Documentation for the CHIP
Computer System (Version 1.1)*

Ozalp Babaoglu
Mimi Bussan
Rogerio Drummond
Fred B. Schneider

TR 83-584
December 1983
(Revised August 1986)

Department of Computer Science
Cornell University
Ithaca, NY 14853

* Partial support for this work was provided by the National Science Foundation under Grants
No. MCS82-10356 and MCS81-03605 and the Government of Brazil through a Fellowship to
the third author.

Documentation for the
CHIP Computer System (Version 1.1)

Ozalp Babaoglu
Mimi Bussan
Rogerio Drummond
Fred B. Schneider

Department of Computer Science
Cornell University
Ithaca, New York 14853-7501

ABSTRACT

CHIP (Cornell Hypothetical Instructional Processor) is a computer system
that was designed as an educational tool for teaching undergraduate
courses in operating systems and machine architecture. This document
constitutes the sole reference manual for the CHIP computer system. A
simulator for this hypothetical system exists under the UNIX? operating sys-
tem. The CHIP architecture includes dynamic memory mapping suitable for
implementing virtual memory, eight interrupt priority levels, memory-
mapped input/output and two modes of processor operation. The central
processor of CHIP is compatible with the PDPf-11 at the user-mode instruc-
tion level. Therefore, any non-privileged code written for the PDP-11 can
be executed on CHIP. Several new user and kernel-mode instructions have
been added to CHIP for increased efficiency. The CHIP simulator also sup-
ports input/output devices such as terminals, drums, disks and printers.
All interactions with CHIP take place through an operator’s console being
simulated on a terminal. Users can examine/alter memory locations, set
breakpoints, detect the referencing of specified memory locations, start/stop
execution, etc. through a console command language. Program global vari-
ables and functions can be referred to by symbolic name with the mapping
to absolute addresses being performed automatically by the system. The
software support environment for CHIP includes a C compiler, assembler
and loader.

August 19, 1986

* Partial support for this work was provided by the National Science Foundation under
Grants No. MCS82-10356 and MCS81-03605 and the Government of Brazil through a Fel-
lowship to the third author.

+ UNIX is a Trademark of AT&T Bell Laboratories.
$ PDP is a Trademark of Digital Equipment Corporation.

Copyright © 1983 by Ozalp Babaoglu

Chapter One
Principles of Operation

1. Introduction

CHIP (Cornell Hypothetical Instructional Processor) is based on the
architecture of the DEC PDP-11 and the IBM 370. Most of the instructions
are borrowed from the DEC machine, while the interrupt architecture and
memory mapping mechanism have their origins in the IBM architecture.
The new machine supports dynamic memory mapping, eight interrupt prior-
ities, memory-mapped /O devices and two modes of operation: KERNEL and
USER.

The CHIP system has been implemented on a VAX under UNIX. Also
simulated is a subset of the I/O devices that are to be available with the
CHIP system.

This document, together with a processor handbook for any model of the
PDP-11 family, forms a complete description of the CHIP machine.

Throughout this manual the following notational conventions are used:
* Words being defined are italicized.

+ Field F of register R is denoted by R.F.

* Bits of storage units are numbered right-to-left starting with 0.

* The i-th bit of a storage unit named N is denoted by NIil.

*+ The contents of a storage unit named N is denoted by (N).

* Memory addresses and operation codes are given in octal.

2. Major Components

As shown in Figure 1, the CPU and /O devices are connected through
main memory. Device controllers, which act as a communication channel
between devices and memory, transfer data directly to or from memory
without CPU intervention. The CPU is interrupted by a device only upon
the completion of an I/O operation.

3. Machine Registers

This section describes the registers internal to the CPU. Device regis-
ters, which are used to control [/O devices, are discussed in §8. Each CPU
register can hold a 16-bit quantity called a word.

The following registers form the Processor State: RO, R1, R2, R3, R4,
R5, SP, PC, PS1, PS2, STA and STL. They can be loaded and stored as a

0
Trap areas
0220
Interrupt Controller Device
areas
01400
Device
registers
Controller Device
— 02000
CPU —— MEMORY
Controller Device
0177777

Figure 1. Major components of CHIP

block of twelve words in the order in which they are listed above by using
the LDST (load state) and STST (store state) instructions, respectively.
Registers RO-R5 are available for general purpose intermediate data storage.
Register SP is the Stack Pointer and PC is the Program Counter. As in the
PDP-11, the stack of CHIP grows from high towards lower memory addresses.

The processor status registers in CHIP, PS1 and PS2, are shown below:

PS1 | INTMASK KU | M | W | | N| Z |V]| C|
| NS [U [N — p—
15 8 7 6 5 4 3 2 1 0

PS2 | . IT Code I
| |
15 0

FIELD FUNCTION

INTMASK if PS1.INTMASKIi]=1, the i-th priority level interrupts are

disabled

KU if 1, the processor is in KERNEL mode; USER mode otherwise

M if 1, memory Mapping is enabled

w if 1, the CPU ceases to execute until an interrupt occurs

N set to 1 if last instruction executed yielded a Negative number;
0 otherwise

Z set to 1 if last instruction executed yielded a Zero result;
0 otherwise

\'"4 set to 1 if last instruction executed caused arithmetic overflow;
0 otherwise

C set to 1 if last instruction executed caused a Carry;

0 otherwise

IT Code identifies the cause of the last Interrupt or Trap

Table 1. Processor status register fields

The setting of the condition codes N, Z, V and C are identical to the respec-
tive codes in the PDP-11 and the reader is referred to the PDP-11 Processor
Handbook for a detailed description.

