · s2 · t · · · sn−1 · t · sn, where n > 0, s1, . . . , sn ∈ {1}+, and t ∈ {0}+. Then

L(αuzc) = Luzc holds for the xregex αuzc := 1+ · x{0∗} · (1+ · &x)∗ · 1+, but no core

spanner recognizes Luzc.

Considering that the syntax of regex formulas does not allow the use of vari-

ables inside a Kleene star (or plus), this inexpressibility result might be considered

expected, as αuzc has an occurrence of &x inside a Kleene star. This raises the ques-

tion whether xregexes that restrict variables in a similar manner can still recognize

languages that core spanners cannot. In order to examine this question, we define the

following subclass of xregexes:

Definition 3.15 An xregex α is variable star-free (short: vstar-free) if, for every

β ∈ Sub (α) with β = γ ∗, no subexpression of γ is a variable binding or a variable

reference. We denote the class of all vstar-free xregexes by vsfXR.

As we shall see in Theorem 3.21 below, every language that is recognized by a

vstar-free xregex is also recognized by a core spanner. While this observation might

be considered not very surprising, its proof needs to deal with some technicalities. In

particular, one needs to deal with expressions like α := x{Σ∗} · (&x ∨ &x&x). A

conversion in the spirit of Theorem 3.3 would need to replace the &x with distinct

variables and ensure equality with selections; but as the disjunction contains subex-

pressions with distinct numbers of occurrences of &x, we would not be able to ensure

functionality of the resulting regex formula. We avoid these problems by working

with the following syntactically restricted class of vstar-free xregexes:

Definition 3.16 An α ∈ vsfXR is an xregex path if, for every β ∈ Sub (α) with

β = (γ1 ∨ γ2), no subexpression of γ1 or γ2 is a variable binding or a variable

reference. We denote the class of all xregex paths by XRP.

Intuitively, an xregex path α ∈ XRP can be understood as a concatenation α =

α1 · · · αn, where each αi is either a proper regular expression, a variable reference,

or a variable binding of the form αi = x{α̂}, where α̂ is also an xregex path. By

“multiplying out” disjunctions that contain variables, we can convert every vstar-free

xregex into a disjunction of xregex paths.

Lemma 3.17 There is an algorithm that, given α ∈ vsfXR, computes α1, . . . , αn ∈

XRP with L(α) =
⋃n

i=1 L(αi).

Proof If a vstar-free xregex α is not an xregex path, there exists at least one x ∈

Vars (α) and at least one subexpression β ∈ Sub (α) with β �= α such that

1. β is a disjunction; i. e., β = (γ1 ∨ γ2) for some γ1, γ2 ∈ vsfXR,

Theory Comput Syst (2018) 62:854–898 877

2. β contains a variable binding x{· · · } or a variable reference &x.

We now rewrite α into two vstar-free xregexes α1 and α2, by replacing β with γ1 or

γ2, respectively. We observe that this rewriting step does not change the language:

Claim 1 L(α) = L(α1) ∪ L(α2)

Proof If w ∈ L(α), there exists an α-parse tree T for w; in other words, the root of

T is labelled with (w, α). Recall that α is vstar-free. Hence, we know that T uses the

occurrence of β that was rewritten to create α1 and α2 at most once (in order to be

able to use the occurrence multiple times, α would need to contain a star around β).

This allows us to distinguish two possibilities: If T does not use this occurrence

of β at all, we can immediately transform T into an αi-parse tree Ti (i ∈ {1, 2}) by

replacing the root label with (w, αi), and changing all children accordingly. Hence,

w ∈ L(αi) holds.

On the other hand, if T uses this occurrence of β, then there exists a uniquely

defined node v in T that is labeled with (ŵ, β) for some word ŵ ∈ Σ∗. Further-

more, this node corresponds to the occurrence of β that was rewritten in α1 and α2.

By definition, v has exactly one child v̂ that is labeled with either (ŵ, γi), where

i ∈ {1, 2}. We rewrite T into a αi-parse tree Ti by removing v (i. e., v̂ replaces v),

relabeling the root of T to (w, αi), and changing all labels between the root and v̂

accordingly. As Ti is a αi-parse tree for w, we have that w ∈ L(αi) holds. This proves

L(α) ⊆ L(α1) ∪ L(α2).

In order to prove L(α) ⊇ L(α1)∪L(α2), we proceed analogously: If w ∈ L(α1)∪

L(α2), we can transform a αi-parse tree for w into an α-parse tree by inserting a node

(ŵ, β) (if necessary), and changing the labels accordingly. � (Claim 1)

Note that this equivalence relies on the fact that α is vstar-free, which implies that

β does not occur inside a Kleene star. For xregexes that are not vstar-free, we can

only conclude L(α) ⊇ L(α1) ∪ L(α2). This is easily seen considering the example

of x{a}y{b}(&x ∨ &y)∗, which would be rewritten to x{a}(&x)∗ and y{b}(&y)∗.

We repeat this rewriting procedure on every created vstar-free xregex that is not an

xregex path. This procedure terminates, as every rewriting removes a disjunction that

contains at least one variable (binding or reference). Hence if α contains k ∈ N>0

disjunctions, this process results in xregex paths α1, . . . , αn for some n ≤ 2k , and

L(α) =
⋃n

i=1 L(αi).

Example 3.18 Let α := x{Σ∗} ·&x · (x{Σ∗}∨y{Σ∗}) · (&x ∨&y) ·&x. Multiplying

out the disjunctions, we obtain the following xregex paths:

α1 = x{Σ∗} · &x · x{Σ∗} · &x · &x,

α2 = x{Σ∗} · &x · x{Σ∗} · &y · &x,

α3 = x{Σ∗} · &x · y{Σ∗} · &x · &x,

α4 = x{Σ∗} · &x · y{Σ∗} · &y · &x.

Then L(α) =
⋃4

i=1 L(αi).

878 Theory Comput Syst (2018) 62:854–898

This transformation process might result in an exponential number of xregex

paths; but as efficiency is not of concern right now, this is not a problem (the followup

paper Freydenberger [13] shows that this blowup can be avoided with a more involved

construction). Each of these xregex paths is then transformed into a functional regex

formula:

Lemma 3.19 There is an algorithm that, given α ∈ XRP, computes ρ ∈ RGX{π,ζ=}

with L(ρ) = L(α).

Proof Before we start with the proof, note that we can safely assume that α does

not contain ∅: If ∅ occurs inside a Kleene star (or a disjunction), that Kleene star

(or disjunction) cannot contain any variable bindings or references, as α is an xregex

path. Hence, we can remove ∅ as in the proof of Theorem 3.12. All other occurrences

of ∅ imply L(α) = ∅ – in this case, we are done.

Our goal is to rewrite the xregex path α into an equivalent core spanner of the form

π∅Sδ, where δ is a regex formula, and S is a sequence of string equality selections.

The main idea of the construction is quite straightforward: We basically replace

each variable reference &x with a unique xi{Σ
∗}, and use a string equality ζ=

x,xi

to connect xi with the appropriate binding. The only technical problem is that

unlike regex formulas, xregexes allow variables to be bound multiple times. We

solve this by using a unique variable for every occurrence of a variable binding

in α.

As explained above, the xregex path α can be understood as a concatenation

α = α1 · · · αn, where each αi is either a proper regular expression, a variable ref-

erence, or a variable binding of the form αi = x{α̂}, where α̂ is also an xregex

path.

Now, if we choose any occurrence of a variable reference &x in α, exactly one of

the following two cases applies:

1. There is no binding x{} in α that to the left of that occurrence of &x, or

2. there is a binding x{} in α that is to the left of that occurrence of &x.

In the first case, this &x will always default to ε, which means that we can safely

replace it with ε.

In the second case, we see that this &x will always refer to the variable binding

x{} that is closest to it to the left in α. In other words, we can simply read α from

left to right. All &x before the first binding for x default to ε; and all &x after the

first binding for x refer to the most recent binding for x (recall that, according to

our definition of xregexes, no variable binding for a variable x may contain another

binding of x).

This allows us to rewrite α into an xregex path γ with L(γ) = L(α) such that no

occurrence of a variable reference &x in γ refers to the default value ε, and every

variable binding x{· · · } occurs at most once. This is done the following way: We read

α from left to right. If we encounter a reference &x for which no binding has been

seen, we replace it with ε. If we encounter a binding x{} that has already been seen

before, we replace it with a binding for a new variable x̂, and all occurrences of &x

Theory Comput Syst (2018) 62:854–898 879

are renamed to &x̂. (Of course, further occurrences of x{} would require further new

variables.) For example, the xregex path

α2 = x{Σ∗} · &x · x{Σ∗} · &y · &x

from Example 3.18 would be rewritten to

γ2 = x{Σ∗} · &x · x̂{Σ∗} · ε · &x̂.