The STA (Segment Table Address) register contains the physical
address of the Segment Table currently in use. It is used only when memory
mapping is in effect, i.e., PS1.M=1 (see §6 for details).

The STL (STack Limit) register contains the lowest address to which
the stack can extend before causing a trap (see §7.1 for details).

TDCK (Time of Day ClocK) is a double-word register containing the
elapsed time, in microseconds, since power-up. Its value can be accessed by
executing the STCK (Store Time of day ClocK) instruction.

IT (Interval Timer) is also a double-word register. It is decremented by
one each microsecond. When the value reaches zero, a Clock interrupt
occurs. Register IT can be set by the LDIT (LoaD Interval Timer) instruc-
tion.

4. Modes of Operation

The CHIP processor can operate in two modes: USER and KERNEL. The
mode of operation is determined by the setting of the PS1.KU bit. To
change the processor mode, a new processor state must be loaded. This can

be done by executing LDST or as the result of a trap or interrupt.

In USER mode, execution of Privileged Instructions is illegal and causes
a program trap. All instructions are executable in KERNEL mode.

4.1. USER Mode

Most of the USER-mode instructions are as in the PDP-11. However,
several new ones have been implemented, and these are described below.
The definitive document for the semantics of the PDP-11 instructions that
have been incorporated into CHIP is the book The Design and Analysis of
Instruction Set Processors, M. Barbacci and D. Sieworek, McGraw-Hill, 1982,
which over rides any discrepancies that may arise between it and a PDP-11
processor handbook. For completeness, all of the CHIP instructions are listed
in the Appendix. Note that the floating point instructions of the PDP-11 are
not implemented in CHIP. In the following descriptions, the “Usage” field
indicates how the instructions can be invoked through C program state-
ments to be compiled with the pee compiler (see Chapter 2 for details).

4.2. New USER Instructions

STCK STore time of day ClocK
Opcode: 107100
Operation: addr <« (SP)
(addr) < most significant word of TDCK
(addr +2) « least significant word of TDCK
Description: The contents of TDCK are stored in the two consecutive words
pointed to by the argument on the top of the stack.
Usage: long time;
STCK(&time);

SYS Cause a system call trap

Opcode: 104400 to 104777

Operation: PS2 « system call number
(000140).01d <« current processor state
processor state registers < (000140) New

Description: Executing SYS causes a system call trap. First, PS2 is loaded
with the number of the system call (bits 0-7 of the opcode).
Then, the current processor state is saved in the system call
trap old area and a new processor state is loaded from the sys-
tem call trap new area.

Usage: SYS00; SYS10; SYS2(); ... SYS255();

INPRG Initialize program
Opcode: 107200
Operation: tmp « (SP)
(SP) « PC
PC « tmp
Description: A restricted form of the “JSR” instruction. Usually, used only
during program start up to invoke the entry point main.
Usage: main();
INPRG(main);

CSV Function prologue

Opcode: 107300

Operation: | (SP) « R5
R5 « SP
} (SP) « R4
J (SP) « R3
} (SP) « R2 |

Description: The contents of the general purpose registers R2-R5 are saved
on the stack and R5 is established as the frame pointer. This
is consistent with the C function calling convention.

Usage: CSV);

CRET Function epilogue
Opcode: 107400
Operation: SP « R5-6
R2 « (SP) 1
R3 « (SP) 1
R4 « (SP) 1
R5 « (SP) 1
PC < (SP) 1
Description: The registers saved by CSV are restored and control is
returned to the caller.
Usage: CRET();

MOVBCK

Move block of bytes

Opcode: 107000

Operation:

Description:

Usage:

src < (SP)

dst « (SP)+2

size « (SP)+4

(dst+1) « (src+i) for i=0, 1, 2, ..., size-1

A block of size bytes is moved from src to dst. The maximum
block size that can be moved is 512 bytes.

int size;

char *src, *dst;

MOVBCK(src, dst, size);

4.3. KERNEL Mode

In KERNEL mode, privileged instructions as well as USER mode instruc-
tions are executable. The privileged instructions are described here.

LDST LoaD processor STate
Opcode: 007000

Operation:

Description:

Usage:

addr < (SP)

processor state registers « (addr+i), i=0,2,...,22

The processor state registers are loaded from the state stored in
the 12 consecutive words pointed to by the argument on the top
of the stack. Loading takes place in the following order: RO-
R5, SP, PC, PS1, PS2, STA and STL.

state_t newstate;

LDST(&newstate);

STST STore processor STate
Opcode: 007100

Operation:

Description:

Usage:

addr < (SP)

(addr +i) < current processor state, i=0,2,...,22

The current processor state is stored in the 12 consecutive
words pointed to by the argument on the top of stack. Storing
takes place in the following order: RO-R5, SP, PC, PS1, PS2,
STA and STL.

state_t savearea;

STST(&savearea);

LDIT LoaD Interval Timer
Opcode: 007200
Operation: addr « (SP)
most significant word of IT « (addr)
least significant word of IT « (addr+2)
Description: Register IT is loaded with the contents of the double word
pointed to by the argument on the top of stack.
Usage: long interval;
LDIT(&interval);

LDIM LoaD Interrupt Mask

Opcode: 007300

Operation: PS1.INTMASK <« byte(SP)

Description: PS1.INTMASK is loaded with the least significant byte of the
argument on the top of stack.