After rewriting α to γ , the next step is to transform γ into a regex formula δ by replac-

ing all variable references in a manner that is similar to the proof of Theorem 3.3.

More specifically, we construct δ by replacing, for each x ∈ Vars (γ), the i-th occur-

rence of &x in γ with xi{Σ
∗}. Note that δ is functional: Each variable in SVars (δ)

appears exactly once in δ; and as δ is also an xregex path, this implies that every δ-

parse tree contains every variable exactly once. (Recall that we assumed that α does

not contain ∅; hence, neither do γ and δ.)

For every variable x for which there occur references &x in γ , we define a selec-

tion ζ=
Vx

, where Vx := {x} ∪ {xi | xi occurs in δ}. We let S denote a sequence

of these selections (the order is irrelevant), and define the spanner representation

ρ := π∅Sδ. As we simulate the behavior of each variable binding x{· · · } and its ref-

erences &x using the selection ζ=
Vx

, it is easy to see that L(ρ) = L(γ) and, hence,

L(ρ) = L(α).

Example 3.20 Consider the xregex path

α := &x · x{Σ∗ · y{Σ∗}} · &x · &y · y{Σ∗} · &x · &y.

The construction from the proof of Lemma 3.19 leads to the equivalent xregex path

γ := ε · x{Σ∗ · y{Σ∗}} · &x · &y · ŷ{Σ∗} · &x · &ŷ,

from which we derive the functional regex formula

δ := x
{

Σ∗y{Σ∗}
}

x1{Σ
∗}y1{Σ

∗}ŷ{Σ∗}x2{Σ
∗}ŷ1{Σ

∗},

which we use in the spanner representation ρ := π∅ζ
=
x,x1,x2

ζ=
y,y1

ζ=
ŷ,ŷ1

δ. Then L(α) =

L(ρ).

As these spanner representations are Boolean, they are also union compatible.

Hence, we can now combine Lemma 3.17 and Lemma 3.19 to observe the following.

Theorem 3.21 There is an algorithm that, given α ∈ vsfXR, computes ρ ∈

RGX{π,ζ=,∪} with L(ρ) = L(α).

In Section 4.2, we use Theorem 3.21 together with the undecidability results

from [12] to obtain multiple lower bounds for static analysis problems. Theorem 3.21

also raises the question whether every language that is recognized by a core span-

ner is also recognized by a vstar-free regular expression. As we have already seen in

Example 3.8, it is possible to express the language

Limp := {wn | w ∈ Σ+, n ≥ 2}

880 Theory Comput Syst (2018) 62:854–898

with core spanners. Hence, under certain conditions, core spanners can simulate

constructions like (&x)∗.

While Limp might seem to be an obvious witness that separates the classes of

languages that are recognized by core spanners and by vstar-free xregexes, proving

this appears to be quite involved. Instead, we consider a related language, which

allows us to use the following tool:

Definition 3.22 Let k ∈ N>0. We call a set A ⊆ N
k linear if there exist an r ≥ 0 and

m0, . . . , mr ∈ N
k with A = {m0 + m1i1 + m2i2 + · · · + mr ir | i1, i2, . . . , ir ∈ N}.

A set A ⊆ N
k is semi-linear if it is a finite union of linear sets. Assume Σ =

{a1, a2, . . . , ak} with |Σ | = k. The Parikh map Ψ : Σ∗ → N
k is defined by Ψ (w) :=

(|w|a1
, |w|a2

, . . . , |w|ak
), and is extended to languages by Ψ (L) := {Ψ (w) | w ∈ L}.

We call L semi-linear if Ψ (L) is semi-linear.

According to Parikh’s Theorem [32], every context-free language is semi-linear.

Moreover, as shown by Ginsburg and Spanier [19], a set is semi-linear if and only if

it is definable in Presburger arithmetic. Building on this, we state the following.

Theorem 3.23 For every α ∈ vsfXR, the language L(α) is semi-linear.

Proof In order to increase the readability, we prove the claim for the case |Σ | = 2

(the adaption to larger alphabets is obvious). We assume Σ = {a,b} and define

Ψ (a) := (1, 0) and Ψ (b) := (0, 1). Assume that Vars (α) = {x1, . . . , xk} for

some k ∈ N>0.

It suffices to prove the claim for α ∈ XRP, as semi-linear sets are closed under

union, and (according to Lemma 3.17) every vstar-free xregex is equivalent to a finite

union of xregex paths.

As explained in the proof of Lemma 3.19 (in the construction of γ), we can also

assume without loss of generality that every variable binding x{· · · } occurs exactly

once in α, and that no variable reference &xi uses the default binding ε. In particular,

this means that in every α-parse tree, each variable xi stores exactly one word wi .

Let α be an xregex path that satisfies these conditions. Our goal is to construct a

Presburger formula ϕ such that ϕ(na, nb) is true if and only if (na, nb) ∈ Ψ (L(α)).

This formula will use variables xai and xbi to represent |wi |a and |wi |b, respectively.

Recall that, due to our initial assumptions, each reference &xi refers to the same word

wi ; hence, we can safely define the corresponding variables xai and xbi “globally”

in ϕ.

Let I⊆{1, . . . , k}. We use x and xI as abbreviations for the sequences xa1 , xb1 , . . .,

xak , xbk and
(

xai , xbi : i ∈ I
)

, and define

ϕ(na, nb) := ∃x : ϕα(na, nb, x),

where ϕα with Vars(α) = {x1, . . . , xk} is constructed according to the following

general procedure.

Given an xregex path γ , we define a Presburger formula ϕγ as follows: First, as γ

is an xregex path, there is a decomposition γ = γ1 ·γ2 · · · γl (l ∈ N>0), where each γi

Theory Comput Syst (2018) 62:854–898 881

is either a proper regular expression, a variable reference, or a variable binding of the

form x{γ̂i} such that γ̂i is also an xregex path. For each γi , we use variables nai and

nbi to denote the number of a or b that occur in the subword that is generated by γi .

We denote the set of all variables that are bound or referenced in γi by

VarsBR (γi) := Vars (γi) ∪ {x | &x occurs in γi}.

In a slight abuse of notation, we identify xVarsBR(γi) with the sequence (xa, xb : x ∈

VarsBR(γi)).

Keeping this in mind, we define

ϕγ

(

na, nb, xVarsBR(γ)

)

:= ∃na1 , nb1 , . . . nal , nbl :
(

(

na = na1 + · · · + nal
)

∧
(

nb = nb1 + · · · + nbl
)

∧

l
∧

i=1

ϕγi

(

nai , nbi , xVarsBR(γi)

)

)

,

where the Presburger formulas are defined as follows:

– If γi is a proper regular expression, then as L(γi) is semi-linear (as a conse-

quence of Parikh’s theorem [32], every regular language is semi-linear). Hence,

due to Ginsburg and Spanier [19], there is a Presburger formula ϕ̂γi
such that

ϕ̂γi
(na, nb) is true if and only if (na, nb) ∈ Ψ (L(γi)). We define

ϕγi

(

nai , nbi , xVarsBR(γi)

)

:= ϕ̂γi

(

nai , nbi
)

.

In order to avoid potential confusion, note that in this case xVarsBR(γi) is the empty

sequence. This is due to the fact that γi is a proper regular expression, which

implies VarsBR (γi) = ∅.

– If γi = &xj for some 1 ≤ j ≤ l, we define

ϕγi

(

nai , nbi , xVarsBR(γi)

)

:=
(

nai = xaj

)

∧
(

nbi = xbj

)

.

– If γi = xj {δ} for some 1 ≤ j ≤ l and some xregex path δ, we define

ϕγi

(

nai , nbi , xVarsBR(γi)

)

:=
(

nai = xaj

)

∧
(

nbi = xbj

)

∧ ϕδ

(

nai , nbi , xVarsBR(δ)

)

.

While the definition recurses in the case of xregex paths that contain variable bind-

ings (the third case in the definition of ϕγi
above), the formula ϕ is still ensured to be

finite and well-defined (as δ is always a subexpression of γ and, hence, shorter).

Recall that by our initial assumption, for every variable xi , each variable reference

&xi refers to the same word wi . Taking this into account, we can prove that

Ψ (L(α)) = {(na, nb) | ϕ(na, nb) is true}

via a straightforward structural induction.

We use Theorem 3.23 to separate the classes of languages that are recognized by

core spanners and by vstar-free xregexes:

Lemma 3.24 Let Lnsl := {(abm)n | m, n ≥ 2} and ρ := ζ
Rcom
x,y (x{abb+}y{Σ+})

for Σ := {a,b}. Then Lnsl = L(ρ), but there is no α ∈ vsfXR with L(α) = Lnsl.