Usage: char mask;
- LDIM(mask);

LDSTL LoaD STack Limit register

Opcode: 007400

Operation: STL « (SP)

Description: The STL register is loaded with the contents of the top of the

stack.
Usage: int limit;
LDSTL(limit);
HALT Halt

Opcode: 000000
Description: After execution of the HALT instruction, the CPU has stopped
executing, the PC is pointing to the instruction following the

HALT, and the console has been given control.
Usage: HALTYO);

5. Memory

The CHIP memory is byte addressable and may contain up to 64K bytes.
A word in CHIP memory is two bytes long and is divided into a high byte and
a low byte. The low bytes of words are stored at even-numbered locations
and the high bytes at odd-numbered locations. An even address can denote
a word or a byte, depending upon the context. An even address is said to be
word aligned, since it refers to the low byte of a word.

n | low byte even address

| high byte | low byte |

I

I

|
| I n+l | high byte | odd address

I

I

I
I
I
I
15 8 17 0 |
I

Figure 2. A CHIP word and its representation in memory

Instructions in memory must be word aligned. An attempt to execute
an instruction starting at an odd address causes a Program Trap. Addresses
of operands must also be word aligned, except for byte operands in byte
instructions.

Certain memory locations are reserved for special purposes. The first
1024 bytes of physical memory are used for the Interrupt and Trap Areas as
described in §7 and for the device registers as described in §8.

6. The Memory Management System

A CHIP address can be interpreted either as a physical address or as a
virtual address. An address is interpreted as a physical address whenever
the memory mapping mechanism is off (i.e. PS1.M=0) and interpreted as a
virtual address otherwise (i.e. PS1.M=1). In CHIP, both the physical and
virtual spaces are 64K bytes long with addresses ranging from 0 to 177777.
The virtual address space is divided into 512-byte units called pages and the
physical address space is divided into 512-byte units called page frames.

When memory mapping is in effect, a virtual address is automatically
mapped into a physical address. The Segment Table Address register, STA,
contains the physical address of a Segment Table, which is composed of four

entries. Each entry is two words long and is called a Segment Descriptor
(SD).

SD

S D

SD

SD

Figure 3. Segment table

A segment descriptor has the following format:

15 8 7 6 5 4 0
SD1 | unused | P|E|W]| R | length (Len) |
I [P P — |
SD2 | page table address (P T A) |
I — I
FIELD MEANING
Len Maximum valid page number within segment

(one less than actual segment size)

E,W.R Execute, Write and Read access rights for the segment, respectively;
if 1, the corresponding access right is permitted

P Presence bit; if 0, a missing segment trap is generated

STA physical address of the corresponding page table

Table 2. Segment descriptor fields

A page table can have up to 32 entries. One less than its actual size is
given by the SD1.Len field as defined above. Each entry in a page table is
one word long and is called a page descriptor (PD).

SD1 | | Len |
| I I
SD2 | PTA [-----nn--- >| PD | |
I I I | |
| PD | |
I | |
| | Len
I | |
I | |
I | |
| PD | |
I | -

Figure 4. Page table

The format of a page descriptor is given below:

PD | P| M| R | unused | PageFrame |
| | ——] | |

15 14 13 12 7 6 0
FIELD MEANING
pP Presence bit; if 0, a missing page trap is generated
M Modified bit; set to 1 by the processor whenever the page is modified
R Reference bit; set to 1 whenever the page is read, written or executed

PageFrame if the Presence bit is set, contains the number of the page frame
to which this page is mapped; otherwise undefined

Table 3. Page descriptor fields

A page in CHIP must be aligned at an address that is a multiple of 512
bytes. Consequently, the real address of any page is a 16-bit number with
the least significant nine bits equal zero. Therefore, the seven bits of
PD.PageFrame are sufficient to uniquely identify a page frame.

6.1. Address Mapping
A virtual address in CHIP is composed of three fields:

| Segment No. | Page No. | byte offset |
| ___

—
15 14 13 9 8 0

Figure 5. Virtual address format

Given a virtual address va, the corresponding physical address is calcu-
lated as follows:

1. The contents of STA (Segment Table Address register) is added to
va.Seg, resulting in the physical address of a segment descriptor (sd) in
the segment table.

sd := (STA +va.Seg)

10

Step Condition Condition Name

2 sd.P=0 Segment Missing
2 va.Page>sd.Len Invalid Page number
2 A read, write or execute access is Access Protection Violation

attempted when the corresponding
sd.R, sd.W or sd.E is equal to 0.

3 pd.P=0 Page Missing

Table 4. Sources for Memory Management traps during memory mapping

2. If the page table for the segment sd is marked as present, i.e. sd.P=1,
and if va is a valid page number, i.e. va.Page =< sd.Len, and the current
access mode does not violate the access rights of the segment, then
sd.PTA is added to va.Page, resulting in the physical address of a page
descriptor (pd). Otherwise, a Memory Management Trap occurs.

pd := (sd.PTA +va.Page)

3. If the page is marked as present, i.e. pd P=1, the physical address is
calculated by adding pd.PageFrame*512 to va.offset. If the page is not
present, a Memory Management Trap occurs.

pa := pd.PageFrame*512 + va.offset

The Memory Management Traps that might occur during the mapping
are summarized in Table 4 in the order in which the conditions are tested.