882 Theory Comput Syst (2018) 62:854–898

Proof Assume that there is an α ∈ vsfXR with L(α) = Lnsl. By Theorem 3.23, Lnsl

must be semi-linear. Note that Ψ (Lnsl) = {(n,mn) | m, n ≥ 2}. As semi-linear sets

are closed under projection (cf. Ginsburg and Spanier [19]), this implies that the set

C := {mn | m, n ≥ 2} is semi-linear, and due to closure under complementation

(also cf. [19]), the set P = {p | p is prime, p = 0, or p = 1} is semi-linear as well.

However, semi-linear sets are finite unions of linear sets, and so P contains a subset

Pc,a := {c + an | n ∈ N>0} of prime numbers for c ≥ 2 and a ≥ 2. Obviously,

c + ac = c(1 + a) ∈ Pc,a , but c(1 + a) is a composite number. Hence, there is no

α ∈ vsfXR with L(α) = Lnsl.

We do not need the join operator to define non-semi-linear languages: Consider the

core spanner representation ρ from Example 3.14 with L(ρ) = Lnsl. If we construct

ρ̂ as explained below that example, we obtain L(ρ̂) = {ww | w ∈ Lnsl}, which is

also not semi-linear.

It is worth pointing out Lemma 3.24 does not resolve the open question from [7]

whether there is a language that is recognized by a core spanner, but not by an xregex,

as Theorem 3.23 only applies to vstar-free xregexes. We have already seen languages

that are not semi-linear, but are recognized by xregexes: The language Lnsl is rec-

ognized by αnsl := x{abb+}&x+; and a similar approach is used for the following

language (which we already met in Example 2.4):

Example 3.25 Let Σ := {a}, and define the language Lnpr := {amn | m, n ≥ 2}. In

other words, Lnpr is the language of all words ai with i ≥ 4 such that i is not a prime

number. Let αnpr := x{aa+} · (&x)+. Then L(αnpr) = Lnpr.

While Lnsl and Lnpr are defined by very similar xregexes, the latter cannot be

recognized by core spanners. In order to show this with a semi-linearity argument,

we observe:

Theorem 3.26 Let |Σ | = 1 and let P be a core spanner over Σ . Then L(P) is

semi-linear.

Proof We prove this by showing that on unary terminal alphabets, every ECreg-

language is semi-linear. Due to Theorem 3.12, this proves the claim.

Let Σ = {a}, and consider any ECreg-formula ϕ(w) over Σ . We show that L(ϕ)

is semi-linear by converting ϕ into a Presburger formula ϕ̂ for the set Ψ (L(ϕ)) =

{|w| | w ∈ L(ϕ)}. We obtain ϕ̂ by rewriting ϕ in the following way:

1. Each quantifier ∃x is replaced with ∃x̂.

2. Each regular constraint LA(x) is replaced with a formula ϕ̂A(x̂) for the set {|x| |

x ∈ L(A)}. As each L(A) is a regular language, this is possible according to

Ginsburg and Spanier [19].

3. Each word equation ηL = ηR is replaced with the equation sum(ηL) = sum(ηR),

where the function sum is defined by sum(a) := 1, sum(x) := x̂ for x ∈ X, and

sum(α · β) := sum(α) + sum(β).

Theory Comput Syst (2018) 62:854–898 883

For example, the word equation xaxyx = ayzzya is converted into the Presburger

equation x̂ + 1 + x̂ + ŷ + x̂ = 1 + ŷ + ẑ + ẑ + ŷ + 1 (for Σ = {a}). Intuitively,

each variable x̂ in ϕ̂ contains the length of x in ϕ (which, as |Σ | = 1, corresponds

to the Parikh image of that word). Hence, the Presburger formula ϕ̂ defines the set

Ψ (L(ϕ)). According to [19], this implies that Ψ (L(ϕ)) is semi-linear, which means

that L(ϕ) is semi-linear. This concludes the proof.

Note that this construction only applies to unary alphabets, as this is the only case

where there is a one-to-one correspondence between words and their Parikh images.

Apart from the observation that Lnpr from Example 3.25 is not recognized by core

spanners, Theorem 3.26 also allows us to conclude the following.

Corollary 3.27 If |Σ | = 1, then L(P) is regular for every core spanner P .

In other words, for unary terminal alphabets, core spanners recognize exactly

the same class as regular spanners, namely the class of regular languages (which,

in the unary case, is identical to the class of context-free languages). Furthermore,

Lemma 3.24 and Theorem 3.26 together show the following.

Corollary 3.28 The class of languages that is recognized by core spanners is not

closed under homomorphisms.

We conclude this section with a summary of our insights into the relative expres-

sive power of the various models. To increase readability, we use the following

definitions: Let REG, XR, and PAT denote the class of regular expressions, xregex, or

patterns, respectively. For a class of language recognizing mechanisms D, let L(D)

denote the class of languages that are recognized by elements of D. For example,

L(PAT) is the class of pattern languages, and L(RGX{π,ζ=,∪,⊲⊳}) is the class of lan-

guages that are recognized by core spanners. The hierarchy in Fig. 2 is obtained by

combining the results in the present section with the fact that every pattern language

contains either exactly one or infinitely many words (first observed by Angluin [1]),

and that there are regular languages that are not EC-recognizable (see Karhumäki

Fig. 2 To the left: The relationship of the various language classes. An arrow denotes proper inclusion (of

the source class in the target class), the dotted arrow denotes inclusion. To the right: The references for

these results. See also the explanation at the end of Section 3

884 Theory Comput Syst (2018) 62:854–898

et al. [26]). Two sets of question remain open: Firstly, although Theorem 3.26

together with Example 3.25 shows that there is a language that is recognized by

xregex, but not by ECreg (and, hence, also not by EC or RGX{π,ζ=,∪,⊲⊳}), it remains

open whether the reverse direction holds as well. Secondly, although we know that

L(RGX{π,ζ=,∪,⊲⊳}) ⊆ L(ECreg), we do not know whether this inclusion is strict. In

fact, it even remains open whether there is a language that is recognized by EC, but

not by RGX{π,ζ=,∪,⊲⊳}. This second set of question is discussed in more detail in

Freydenberger [13].

4 Decision Problems

4.1 Spanner Evaluation

We first examine the combined complexity of the evaluation problem for core

spanners. To this end, we define the problem CSp−Eval: Given a core spanner

representation ρ ∈ RGX{π,ζ=,∪,⊲⊳}, a word w ∈ Σ∗, and a (SVars (ρ), w)-tuple µ,

is µ ∈ �ρ�(w)? In order to prove lower bounds for this problem, we consider the

membership problem for pattern languages: Given a pattern α and a word w, decide

whether w ∈ L(α). As shown by Jiang et al. [24], this problem is NP-complete

(for pattern languages that do not allow replacing variables with ε, this was already

shown by Angluin [1]). Due to Theorem 3.3, we observe the following (the proof of

NP-membership is straightforward).

Theorem 4.1 CSp−Eval is NP-complete, even if restricted to RGX{π,ζ=}.

Proof In order to prove NP-hardness, it suffices to give a polynomial time reduction

from the membership problem for pattern languages to CSp−Eval. Given a pattern

α and a word w, we use Theorem 3.3 to construct a spanner representation ρα ∈

RGX{ζ=} in polynomial time such that L(α) = L(ρα). Next, we define ρ := π∅ρα .

As ρ represents a Boolean spanner, we define µ to be the empty tuple (). Now,

µ ∈ �ρ�(w) holds if and only if w ∈ L(α).

We prove membership in NP using the following NP-algorithm: Assume that we

are given a core spanner representation ρ, a word w ∈ Σ∗, and a w-tuple µ. For every

regex formula γ in ρ, we nondeterministically guess a w-tuple µγ . By definition,

each of these tuples has a size that is polynomial in |w|. In addition to this, for every

union (ρ1 ∪ ρ2), we guess a representation ρi that is ignored. We then verify these

guesses deterministically: First, we discard all parts of ρ that are ignored, and obtain

a spanner representation ρ̂ ∈ RGXpsj . For all remaining regex formulas γ in ρ̂, we

check whether µγ is consistent with γ and w. Obviously, this can be done in polyno-

mial time. If all of these checks pass, we evaluate all operators in ρ̂. As ρ̂ contains no

unions, the result of these evaluations is always either ∅, or a set that contains exactly

one w-tuple. Hence, this process only takes polynomial time. Furthermore, when it

terminates, it results either in ∅, or in a w-tuple µ̂. In the latter case, we return True

if µ̂ = µ.

Theory Comput Syst (2018) 62:854–898 885

The question arises whether there are natural restrictions to CSp−Eval that make

this problem tractable. It appears that any subclass of the core spanners that extends

regular spanners in a meaningful way while having a tractable evaluation problem

cannot be allowed to recognize the full class of pattern languages.