The mapping of a virtual address va into a physical address pa can be
expressed as:

pa :=((STA +va.Seg).PTA +va.Page).PageFrame*512 + va.offset

11

Segment Table Page Table Manwory

| STA |-->| | | -] [| |
[—| | | I | va.Page I R
| |va.Seg | | I -->| 512 |]
I || [| | va.
— - B | || | | byte |offset
sd| | Len | || — I P S .
—| I | pd| |Page I | pa] — |
[— | IAddress|__*512 | | page |
| | — | |
| | | |
l | | I
| | | I
| |— | |

Figure 6. Memory mapping

7. The Interrupt/Trap System

The sequence of instructions being executed by the CPU can be altered
by two types of events. Traps are generated by the processor as the result of
instruction execution. Examples include Illegal Operation Code, Stack
Overflow, Zero Divide and Page Fault. Interrupts are due to sources exter-
nal to the processor, such as I/O devices.

7.1. Traps

Traps are grouped into three categories:

Program
Memory Management (MM)
System Call (SYS)

MM traps are generated by the memory management system as
described in §6.1. SYS traps are generated by software. They occur as a
consequence of executing a SYS instruction (opcodes from 104400 to
104777). Program traps are caused by encountering abnormal conditions
during instruction execution.

MM and Program traps always occur during execution of an instruction,
as opposed to SYS traps, which occur as a result of executing a SYS instruc-
tion.

SYS instructions can provide a way for a user to communicate with and
request services from an operating system. For example, in order to write to

12

Trap Category | Trap Area Code loaded in Condition
Addresses | PS2[15..8] PS2[7..0}
0 Illegal Opcode
1 Un-supported Instruction
2 Privileged Instruction
3 I1l Instruction
Program 000000 0 4 Odd Address
5 Non-page Alignment
6 Non-existent Memory
7 Stack Limit Yellow
8 Stack Limit Red
9 Zero Divide
0 segment and | Access Protection Violated
Memory 000060 1 page number | Page Missing
Management 2 of virtual Invalid Page Number
3 . address Segment Missing
System Operation Codes
SYS 000140 0 call from 104400
number to 104777

Table 5. Trap vector locations and condition codes

a disk device a user may execute a particular SYS instruction.

Since the MM and Program traps may occur anywhere during instruc-

tion execution, there must be a mechanism for restoring the state of the pro-
cessor and memory to the values they had before the instruction was exe-

cuted after the trap is handled. Fortunately, CHIP does this automatically,

For each of these three categories of traps, there is a reserved trap area

ensuring that when the trap is signaled, the state of the machine is as it
was before the offending instruction was executed.

in a predefined location in memory. These areas are 24 words long and logi-

cally subdivided into two consecutive regions of 12 words each. The first of

these regions is called Old and the second New. Both of them contain a pro-

cessor state.

13

When a trap occurs, the CPU services the trap by performing the follow-
ing sequence of operations:

1. PS2IT Code is loaded with a code identifying the trap as shown in
Table 5.

2. The current processor state is stored into the Old region of the
corresponding trap area.

3. A new processor state is loaded from the New region of the correspond-
ing trap area.

The following is a brief description of causes for the various Program
traps:

Illegal Operation Code: The operation code of the current instruction is
not legal.

Unsupported Instruction: The current instruction is a valid PDP-11 instruc-
tion but is not supported in CHIP.

Privileged Instruction: The current instruction is a privileged instruction
but the processor is running in USER mode.

Il Instruction: The current instruction is ill-formed. The follow-
ing can provoke this trap:

+ JMP or JSR with register mode addressing
» DIV with an odd register number
« MOVBCK with block size greater than page size

Odd Address: The address of the current instruction, i.e. the
contents of PC, is an odd number or the current
instruction refers to an odd location when a word
address is required.

Non-page Alignment: The current instruction refers to a location whose
address is not on a page boundary (not a multiple
of 512) where this is required.

Non-existent Memory: A physical memory address beyond the available
physical memory is encountered.

14

Stack Limit Yellow:

Stack Limit Red:

Zero Divide:

7.2. Interrupts

The top of the current stack is within 16 bytes of
overflow. More precisely, STL+4 < SP <
STL+16. The offending instruction is not backed
up since this trap occurs at the end of the instruc-
tion cycle.

Execution of the current instruction would make
SP = STL + 4. Thus, either the current stack
will exceed the stack limit or will be within two
words of this limit.

The current instruction is an arithmetic division
in which the denominator has value zero.

An interrupt is signaled with an interrupt request. There are eight
interrupt priority levels (numbered 0 through 7), each of which can be
enabled or disabled by using the LDIM instruction to modify the interrupt
mask field of PS1. Each device is associated with one of these levels at sys-
tem configuration time. Zero or more devices can be associated with the
same priority level. Among the unmasked interrupt requests, the one with
the highest priority is serviced first.

For each priority level, there is an interrupt area starting at a
predefined location in memory. These areas are similar to the trap areas
presented in the previous section.

Priority Interrupt Code loaded in
Area Address | Interrupt Type | PS2[15-6] PS2[5-3] PS2[2-0]
0 000220 Terminal 0 0 Terminal No.
1 000300 Printer 0 1 Printer No.
2 000360 Disk 0 2 Disk No.
3 000440 Drum 0 3 Drum No.
4 000520 Not Used
5 000600 Clock 0 5 0

Table 6. Interrupt vector locations and interrupt codes

15

In CHIP the five distinct sources of interrupts are:

Clock
Drum
Disk
Printer
Terminal

Table 6 shows their priority assignments and their effects on PS2.IT
Code.

8. Input/Output Devices
The following devices are supported by CHIP:

Terminals (at most 5)
Printers (at most 2)
Disks (at most 4)
Drums (at most 4)

Associated with each device are several Device Registers. These regis-
ters reside in the second half of the second physical page of memory and can
be accessed as ordinary memory words. The starting address of the device
registers for each device is shown in Table 7.

In order to request an operation from a device, its Operation register is
loaded with a code for the desired operation. This triggers the device to per-
form the specified operation. In carrying out the operation, the device can
read and/or write to memory without interrupting the CPU. When the dev-
ice finishes performing an operation, it places status information into the
Status register and makes an interrupt request. Interpretation of the

Device Starting Address | Range of i
Terminal(i) 01400 + 020%*i 0<i<4
Printer(i) 01520 + 020%i 0=i=1
Disk(i) 01560 + 020%*i 0=<i=<3
Drum(i) 01660 + 020%*i 0<i<3

Table 7. Device register locations

16

various completion codes are given in Table 8.

If the Operation register is loaded while an operation is already in pro-
gress, the corresponding device behaves as if the first operation was never
requested and starts the new request as described above. Other registers of

the device can be read or loaded without affecting the device’s current opera-
tion.

If a request is made to a device that does not exist in the current
configuration, the request fails with the “Non-Existent Device” status code.

8.1. Disk

Each disk device has UPTRACK + 1% tracks (numbered 0 to UPTRACK)
and each track has UPSECTOR +1 sectors (numbered 0 to UPSECTOR) of
512 bytes. Disks can be read/written on a per sector basis. Each Disk has
four registers. They are shown in Table 9 in order of increasing address.

The Status register is set upon completion of a Disk operation; the other

registers are set by the user. Operations performed by the Disk have the
codes as indicated in Table 10.

Condition Relevant Devices | Code
Successful Completion | All 0
Hardware Failure All 1
Invalid Operation All 2
Invalid Buffer All 3
Invalid Length Printer, Terminal 4
Invalid Track No. Disk 5
Invalid Sector No. Disk, Drum 6
End of Input Terminal 7
Non-Existent Device All 8
Device Not Ready Printer,Terminal 9

Table 8. Status register codes

* System configuration parameters such as the number of devices of each type and dev-
ice capacities are defined by constants within the simulator and have the same names as
given here. To change any one of them, it suffices to edit the configuration file and recom-
pile the system.

17

Operation

Disk Address
Buffer Address
Status

Table 9. Disk device registers positions

Operation Code

Disk Read 0
Disk Write 1
Disk Seek 2

Table 10. Disk device operation codes

A Disk Seek moves the disk head to the track number specified in the
Disk Address register. A Disk Read operation reads a sector of the current
track and stores it in the 512-byte buffer whose first location address is
given in the Buffer Address register. Similarly, a Disk Write operation
writes the contents of the 512-byte buffer addressed by the Buffer Address
register onto a sector of the current track. For a Disk Read or Write, the
sector number is always taken from the Disk Address register. The Buffer
Address register always contains a physical address.

8.2. Drum

Drums are mass storage devices with a read/write head for each track.
Each Drum has UPDRUMSEC+1 512-byte sectors (numbered 0 to
UPDRUMSEC) and is read/written on a per sector basis. Drums have the
same registers as Disks, but only read and write operations (with the same
codes as the Disk) are allowed. The status register is loaded with the same
codes as for the Disk except for the lack of the “Invalid Track Number” code.

18

8.3. Printer

Four device registers are associated with printers:

Operation
Length

Buffer Address
Status

Table 11. Printer device registers

The printer performs only one operation—Print Line (operation code 1)—
which prints the string of bytes (up to UPAMOUNT bytes in length) pointed
to by the Buffer Address register. A ‘New Line’ character is appended to the
string. An attempt to write more than UPAMOUNT bytes in a single opera-
tion results in the “Invalid Length” completion code to be returned without
performing any I/O. All output written to printer number i is collected in
the file named printeri in the current directory. That is, output for printer
number 0 will be in the file printer0, printer number 1 in the file printerl,
etc. If the appropriate file cannot be created in the current directory (due to

lack of permission), the operation terminates with the “Device Not Ready”
status code.

The Length register contains the number of bytes, starting at the Buffer
Address, to be printed. The device completion Status codes are as given in
Table 8.

8.4. Terminal

Terminals can be written to or read from one line at a time. Each ter-
minal has the same registers as a Printer. Terminal Status register codes
are as given in the Table 8. A Terminal Write operation (code 1) is per-
formed in exactly the same way as a Printer Print operation. All output
written to terminal number i is collected in the file named termouti in the
current directory. As with the printers, if the appropriate file cannot be

created in the current directory, the operation terminates with the “Device
Not Ready” status code.

A Terminal Read operation (code 0) reads a string of bytes (from the file
named fermini in the current directory) up to a ‘New Line’ character (octal
012) or UPAMOUNT bytes, whichever occurs first, and stores them in the
buffer pointed to by the Buffer Address register. The ‘New Line’ character
is not considered to be part of the string. The actual number of bytes read is

19

stored in the Length register and the “Successful Completion” code is
returned. Subsequent reads from the same terminal will continue to read
from the point where the last read operation left off. The last read operation
which exhausts the available data associated with the terminal returns the
“End of Input” rather than the “Successful Completion” status code (as
usual, the Length register will contain the count of characters read). Subse-
quent read operations will continue to return the “End of Input” status. If
on a read operation from terminal i, the device is not ready for input (the
file termini does not exist in the current directory), the status register is
loaded with the “Device Not Ready” code.

20

Chapter Two
User Interface

1. Introduction

The CHIP simulator currently runs under the UNIX operating system.
To facilitate its use, a C compiler, an assembler, a loader and a console are
available. This chapter describes these utility programs. It is organized as
follows. Section 2 describes how to compile, generate assembler listings for
and load programs that are targeted for CHIP. Sections 3, 4 and 5 describe
the console, the primary means by which the user interacts with the CHIP
computer. In section 3 the conditions that activate the console are described.
Section 4 describes the console screen itself and Section 5 describes the con-
sole command language.