For pattern languages, it was shown by Ibarra et al. [23] that bounding the number

of variables in the pattern leads to an algorithm for the membership problem with a

running time that is polynomial, although in O(nk) (where n is the length of the word

w, and k the number of variables). From a parameterized complexity point of view

(see e. g. Grohe and Flum [20]), this is usually not considered satisfactory. Without

going too much into details, in parameterized complexity, one generally considers

parameterized problems tractable that belong to the class FPT (from fixed-parameter

tractable). This class is defined as follows: The input of a parameterized problem is

a pair (x, k), where x is the input of the non-parameterized problem (e. g., a pattern

α and a word w), and k is a parameter of the input (e. g., the number of variables

in α). The parameterized problem is in FPT if there exist a computable function f ,

a constant c ≥ 0, and an algorithm that decides the problem in time O(f (k)nc).

We do not define the class W[1], but we note that the standard complexity theoretic

assumption is that if a problem is W[1]-hard, it is not in FPT.

It was first observed by Stephan et al. [34] that the membership problem for pattern

languages is W[1]-complete if the number of variable occurrences (not of variables)

is used as a parameter (see Fernau et al. [11] for the full proof). As the number

of variable occurrences in a pattern corresponds to the number of variables in an

equivalent spanner, this implies that using the number of variables in a spanner as

parameter leads to W[1]-hardness for this parameter of CSp−Eval.

Fernau and Schmid [10] and Fernau et al. [11] discuss these and various other

potential restrictions to pattern languages that still do not lead to tractability (among

these a bound on the length of the replacement of each variable, which corresponds to

a bound on the length of spans). On the other hand, Reidenbach and Schmid [33] and

Fernau et al. [9] examine parameters for patterns that make the membership problem

tractable. While this does not directly translate to spanners, the authors consider these

directions promising for further research.

But apart from these potential restrictions on the use of string equality, other

restrictions are needed, as the use of join also makes evaluation intractable:

Proposition 4.2 CSp−Eval is NP-complete, even if restricted to RGX{π,⊲⊳}.

Proof We prove this with a reduction from the Clique problem: Given an undirected

graph G = (V , E) and a number k ≤ |V |, decide whether G contains a clique of size

k. This problem is NP-complete (cf. Garey and Johnson [18]). Consider an undirected

graph G = (V , E) with V = {1, . . . , n} for some n ≥ 1, and a number k ≤ n. Let

a ∈ Σ and define w := a
n and ρ := ⊲⊳1≤i<j≤kαi,j , where each αi,j is defined by

αi,j :=
∨

{u,v}∈E,
u<v

a
u−1 xi{a} av−u−1 xj {a} an−v.

886 Theory Comput Syst (2018) 62:854–898

In other words, each part of the disjunction corresponds to a choice of u and v, which

allows �αi,j �(w) to map xi to the u-th and xj to the v-th letter of w. Then µ ∈ �ρ�(w)

holds if and only if there exist distinct nodes v1, . . . , vk ∈ V such that {vi, vj } ∈ E

for all 1 ≤ i < j ≤ k; and µ(xi) = [vi, vi + 1〉 for 1 ≤ i ≤ k. Thus, the empty tuple

is an element of �π∅ρ�(w) if and only if G contains a clique of size k.

We also consider the data complexity of the evaluation problem for core spanners.

For every core spanner representation ρ over Σ , we define the decision problem

CSp−Eval(ρ): Given a word w ∈ Σ∗ and a w-tuple µ, is µ ∈ �ρ�(w)? Using a slight

variation of the proof of Theorem 4.1, we obtain the following.

Theorem 4.3 CSp−Eval(ρ) is in NLOGSPACE for every ρ ∈ RGX{π,ζ=,∪,⊲⊳}.

Proof This result follows from a slight change to the NP-decision procedure from the

proof of Theorem 4.1: We can represent the guessed w-tuples µγ for each regex for-

mula γ by using two pointers for each µγ (x) = [i, j 〉 (one pointer for i, one for j).

As ρ is fixed, a finite number of such pointers suffices to represent all w-tuples. Fur-

thermore, the verification of these guesses can also be realized nondeterministically

with only a constant amount of additional pointers.

4.2 Static Analysis

We consider the following common decision problems for core spanner representa-

tions, where the input is ρ ∈ RGX{π,ζ=,∪,⊲⊳} or ρ1, ρ2 ∈ RGX{π,ζ=,∪,⊲⊳}:

1. CSp−Sat: Is �ρ�(w) �= ∅ for some w ∈ Σ∗?

2. CSp−Hierarchicality: Is �ρ� hierarchical?

3. CSp−Universality: Is �ρ� = ϒSVars(ρ)?

4. CSp−Equivalence: Is �ρ1� = �ρ2�?

5. CSp−Containment: Is �ρ1� ⊆ �ρ2�?

6. CSp−Regularity: Is �ρ� ∈ �RGX{π,∪,⊲⊳}�?

We approach the first two of these problems by using Theorem 3.12 to convert core

spanner representations to ECreg-formulas, for which satisfiability is in PSPACE

(cf. Diekert [6]). Hence, we observe:

Theorem 4.4 The problem CSp−Sat is PSPACE-complete, even if it is restricted to

spanner representations from RGX{ζ=}.

Proof We begin with the upper bound. According to Theorem 3.12, for every core

spanner representation ρ, there exists an ECreg-formula ϕ that realizes �ρ�. Further-

more, ϕ can be computed in polynomial time. In particular, ϕ is satisfiable if and only

if ρ is satisfiable. As satisfiability for ECreg-formulas is in PSPACE (cf. Diekert [6]),

this question can be answered in PSPACE.

For the lower bound, we construct a reduction to CSp−Sat from the intersec-

tion emptiness problem for regular expressions, which is defined as follows: Given

Theory Comput Syst (2018) 62:854–898 887

(proper) regular expressions α1, . . . , αn, decide whether
⋂n

i=1 L(αi) = ∅. As a

direct consequence of the proof of Lemma 3.2.3 in Kozen [27], this problem is

PSPACE-complete (although Kozen’s proof uses automata, these are defined via reg-

ular expressions). Recall that every proper regular expression is also a functional

regex formula. Hence, we can construct a Boolean spanner representation

ρ := ζ=
x1,...,xn

x1{α1} · · · xn{αn}.

Obviously, for every w ∈ Σ∗, we have P(w) �= ∅ if and only if there exists a word

v ∈ Σ∗ with w = vn and v ∈ L(αi) for 1 ≤ i ≤ n. Hence, P is satisfiable if

and only if
⋂n

i=1 L(αi) �= ∅. As PSPACE is closed under complementation, this

proves PSPACE-hardness of CSp−Sat, even when restricted to representations from

the class RGX{ζ=}.

The proof of the lower bound in Theorem 4.4 uses the PSPACE-hardness of the

intersection emptiness problem for regular expressions. But even if the variables in

the regex formulas were only bound to Σ∗, it follows from Theorem 3.13 that this

problem would still be at least as hard as the satisfiability problem for word equations

without constraints. Considering that even proving the decidability was hard (see

Diekert [6] for an overview), approaching CSp−Sat without knowledge on word

equations would have required enormous additional effort.

It is also possible to use ECreg-formulas to express a violation of the criteria for

hierarchicality. This allows us to state the following result:

Theorem 4.5 The problem CSp−Hierarchicality is PSPACE-complete, even if it is

restricted to RGX{ζ=,×}.

Proof We begin with of the upper bound. The main idea is that non-hierarchicality

can be expressed in ECreg-formulas. Hence, our goal is to construct a polynomial time

procedure that, given a core spanner representation ρ ∈ RGX{π,ζ=,∪,⊲⊳}, constructs

an ECreg-formula ϕNH that is satisfiable if and only if �ρ� is not hierarchical.

Recall that, by definition, for every spanner P and every word w ∈ Σ∗, a w-tuple

µ ∈ P(w) is not hierarchical if there exist variables x, y ∈ SVars (P) such that all of

the following hold:

1. The span µ(x) does not contain µ(y),

2. the span µ(y) does not contain µ(x), and

3. the spans µ(x) and µ(y) overlap (i. e., they are not disjoint).

If this is the case, we say that µ(x) and µ(y) strictly overlap. It is easy to see that

two spans [i1, j1〉 and [i2, j2〉 strictly overlap if one of the following strict overlap

conditions is met:

1. i1 < i2 < j1 < j2,

2. i2 < i1 < j2 < j1.