2. Compiling C Programs and Starting up CHIP

The C compiler for CHIP, called pcc, is a slightly modified PDP-11 C
compiler. The command line syntax for this compiler is very similar to that
of the compiler for the PDP-11. Consult the manual page for details. There
are several differences between a C program running in the PDP-11 and one
running in the CHIP environment:

* The load module produced by pcc (the a.out file) has the program
origin at address 2000 (octal) rather than 0

* The symbolic name start is associated with address 2000

* The program prologue causes a transfer of control to the function
main() through the INPRG instruction

« No library functions that request UNIX system services (e. g,
printfl), scanfl), open(), etc.) can be used.

The symbolic names etext and edata are synonyms for the last location
in the program (text) and data areas, respectively.

The CHIP simulator is invoked by typing the UNIX command line
chip [-s] [file]

where file is an optional argument naming an object file in PDP-11 format
produced by the pcc command. If the object file argument is omitted, the
a.out file in the current directory is taken as the default. If the -s flag is
present, the symbol table for the object file is written to the file file.symbols
in the current directory. As part of its initialization phase, the simulator

21

loads the program and initialized data contained in the object file into physi-
cal memory starting at location 2000 and initializes the processor state as

follows:

* the Program Counter (PC) points to the first executable instruction,

ie., PC=2000

» the Stack Pointer (SP) points to the first word beyond the end of

available physical memory

* the Stack Limit Register (STL) points to the first word of the last

page of available physical memory

* Processor Status Word 1 (PS1) indicates that all interrupts are

masked, memory mapping is not in effect and the machine is in KER-
NEL mode

+ all other registers are set to 0.

3. Control Transfer

When the chip command is typed, the machine enters the IPL (Initial
Program Load) state and the console is in command input mode. Thus, it is

ready to accept commands. In order to begin program execution, the user
types run.

During program execution, six conditions cause the processor to stop
and the console to enter command input mode. They are:

Halt:

Wait:

Bkpt:

Susp:

The machine executes a HALT instruction.

The machine enters a Wait state. This occurs when the Wait bit of
Processor Status Word 1 (PS1.W) is turned on and there are no

unmasked interrupt requests and no possible sources of unmasked
future interrupts.

A breakpoint is encountered. Breakpoints are marked instructions
in the program. To set a breakpoint, the user types bi (for break-
point insert) and a list of memory addresses, specified as byte offsets
from symbolic function names, denoting the locations of the break-

points. The processor stops just before the marked instruction is exe-
cuted.

A suspect variable is about to be referenced. Suspects are marked
addresses in memory. To mark a location as suspect, the user types
si (for suspect insert) and a list of symbolic names or addresses. The

22

SS:

Stop:

machine stops just prior to executing the instruction that will gen-
erate a reference to the suspect location.

The machine is single stepping. In this case, execution halts after
each instruction. This occurs when the pace parameter of the console
is set to 0. Higher values of this parameter cause execution speed to
increase. When pace has its maximum value 9, the machine runs at
full speed. To assign a new value to pace, the user types p and an
integer between 0 and 9.

Execution is manually stopped. This is done by typing a *"C’ (type ‘¢’
while holding down the ‘Control’ key). The machine stops upon com-
pletion of the current instruction.

4, The Console Screen

When the simulator is invoked, the wuser’s terminal becomes an
operator’s console. The CHIP console screen consists of several fields and is
organized as follows:

* at the top of the screen is a line of status information

» near the bottom of the screen is the command input line with *’
(colon) as the prompt character

» just below the command input line is an error message line

* between the status and command input lines is the contents of a
virtual screen.

There are three different virtual screens:

Static Screen: Contains addresses of all active breakpoints and suspects.

Breakpoints are on the left half of the window and
suspects on the right half.

Dynamic Screen: Contains addresses and values of all data regions being

traced. To put a region on the trace list, the user types ti
(for trace insert) and a list of data regions. When execu-
tion of an instruction modifies values within a traced
region, the contents of the dynamic window are updated
accordingly. Traces are listed in order of insertion.

23

Work Screen: Contains a record of memory location read and write
requests issued by the user. To read memory values, the
user types a ‘.’ (period) and the names or addresses of
memory regions to be read. Contents of memory loca-
tions can be altered by supplying the new value on the
right hand side of an ‘=’ (equals) character. For exam-
ple, the command .200=0 would clear the word at loca-
tion 200 (octal).

The screen that has been referenced most recently is the one that is
actually displayed. This reference may be explicit or it may be implicit. For
example, the ss console command (for static screen) causes explicit switching
to the static screen; the ti command causes the dynamic screen to be brought
into view to carry out the trace insertion.

Upon initialization, the status line looks as follows:

BTSRDSLPPC Sp Intmask K MW N ZV C PS2 SCREEN STATE
1110 0 9 2000start+0 20000 111111111 0 0 0 0 0 0 0 0 Dynamic IPL

The B, T, S, RD and SL fields are console switches. When a 1 appears below
a switch name on the status line, that switch is on; when a 0 appears it is
off. To toggle a switch, the user simply types the switch name. The mean-
ings of the five console switches are:

B If on, all breakpoints are enabled; if off, encountering a breakpoint
does not cause CHIP to halt. Toggling B off is useful when the user
wants all breakpoints to be temporarily ignored.

T If on and the dynamic screen is being displayed, as modifications of
traced variables occur, their values are seen on the console window.
If off, changes to traced variables are not seen until the machine stops
and the dynamic screen is brought into view.

S If on, all suspects defined are enabled; if off, suspects remain on the
suspect list, but referencing any one does not cause the machine to
stop. Toggling S off is useful for temporarily disabling the suspect
mechanism.

RD If on, the contents of the machine registers appear on the dynamic
screen. Whether they are updated dynamically depends upon the set-
ting of the T switch.

24

SL If on, the status line is updated while the machine is running; if off,
changes do not appear until the machine stops.

The values of the Pace parameter (field P), the Program Counter, the
Stack Pointer and the Processor Status Word are also reported on the status
line. The contents of the PC is given in two formats: in octal and in the
form function name +offset, where function name is the symbolic name of
the function the current instruction is in. SP and PS2 are displayed in octal,
while PS1 is displayed in binary with its various fields labeled symbolically.

The field labeled SCREEN on the status line identifies the virtual
screen that is being displayed. The field labeled STATE either identifies the
condition that has caused the processor to stop or indicates that the proces-
sor is running.

5. The Console Command Language

Here we present the syntax and semantics of the CHIP Console Com-
mand Language. The following standard conventions in notation are used
in the command language description:

NOTATION MEANING

{S1 | S2} one of S1 or S2 must be given
[S] S may be given 0 or 1 times
[S]* S may be given 0 or more times
[S]+ S may be given 1 or more times
€ the null command
Additionally,
. Words in boldface are keywords
. Words in italics are defined in the command descriptions
. Words in normal lower case font are nonterminals of the grammar

which are defined at the end of this section.

25

The following is a list of the CHIP Console Commands and their mean-
ings:

ds Bring the dynamic screen into view.
Ss Bring the static screen into view.
ws Bring the work screen into view.

wsc Clear the work screen.

p int Set the pace parameter to int, where int is a positive integer between

0 and 9. When the pace is set to 0, run causes the machine to single
step.

si [interval [, {r | w}] 1+

Insert intervals into the suspect list. Modifier r indicates that a
suspect reference should cause the machine to stop execution only
when a value is about to be read from the interval; modifier w indi-
cates that a reference should cause the machine to stop only when a
value is about to be written. The default is to stop execution when a
location is about to be read or written. A location can appear only
once on the suspect list.

sr [*] Delete intervals from the suspect list. If * is given, all entries
currently on the suspect list are removed. If no argument appears,
the console enters interactive removal mode, initially positioning the
cursor at the top of the list of suspects being shown. At this point,
typing d deletes the interval whose specifications appear to the right
of the cursor. To move down to other interval specifications the user
types ¥ or ‘New Line’; to move up the user can type ‘k’ or ‘Space’. If
the suspect list has more entries than there are lines in the static
window, the window provides only a partial view of the list; move-
ment and deletion may result in re-appearance of other entries. To
return to command input mode type ‘q’.

s Toggle the console switch S.

ti [interval [/ {d | b | a} 11+
Insert intervals into the trace list. If d, b or a is given, the data

26

tr [*]

rd

values are displayed in Decimal, Binary or ASCII, respectively. The
default is Octal. In ASCII format, unprintable characters are
displayed as ‘@’.

Delete intervals from the trace list. If * is given, the entire list is
deleted. Otherwise, the user selects intervals to be deleted through
the mechanism described above for removing suspect variables.

Toggle the console switch T.

Toggle the console switch RD.

bi [fname [offset] ["count] 1+

br [*]

b

Insert locations into the breakpoint list. The location given to iden-
tify a breakpoint is specified as a function name frame and option-
ally an offset. If a count is given, the breakpoint will not cause a
break until it is encountered count times. The default for count is
one. If a breakpoint insert command is issued on a location that is
already in the list, then the original entry is updated.

Delete locations from the breakpoint list. Typing * causes all current
breakpoint entries to be deleted. Removing individual breakpoints is
similar to deleting entries from the trace and suspect lists.

Toggle the console switch B.

J{ {interval | register } [/{d |b|a} 11+

Display values of intervals and registers. The display selectors d, b
and a are as in the trace list insert command.

A {interval | register} = { string | [-] nbr } 1+

Write new values to registers and intervals. The values may be
given as strings or as numbers. A string is a sequence of characters
enclosed in double quote marks “”. A double quote mark can be part
of the string if it is typed as \". A back slash can be included in the
string by typing \\. If the interval contains more than one byte, suc-
cessive bytes are assigned characters from string until either string

27

or the interval is exhausted.

fin[put] file
Read console commands from file rather than from the terminal.
Argument file may be any existing UNIX file containing console com-
mands just as if they had been typed directly to the console. If an
error 1s encountered in processing a command in file, the line number

of the erroneous command is reported and no further commands are
executed.

fout[put] file
Write the contents of the current window to the file file. Argument

file may be any UNIX file name. It is not possible to write the con-
tents of the work screen.

re[draw]
Redraw the entire screen.

ipl Bring the machine to a state identical to that right after power up
without leaving the simulator.

{r[un] | €}
Run the loaded program. The null command (a blank line ter-
minated by a ‘New Line’) is a synonym for run if the pace is set to
zero (single step mode).

{? | help}
Display the list of valid commands.

{bye | q[uit] | end}
Power down CHIP.

Where the nonterminals are defined as follows:

28

interval

loc

offset

nbr

register

loc [: [{loc | offset}] 1]

A region in the CHIP computer memory. An interval is a block of
memory words (two bytes) defined by a lower and upper bound. If
no upper bound is supplied, the interval is treated as consisting of
a single memory word at the address given by the lower bound.
When the user gives only an offset as the upper bound, the
address is calculated by adding the offset to the lower bound.