For an illustration of these two conditions, see Fig. 3. Our next goal is to define

an ECreg-formula ϕovl(x
P , xC, yP , yC) that expresses the first condition when

888 Theory Comput Syst (2018) 62:854–898

Fig. 3 The two possibilities how two spans can strictly overlap (see proof of Theorem 4.5). To the left:

i1 < i2 < j1 < j2. To the right: i2 < i1 < j2 < j1

combined with an ECreg-formula that realizes a spanner (we do not need to define

a formula for the second condition, as both conditions are symmetrical). To this

purpose, we first define the ECreg-formula

ϕppref(x, y) := ∃z : (LA(z) ∧ (xz = y)),

where A is an NFA with L(A) = Σ+. Clearly, (x, y) ∈ Σ∗ × Σ∗ satisfies ϕppref if

and only if x is a proper prefix of y. Next, we define

ϕovl(x
P , xC, yP , yC) :=

∃z1, z2 : ((z1 = xP xC) ∧ (z2 = yP yC)

∧ϕppref(x
P , yP) ∧ ϕppref(y

P , z1) ∧ ϕppref(z1, z2)).

The idea behind the construction is as follows: Recall that this formula is going to

be used together with an ECreg-formula that realizes a spanner. Hence, xP and xC

represent a span [1 +|xP |, 1 +|xP xC |〉 = [i1, j1〉, while yP and yC represent a span

[1 + |yP |, 1 + |yP yC |〉 = [i2, j2〉. In particular, xP xC and yP yC are both prefix of

some common word w. Hence, i1 < i2 holds if and only if xP is a proper prefix of

yP . Likewise, i2 < j1 and j1 < j2 hold if and only if yP is a proper prefix of xP xC ,

or xP xC is a proper prefix of yP yC , respectively.

In other words, ϕovl checks whether the first of the two strict overlap conditions is

satisfied.

We are now ready to construct ϕNH. Let ρ ∈ RGX{π,ζ=,∪,⊲⊳}, and assume that

SVars (ρ) = {x1, . . . , xn} for some n ≥ 2 (spanners with less than two variables

are trivially hierarchical). Using Theorem 3.12), we then construct an ECreg-formula

ϕρ(xw, xP
1 , xC

1 , . . . , xP
n , xC

n) that realizes �ρ�. We now define

ϕNH := ∃xw, xP
1 , xC

1 , . . . , xP
n , xC

n :
⎛

⎜

⎜

⎝

ϕρ

(

xw, xP
1 , xC

1 , . . . , xP
n , xC

n

)

∧
∨

1≤i,j≤n;
i �=j

ϕovl

(

xP
i , xC

i , xP
j , xC

j

)

⎞

⎟

⎟

⎠

.

Assume that �ρ� is not hierarchical. Then there exist a word w ∈ Σ∗,

a w-tuple µ ∈ �ρ�, and xl, xm ∈ SVars (ρ) such that µ(xl) and µ(xm)

strictly overlap. As ϕρ realizes �ρ�, we have that µ defines an assign-

ment (w, w[1,i1〉, w[i1,j1〉, . . . , w[1,in〉, w[in,jn〉) that satisfies this subformula (where

[ik, jk〉 = µ(xk)). Furthermore, as µ(xm) and µ(xl) strictly overlap, either

Theory Comput Syst (2018) 62:854–898 889

ϕovl(x
P
l , xC

l , xP
m , xC

m) or ϕovl(x
P
m , xC

m, xP
l , xC

l) is satisfied (if il < im or im < il ,

respectively). Hence, ϕNH is satisfiable.

Likewise, ϕNH is only satisfied if ϕρ and (at least) one ϕovl(x
P
l , xC

l , xP
m , xC

m) are

satisfied. This corresponds to a w-tuple µ where µ(xl) and µ(xm) strictly overlap.

Hence, µ is not hierarchical, which means that �ρ� is not hierarchical.

Therefore, ϕNH is satisfiable if and only if �ρ� is not hierarchical. Furthermore,

ϕNH can be constructed in polynomial time, as we only need to construct ϕρ (which is

possible in polynomial time, according to the proof of Theorem 4.4), and an amount

of ϕovl-formulas that is quadratic in |SVars (ρ)|, each of which has a constant length.

Both constructions rely solely on the syntax of ρ, and require no further computation.

As satisfiability of ECreg-formulas can be decided in PSPACE, the complement of

CSp−Hierarchicality is in PSPACE; and as PSPACE is closed under complementa-

tion, this means that CSp−Hierarchicality is in PSPACE.

For the lower bound, we slightly modify the proof of the lower bound for

CSp−Sat. Again, we use the intersection emptiness problem for regular expressions.

Given proper regular expressions α1, . . . , αn, we define

ρ := ζ=
x1,...,xn

(x1{aaa · α1} · · · xn{aaa · αn}) × (y{Σ · Σ+} · Σ) × (Σ · z{Σ+ · Σ}),

for some a ∈ Σ . By replacing each αi in that proof with aaa · αi , we ensure that

every word w ∈ Σ∗ with �ζ=
x1,...,xn

(x1{aaa · α1} · · · xn{aaa · αn}�(w) �= ∅ has at

least length 3 (which is the minimal word length for which non-hierarchical spanners

are possible). Furthermore, for each such w, the variable y is assigned the span that

contains all positions of w except the last one, and z is assigned the span that contains

all positions except the first one. Hence, these spans strictly overlap, which means

that ρ is not hierarchical. On the other hand, if �ζ=
x1,...,xn

(x1{aaa · α1} · · · xn{aaa ·

αn})�(w) = ∅, then �ρ� = ∅. Therefore, ρ is hierarchical if and only if there is no

w ∈
⋂

1≤i≤n L(αi). As this problem is PSPACE-complete, CSp−Hierarchicality is

PSPACE-hard.

For the remaining problems, we use Theorem 3.21, and the fact that the undecid-

ability results from Freydenberger [12] also hold for vstar-free xregexes:

Theorem 4.6 The problems CSp−Universality and CSp−Equivalence are not semi-

decidable, but co-semi-decidable. The problem CSp−Regularity is neither semi-

decidable, nor co-semi-decidable. These results hold even if the input is restricted

to RGX{π,ζ=,∪}.

Proof The co-semi-decidability of the first two problems is obvious. We discuss this

for universality: For any core spanner representation ρ, we can always decide whether

�ρ�(w) = ϒSVars(ρ)(w) holds. Hence, we can semi-decide non-universality by enu-

merating all w ∈ Σ∗ until we find a word w with �ρ�(w) �= ϒSVars(ρ)(w). Thus,

CSp−Universality is co-semi-decidable. The proof for CSp−Equivalence works

analogously.

We now proceed to the proofs of the lower bounds. As shown by Freyden-

berger [12], if |Σ | ≥ 2, for xregexes α, the following holds:

890 Theory Comput Syst (2018) 62:854–898

– It is not semi-decidable whether L(α) = Σ∗,

– It is neither semi-decidable, nor co-semi-decidable whether L(α) is a regular

language.

The proof in [12] takes a Turing machine X (with some additional technical restric-

tions) and computes an xregex αX with a single variable x such that L(α) = Σ∗ if

and only if X accepts no input, and L(αX) is regular if and only if X accepts only

finitely many inputs.

These xregexes αX are defined over the alphabet Σ = {0, #} and, when adapted

to the notation of this paper, are always of the following shape:

αX = αstruc ∨ αstate ∨ αhead ∨ αmod ∨ αvar .

It is important to note that all subexpressions except αvar are proper regular

expressions, while

αvar = (0 ∨ #)∗#0 · x{0∗} · (α1 ∨ α2 ∨ · · · ∨ αn)

for some n ∈ Np that depends on X , where all αi are xregex paths that do not contain

variable bindings, and no other variable references than &x.

We note that the single variable biding x{0∗} and all variable references &x do not

occur under a Kleene star, and conclude that αX is a vstar-free xregex.

By Theorem 3.21, we can effectively convert every αX into a Boolean spanner

representation ρX ∈ RGX{π,ζ=,∪} with L(ρX) = L(αX).

Then �ρX � = ϒ∅ holds if and only if L(αX) = Σ∗. As this question is not semi-

decidable, CSp−Universality is also not semi-decidable. As CSp−Universality is a

special case of CSp−Equivalence, the latter problem is also not semi-decidable.

Furthermore, �ρX � is a regular spanner if and only if L(αX) is a regular lan-

guage (as shown by Fagin et al. [7], when viewed as language definition mechanisms,

regular spanners define exactly the class of regular languages). This question is nei-

ther semi-decidable, nor co-semi-decidable; hence, this applies to CSp−Regularity

as well.

As the proof of Theorem 4.6 relies only on Boolean spanners, the decidability

status of CSp−Regularity does not change if the problem asks for hierarchical regu-

larity (i. e., membership in �RGX�) instead of regularity, as the two classes coincide

for Boolean spanners. Likewise, CSp−Universality remains not semi-decidable if one

replaces ϒSVars(ρ) with ϒH
SVars(ρ)

.

In the construction from this proof, variables are only bound to a language a+.

Hence, the same undecidability results hold for spanners that use selections by equal

length relation, instead of the string equality relation. While the proof builds on

xregexes αX that use only a single variable x, the resulting core spanners use an

unbounded amount of variables, as every occurrence of a variable reference &x in

an xregex path is converted to a spanner variable xi . But undecidability remains even

if we bound the number of variables in the spanners, as the αX can be modified to

use only a bounded number of variable references (see Section 4.1 in [12]). Theo-

rem 4.6 also implies that CSp−Containment is not semi-decidable. This holds even

for a more restricted class of spanners:

Theory Comput Syst (2018) 62:854–898 891

Theorem 4.7 The problem CSp−Containment is not semi-decidable, even if it is

restricted to RGX{π,ζ=}.

Proof This proof uses the undecidability of the inclusion problem for pattern lan-

guages, which is defined as follows: Given two patterns α and β, decide whether

L(α) ⊆ L(β).

For unbounded sizes of Σ , this undecidability was proven by Jiang et al. [25],

and Freydenberger and Reidenbach [15] adapted this proof to all (non-unary) finite

terminal alphabets.

Given two patterns α, β, we can use Theorem 3.3 to construct spanner represen-

tations ρα, ρβ ∈ RGX{ζ=} with L(ρX) = L(X) for X ∈ {α, β}, and turn these into

representations of Boolean spanners ρ̂X := π∅ρX. Then �ρ̂α�(w) ⊆ �ρ̂β�(w) holds

for all w ∈ Σ∗ if and only if L(α) ⊆ L(β).

This shows that CSp−Containment is not decidable. As it is obviously co-semi-

decidable, this also shows that CSp−Containment is not semi-decidable.

As shown by Bremer and Freydenberger [4], the inclusion problem for pattern

languages remains undecidable if the number of variables in the patterns is bounded.

In fact, that proof constructs patterns where even the number of variable occurrences

is bounded. Therefore, CSp−Containment is not semi-decidable even if restricted

to representations from RGX{π,ζ=} with a bounded number of variables. It is a hard

open question whether the equivalence problem for pattern languages is decidable (cf.

Ohlebusch and Ukkonen [31], Freydenberger and Reidenbach [15]). Undecidability

of this problem would imply undecidability of CSp−Equivalence, even if restricted

to representations from RGX{π,ζ=}.

We conclude this part of the section with a table that summarizes our results on

decision problems:

Problem Status Reference

CSp−Eval NP-complete Theorem 4.1,

Proposition 4.2

CSp−Eval(ρ) in NLOGSPACE Theorem 4.3

CSp−Sat PSPACE-complete Theorem 4.4

CSp−Hierarchicality PSPACE-complete Theorem 4.5

CSp−Universality co-semi-decidable, not semi-decidable Theorem 4.6

CSp−Equivalence co-semi-decidable, not semi-decidable Theorem 4.6

CSp−Containment co-semi-decidable, not semi-decidable Theorem 4.7

CSp−Regularity neither semi-, nor co-semi-decidable Theorem 4.6

Details under which restrictions the lower bounds persist can be found in the

respective results.

892 Theory Comput Syst (2018) 62:854–898

4.2.1 Minimization and Relative Succinctness

In order to address the minimization of spanner representations, we first formalize

the notion of the size or complexity of a spanner representation. Even for proper

regular expressions, there are various different definitions of size, see e. g. Holzer

and Kutrib [22], and there might be convincing reasons to add additional weight to

the number of variables or other parameters. As we shall see, these distinctions do

not affect the negative results that we prove later. Hence, instead of defining a single

fixed notion of size, we use the following general definition of complexity measures

from Kutrib [29]:

Definition 4.8 Let SR be a class of spanner representations. A complexity measure

for SR is a recursive function c : SR → N such that for each Σ , the set of all ρ ∈ SR

that represent spanners over Σ can be effectively enumerated in order of increasing

c(ρ), and does not contain infinitely many ρ ∈ SR with the same value c(ρ).

By recursive, we mean a function that is total and computable. Definition 4.8

is general enough to include all notions of complexity that take into account that

descriptions are commonly encoded with a finite number of distinct symbols, and

that it should be decidable if a word over these symbols is a valid encoding from

SR. Regardless of the chosen complexity measure, computable minimization of core

spanners is impossible:

Theorem 4.9 Let c be a complexity measure for RGX{π,ζ=,∪,⊲⊳}. There is no algo-

rithm that, given a ρ ∈ RGX{π,ζ=,∪,⊲⊳}, computes an equivalent ρ̂ ∈ RGX{π,ζ=,∪,⊲⊳}

that is c-minimal.

Proof Define Umin to be the set of c-minimal core spanner representations of ϒ∅. By

the definition of a complexity measure, Umin is finite. Hence, given a core spanner

representation ρ, we can decide whether ρ ∈ Umin.

Now assume there is an algorithm MINc that minimizes core spanner representa-

tions with respect to c. Given a core spanner representation ρ, we can decide whether

�ρ� = �ϒ∅�, by checking whether MINc(ρ) ∈ Umin. But as shown in Theorem 4.6,

this problem is undecidable. Hence, MINc cannot exist.

In addition to regex formulas, Fagin et al. [7] also define spanner representa-

tions that are based on so-called vset- and vstk-automata (denoted by VAset and

VAstk). They show �VAstk� = �RGX� and �VAset� = �RGX{π,∪,⊲⊳}�, and conclude that

�VAset
{π,ζ=,∪,⊲⊳}� = �VAstk

{π,ζ=,∪,⊲⊳}� = �RGX{π,ζ=,∪,⊲⊳}�. Without going futher into

details, we note that their equivalence proofs use computable conversions between

the models. Hence, Theorem 4.9 also applies to those spanner representations from

[7] that can express core spanners, like VAstk
{π,ζ=,∪,⊲⊳} and VAset

{π,ζ=,∪,⊲⊳}, and it

implies that an algorithm that converts from one of these classes of representations

to another cannot guarantee that its result is minimal.

Theory Comput Syst (2018) 62:854–898 893

Using a technique by Hartmanis [21], we can use the fact that CSp−Regularity

is not co-semi-decidable to compare the relative succinctness of regular and core

spanner representations:

Theorem 4.10 Let c1 and c2 be complexity measures for the classes RGX{π,∪,⊲⊳} and

RGX{π,ζ=,∪,⊲⊳}, respectively. For every recursive function f : N → N, there exists a

ρ ∈ RGX{π,ζ=,∪,⊲⊳} such that �ρ� ∈ �RGX{π,∪,⊲⊳}�, but c1(ρ̂) > f (c2(ρ)) holds for

every ρ̂ ∈ RGX{π,∪,⊲⊳} with �ρ̂� = �ρ�.

Proof For the sake of a contradiction, assume that there exist complexity measures c1

for RGX{π,∪,⊲⊳} and c2 for RGX{π,ζ=,∪,⊲⊳}, as well as a recursive function f such that,

for every core spanner representation ρ ∈ RGX{π,ζ=,∪,⊲⊳} with �ρ� ∈ �RGX{π,∪,⊲⊳}�,

there exists a regular spanner representation ρ̂ ∈ RGX{π,∪,⊲⊳} with �ρ̂� = �ρ� and

c1(ρ̂) ≤ f (c2(ρ)). Our goal is to show that this implies that the set

NR := {ρ ∈ RGX{π,ζ=,∪,⊲⊳} | there is no ρR ∈ RGX{π,∪,⊲⊳} with �ρ� = �ρR�}

is semi-decidable. As CSp−Regularity is not co-semi-decidable (Theorem 4.6), this

will yield the desired contradiction.

We define a semi-decision procedure for NR as follows: Given a core spanner

ρ ∈ RGX{π,ζ=,∪,⊲⊳}, compute a complexity bound n := f (c2(ρ)). We define

Fn := {ρR ∈ RGX{π,∪,⊲⊳} | c1(ρR) ≤ n}.

By Definition 4.8, the set Fn is finite, and we can effectively enumerate its elements

ρ1, . . . , ρk for k := |Fn|.

Also by definition, we know that if there exists a ρR ∈ RGX{π,∪,⊲⊳} with �ρR� =

�ρ�, there exists a ρ̂R ∈ RGX{π,∪,⊲⊳} with �ρ̂R� = �ρ� and ρ̂R ∈ Fn. In other words:

If �ρ� is expressible with regular spanners, it is expressible with a regular spanner

representation ρ̂ that satisfies the complexity bound n.

For all ρi ∈ Fn, we now semi-decide �ρ� �= �ρi�. In order to do this, we enumerate

all w ∈ Σ∗. In each step, if �ρ�(w) �= �ρi�(w) holds, we mark ρi as not equivalent

to ρ.

If all spanners in Fn are marked, we know that no regular spanner �ρR� with

�ρR� = �ρ� exists, and put out True. As Fn is finite, this point is reached in a

finite number of steps if there is no such spanner. On the other hand, if such a

spanner exists, the procedure will never terminate. Hence, we have defined a semi-

decision procedure for NR, which implies that CSp−Regularity is co-semi-decidable,

a contradiction to Theorem 4.6.

Hence, the blowup from RGX{π,ζ=,∪,⊲⊳} to RGX{π,∪,⊲⊳} is not bounded by any

recursive function. As above, we can replace each of this classes with a class with the

same expressive power; for example, we can replace RGX{π,∪,⊲⊳} with VAstk
{π,∪,⊲⊳},

VAset, or VAset
{π,∪,⊲⊳} (or, as the proof uses Boolean spanners, RGX or VAstk, or any

class between those).

894 Theory Comput Syst (2018) 62:854–898

We also consider the relative succinctness of representations of core spanners and

representations of their complements. For every spanner P , we define its comple-

ment compl(P) := ϒVars(P) \ P , and its hierarchical complement complH(P) :=

ϒH
Vars(P) \ P .

Theorem 4.11 Let c be a complexity measure for RGX{π,ζ=,∪,⊲⊳}. For every recursive

function f : N → N, there exists a ρ ∈ RGX{π,ζ=,∪,⊲⊳} such that

1. C(�ρ�) ∈ �RGX{π,ζ=,∪,⊲⊳}�, but

2. c(ρ) > f (c(ρ̂)) holds for every ρ̂ ∈ RGX{π,ζ=,∪,⊲⊳} with �ρ̂� = compl(�ρ�).

This also holds if we consider CH instead of C.

Proof It suffices to prove the claim for Boolean core spanner representations (hence,

we can focus on the case of C, and do not need to consider CH separately). For

convenience, we define the set of all Boolean core spanner representations

BCSR := {ρ ∈ RGX{π,ζ=,∪,⊲⊳} | SVars (ρ) = ∅}.

As preparation for the actual proof, we consider the following sets of Boolean core

spanner representations:

FIN := {ρ ∈ BCSR | L(ρ) is finite},

COF := {ρ ∈ BCSR | L(ρ) is co-finite}.

This proof heavily relies on various sets from the first two levels of the arithmetic

hierarchy (cf. Kozen [28]). Without going into further details, note that Σ0
1 is the

family of all sets that are semi-decidable (recursively enumerable), Π0
1 is the family

of all thats that are co-semi-decidable (co-recursively enumerable), and ∆0
1 = Σ0

1 ∩

Π0
1 is the family of all sets that are decidable.

Regarding the next level, Σ0
2 is the family of all sets that are semi-decidable when

using oracles for sets in Σ0
1 (or in Π0

1), Π0
2 is the family of all sets that are co-semi-

decidable when using such oracles. Finally, ∆0
2 = Σ0

2 ∩ Π0
2 is the family of all sets

that are decidable when using oracles for sets in Σ0
1 or in Π0

1 .

A central part of our reasoning in this proof is the following observation:

Claim 1 COF �∈ ∆0
2.

Proof As shown in Freydenberger [12], the xregexes that we used in the proof of

Theorem 4.6 also prove that co-finiteness for vstar-free xregexes is Σ0
2 -complete.

Hence, the proof of Theorem 4.6 also implies that COF is Σ0
2 -hard. This immedi-

ately implies COF /∈ ∆0
2; as otherwise, Σ0

2 = ∆0
2 would hold, which contradicts the

fact that the arithmetical hierarchy is a proper hierarchy. � (Claim 1)

Theory Comput Syst (2018) 62:854–898 895

Our goal is to use Claim 1 to obtain the contradiction on which this proof rests.

More precisely, we shall prove that any recursive bound on the size of the core span-

ner for a complement can be used to prove COF ∈ ∆0
2. One of the central parts of our

reasoning shall be the following result.

Claim 2 FIN ∈ Σ0
1 .

Proof We give the following semi-decision procedure for FIN. Let ρ ∈ BCSR.

Enumerate all finite sets S ⊂ Σ∗. For each set, we check the following two

conditions:

1. S ⊆ L(ρ)

2. L(ρ) ∩ (Σ∗ \ S) = ∅

Note that both conditions are decidable: As S is finite, the first condition can be

checked by deciding if w ∈ L(ρ) for each w ∈ S.

For the second condition, we first construct a regular expression α with L(α) =

(Σ∗ \ S). Then, we define the Boolean core spanner representation ρS := α ∩ ρ. As

L(ρS) = L(α) ∩ L(ρ) = (Σ∗ \ S) ∩ L(ρ), we can decide the second condition by

checking if L(ρS) = ∅ (which is decidable, according to Theorem 4.4).

If S satisfies both conditions, S = L(ρ) holds. Hence, L(ρ) is finite, and the

semi-decision procedure returns True. Furthermore, for every ρ ∈ FIN, the pro-

cedure will (after a finite number of enumerated finite sets) check the set S =

L(ρ), and then return True. Thus, FIN is semi-decidable, which is equivalent to

FIN ∈ Σ0
1 . � (Claim 2)

The next observation is not very deep; but in order to streamline the flow of our

later reasoning, we state it as a separate claim.

Claim 3 For every ρ ∈ BCSR, we have that ρ ∈ COF holds if and only if there is a

ρ̂ ∈ FIN with �ρ̂� = C(�ρ�).

Proof Let ρ ∈ BCSR. We begin with the if -direction. Assume there exists a ρ̂ ∈ FIN

with �ρ̂� = C(�ρ�). As ρ̂ ∈ FIN, the language L(ρ̂) is finite, which implies that

L(ρ) = Σ∗ \ L(ρ̂) is co-finite. Hence, ρ ∈ COF.

For the only-if direction, let ρ ∈ COF; i. e., L(ρ) is co-finite. Hence, Σ∗ \ L(ρ)

is finite, and regular. Thus, there exists a proper regular expression ρ̂ with L(ρ̂) =

Σ∗\L(ρ). As every proper regular expression is also a functional regex formula with

no variables (and, hence, Boolean), ρ̂ ∈ BCSR follows. This gives ρ̂ ∈ FIN, while

�ρ̂� = C(�ρ�) holds by our choice of ρ̂. � (Claim 3)

We now proceed to the main part of the proof, which uses these claims. Let c be a

complexity measure for the class RGX{π,ζ=,∪,⊲⊳}. Assume that there exists a recursive

function f : N → N such that for all ρ ∈ RGX{π,ζ=,∪,⊲⊳} for which C(�ρ�) is a

core spanner, there exists a ρ̂ ∈ RGX{π,ζ=,∪,⊲⊳} with �ρ̂� = C(�ρ�) and c(ρ) ≤

f (c(ρ̂)).

896 Theory Comput Syst (2018) 62:854–898

Our goal is to show that this assumption implies that COF is in ∆0
2. We prove this

by defining a decision procedure with oracles for Σ0
1 and Π0

2 on the input ρ ∈ BCSR

as follows. First, compute n := f (c(ρ)), and let

Rn := {ρ̂ ∈ BCSR | c(ρ̂) ≤ n}.

From Claim 3, we know that ρ ∈ COF if and only if there is a ρ̂ ∈ FIN with �ρ̂� =

C(�ρ�). Due to our assumption on f , this holds if and only if such a ρ̂ exists in Rn.

We now check for each ρ̂ ∈ Rn whether it satisfies these two criteria:

1. ρ̂ ∈ FIN

2. �ρ̂� = C(�ρ�)

Due to Claim 2, we know that FIN is in Σ0
1 . Hence, the first criterion can be decided

with a Σ0
1 -oracle.

Regarding the second criterion, note that �ρ̂� �= C(�ρ�) is semi-decidable (as

it suffices to find a w ∈ Σ∗ that disproves the equality). Hence, this criterion is

co-semi-decidable, which means that it can be decided with a Π0
1 -oracle.

If there exists a ρ̂ ∈ Rn that satisfies both criteria, the procedure returns True. In

this case, ρ ∈ COF holds by Claim 3; hence, this is correct.

If no such ρ̂ can be found among the (finitely many) elements of Rn, the procedure

returns False. As mentioned above, this is correct due to our assumptions on f .

As COF can be decided by using oracles for Σ0
1 and Π0

1 , we know that COF ∈ ∆0
2

must hold. This contradicts Claim 1. As our only assumption was the existence of the

recursive bound f , no such bound can exist.

In other words, there are core spanners where the (hierarchical) complement is also

a core spanner, but the blowup between their representations is not bounded by any

recursive function. Again, this holds for the other classes of representations as well.

This result has consequences to an open question of Fagin et al. One of the central

tools in [7] is the core-simplification-lemma, which states that every core spanner is

definable by an expression of the form πV SA, where A is a vset-automaton, V ⊆

SVars (A), and S is a sequence of selections ζ=
x,y for x, y ∈ SVars (A).

In addition to core spanners, Fagin et al. also discuss adding a set difference

operator \, and ask “whether we can find a simple form, in the spirit of the

core-simplification lemma, when adding difference to the representation of core

spanners”. It is a direct consequence of Theorem 4.11 that such a simple representa-

tion, if it exists, cannot be obtained effectively, as reducing the number of difference

operators can lead to a non-recursive blowup. While this observation does not prove

that such a simple form does not exist, it suggests that any proof of its existence

should be expected to be non-constructive.

5 Conclusions and Further Work

In Section 3, we have seen that core spanners can express languages that are defined

by patterns or by vstar-free xregexes. We used this in Section 4 to derive various lower

Theory Comput Syst (2018) 62:854–898 897

bounds on decision problems, even for subclasses of core spanner representations.

Note that in most of the cases, these lower bounds do not require the join operator,

and mostly rely on the string equality selection. This can be interpreted as a sign that

string equality (or repetition) is an expensive operator, in particular as similar results

have been observed for related models (e. g., [2, 12, 16]). On the other hand, Propo-

sition 4.2 demonstrates that even without string equality, join is also an expensive

operator. The authors take this as a sign that the search for good restrictions on core

spanners will probably have to combine restrictions on string equality and on join.

There is also reason to hope that the connections to patterns and word equations

can be beneficial for spanners: There is recent work on restricted classes of pat-

tern languages with an efficient membership problem (e. g., [10, 33]), which could

lead to subclasses of spanners that can be evaluated more efficiently. Furthermore, as

Theorems 3.12 and 3.13 show, core spanners and word equations with regular con-

straints are closely related. Recent work on word equations has also considered tasks

like enumerating all solutions of an equation. The employed compression techniques

(cf. [6]) might also be used to improve the evaluation of core spanners. In particular,

the ECreg-formulas that are constructed in the proof of Theorem 3.12 have the spe-

cial property that there is a variable xw (for w), and for every solution σ and every

variable x, we have that σ(x) is a subword of σ(xw).

Freydenberger [13] builds on this observation and introduces a fragment of ECreg

that has exactly the same expressive power as core spanners. The connection is even

stronger: As shown in [13], there exist polynomial time conversions between this

fragment and core spanner representations. It remains to be seen whether the con-

nection between spanners and word equations can also be used to find interesting

subclasses of core spanners that have friendlier upper bounds (in particular regarding

evaluation).

Also note that conversion from vstar-free regular expressions to core spanner rep-

resentations that is used for Theorem 3.21 can lead to an exponential increase in size.

As shown in [13], this blowup can be avoided by using a more involved construction.

Finally, while we only mentioned this explicitly in Section 4.2.1, note that most of

the other results in this paper can also be directly converted to the appropriate spanner

representations that use vset- and vstk-automata from [7].

Acknowledgements We thank Florin Manea for his suggestion to use word equations with regular con-

straints, and Thomas Zeume for reporting a list of typos. We also thank the anonymous reviewers of both

this paper and the conference version for their feedback.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0

International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, dis-

tribution, and reproduction in any medium, provided you give appropriate credit to the original author(s)

and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Angluin, D.: Finding patterns common to a set of strings. J. Comput. Syst. Sci. 21, 46–62 (1980)

2. Barceló, P., Libkin, L., Lin, A.W., Wood, P.T.: Expressive languages for path queries over graph-

structured data. ACM Trans. Database Syst. 37(4), 31 (2012)

http://creativecommons.org/licenses/by/4.0/

898 Theory Comput Syst (2018) 62:854–898

3. Barceló, P., Muñoz, P.: Graph Logics with Rational relations: The Role of Word Combinatorics. In:

Proc. CSL-LICS 2014 (2014)

4. Bremer, J., Freydenberger, D.D.: Inclusion problems for patterns with a bounded number of variables.

Inform. Comput. 220–221, 15–43 (2012)

5. Câmpeanu, C., Salomaa, K., Yu, S.: A formal study of practical regular expressions. Int. J. Found

Comput. Sci. 14, 1007–1018 (2003)

6. Diekert, V.: Makanin’s Algorithm. In: Lothaire, M. (ed.) Algebraic Combinatorics on Words, chapter

12, pages 387–442. Cambridge University Press (2002)

7. Fagin, R., Kimelfeld, B., Reiss, F., Vansummeren, S.: Document spanners: A formal approach to

information extraction. J. ACM 62(2), 12 (2015)

8. Fagin, R., Kimelfeld, B., Reiss, F., Vansummeren, S.: Declarative cleaning of inconsistencies in

information extraction. ACM Trans. Database Syst. 41(1), 6 (2016)

9. Fernau, H., Manea, F., Mercas, R., Schmid, M.L.: Pattern Matching with variables: Fast Algorithms

and New Hardness Results. In: Proc. STACS 2015 (2015)

10. Fernau, H., Schmid, M.L.: Pattern matching with variables: A multivariate complexity analysis. Inf.

Comput. 242, 287–305 (2015)

11. Fernau, H., Schmid, M.L., Villanger, Y.: On the parameterised complexity of string morphism

problems. Theory Comput. Sys. (2015)

12. Freydenberger, D.D.: Extended regular expressions: Succinctness and decidability. Theory Comput.

Sys. 53(2), 159–193 (2013)

13. Freydenberger, D.D.: A Logic for Document Spanners. In: Proc ICDT (2017). Accepted

14. Freydenberger, D.D., Holldack, M.: Document spanners: From Expressive Power to Decision

Problems. In: Proc. ICDT 2016, p. 2016

15. Freydenberger, D.D., Reidenbach, D.: Bad news on decision problems for patterns. Inform. Comput.

208(1), 83–96 (2010)

16. Freydenberger, D.D., Schweikardt, N.: Expressiveness and static analysis of extended conjunctive

regular path queries. J. Comput. Syst. Sci. 79(6), 892–909 (2013)

17. Friedl, J.E.F.: Mastering Regular Expressions. O’Reilly Media. 3rd edition (2006)

18. Garey, M.R., Johnson, D.S.: Computers and intractability. W. H. Freeman and Company (1979)

19. Ginsburg, S., Spanier, E.: Semigroups, presburger formulas, and languages. Pac. J. Math. 16(2), 285–

296 (1966)

20. Grohe, M., Flum, J.: Parameterized complexity theory. Texts in Theoretical Computer Science.

Springer (2006)

21. Hartmanis, J.: On gödel speed-up and succinctness of language representations. Theor. Comput. Sci.

26(3), 335–342 (1983)

22. Holzer, M., Kutrib, M.: Descriptional complexity–an introductory survey. Sci. Appl. Language

Methods 2, 1–58 (2010)

23. Ibarra, O.H., Pong, T.-C., Sohn, S.M.: A note on parsing pattern languages. Pattern Recogn. Lett.

16(2), 179–182 (1995)

24. Jiang, T., Kinber, E., Salomaa, A., Salomaa, K., Yu, S.: Pattern languages with and without erasing.

Int. J Comput. Math. 50, 147–163 (1994)

25. Jiang, T., Salomaa, A., Salomaa, K., Yu, S.: Decision problems for patterns. J. Comput. Syst Sci. 50,

53–63 (1995)

26. Karhumȧki, J., Mignosi, F., Plandowski, W.: The expressibility of languages and relations by word

equations. J. ACM 47(3), 483–505 (2000)

27. Kozen, D.: Lower Bounds for Natural Proof Systems. In: Proc. FOCS 1977, p. 1977

28. Kozen, D.: Theory of computation. Springer-Verlag (2006)

29. Kutrib, M.: The phenomenon of non-recursive trade-offs. Int. J. Found. Comput. Sci. 16(5), 957–973

(2005)

30. Lothaire, M.: Combinatorics on Words. Cambridge University Press (1997)

31. Ohlebusch, E., Ukkonen, E.: On the equivalence problem for E-pattern languages. Theor. Comput.

Sci. 186, 231–248 (1997)

32. Parikh, R.J.: On context-free languages. J. ACM 13(4), 570–581 (1966)

33. Reidenbach, D., Schmid, M.L.: Patterns with bounded treewidth. Inform. Comput. 239, 87–99 (2014)

34. Stephan, F., Yoshinaka, R., Zeugmann, T.: On the Parameterised Complexity of Learning Patterns. In:

Proc. ISCIS 2011, p. 2011

	Document Spanners: From Expressive Power to Decision Problems
	Abstract
	Introduction
	Related Work
	Structure of the Paper

	Preliminaries
	Regexes (Extended Regular Expressions)
	Document Spanners

	Expressibility Results
	Pattern Languages
	Word Equations and Existential Concatenation Formulas
	Xregexes

	Decision Problems
	Spanner Evaluation
	Static Analysis
	Minimization and Relative Succinctness

	Conclusions and Further Work
	Acknowledgements
	Open Access
	References