{id | nbr | (oc)} [offset]

A single memory word in CHIP. An id is any identifier that is a
global symbol in the current program. Note that the PDP-11 C
compiler truncates identifiers to seven characters. If an offset is
given, its value is added to the address of the identifier or to the
specified number in order to determine the location address.

{+ |-} nbr
A signed memory offset.

int[,{d|b}]

A numeric value and its interpretation. Int is any unsigned
integer and the selectors d and b indicate whether it is to be
interpreted as a decimal or binary number, respectively. The
default interpretation is as an octal number.

{#10 | #r1 | #r2 | #r3 | #r4 | #r5 | #r6 | #r7 | #pc | #sp | #ps1 |
#ps2 | #sta | #stl | #tdck | #it}

A register of the CHIP processor. Note that #sp is a synonym for
#r6 and #pc is a synonym for #r7.

29

Appendix
The CHIP Instruction Set

This appendix is intended to serve as a quick reference for instruction

opcodes and formats. New instructions are described in §4.1 and §4.2; PDP-
11 instructions are described in detail in the PDP-11 Processor Handbook.

The format and notation for the brief descriptions below are as follows:

For each instruction, the symbolic name is followed by the operation code
(in octal) and a brief description

Instructions preceded by an asterisk are new instructions. Some of these
have the same opcodes as their PDP-11 counterparts but function
differently

Instructions with byte as well as word versions are marked with “(b)”
and the “n” field distinguishes between them

The “ddd” field denotes the destination operand
The “sss” field denotes the source operand

The “rrr” field denotes the register selector
The “000” field denotes the offset.

Privileged Instructions

*LDST 0 000 111 000 000 000 007000 Load process state
*STST 0 000 111 001 000 000 007100 Store process state
*LDIT 0 000 111 010 000 000 007200 Load interval timer
*LDIM 0 000 111 011 000 000 007300 Load interrupt mask
*LDSTL 0 000 111 100 000 000 007400 Load stack limit register
*HALT 0 000 000 000 000 000 000000 Halt

Single Operand Instructions

General

clr(b) n 000 101 000 ddd ddd n050DD Clear destination
dec(b) n 000 101 011 ddd ddd n053DD Decrement destination
inc(b) n 000 101 010 ddd ddd n052DD Increment destination
neg(b) n 000 101 100 ddd ddd n054DD Negate destination
tst(b) n 000 101 111 ddd ddd n057DD Test destination
com(b) n 000 101 001 ddd ddd n051DD Complement destination
*MOVBCK 1 000 111 000 000 000 107000 Move block of bytes
*STCK 1 000 111 001 000 Q00 107100 Store time of day clock
*INPRG 1 000 111 010 000 000 107200 Initialize Program
Shifts

asr) n 000 110 010 ddd ddd n062DD Arith. shift right destination

30

aslb) n 000 110 011 ddd ddd n063DD
ash 0 111 010 rrr 8§ sss 072RSS
ashce 0 111 o011 rr s88 88§ 073RSS
Multiple precision

adecb) n 000 101 101 ddd ddd n055DD
sbeb) n 000 101 110 ddd ddd n056DD
sxt 0 000 110 111 ddd ddd 0067DD
Rotates

rolb) n 000 110 001 ddd ddd n061DD
rorb) n 000 110 000 ddd ddd n060DD
swab 0 000 000 011 ddd ddd 0003DD
Double operand instructions

General

movib) n 001 ss8 888 ddd ddd nlSSDD
add 0 110 sss sss ddd ddd 06SSDD
sub 1 110 sss sss8 ddd ddd 16SSDD
cmpb) n 010 sss sss ddd ddd n2SSDD
mul 0 111 000 rrr sss SSS 070RSS
div 0 111 001 rrr sss sss 071RSS
XOr 0 111 100 rrr ddd ddd 074RDD
Logical

bish) n 101 sss sss ddd ddd n5SSDD
bith) n 011 sss sss ddd ddd n3SSDD
bich) n 100 sss sss ddd ddd n4SSDD
Program control instructions

Branches

br 0 000 000 1loo o000 ooo 0004offset
Simple conditional branches

beq 0 000 001 1loo o000 o000 0014offset
bne 0 000 001 Ooo o000 ooco 0010offset
bmi 1 000 000 1loo o000 ooo 10040ffset
bpl 1 000 000 Qoo o000 o000 1000offset
bes 1 0006 011 1loo o000 ooo 1034offset
bee 1 000 011 Ooco o000 ooo 1030offset
bvs 1 000 010 1loo o000 ooo 10240ffset
bve 1 000 010 Ooo o000 ooo 10200ffset

31

Arith. shift left destination
Shift arithmetically
Arith. shift combined

Add carry destination
Subtract carry destination
Sign extended destination

Rotate left destination
Rotate right destination
Swap bytes destination

Move source to destination

Add source to destination
Subtract source from destination
Compare source to destination
Multiply

Divide

Exclusive or

Bit set
Bit test
Bit clear

Unconditional branch

Branch on equal

Branch on not equal
Branch on minus
Branch on plus

Branch on carry set
Branch on carry clear
Branch on overflow set
Branch on overflow clear

Signed conditional branches

blt 0 000 010 1loo o000 o0oo 0024offset Branch on less than

bge 0 000 010 0Ooo o000 ooo 00200ffset Branch on greater than or equal
ble 0 000 011 1loo o000 ooo 0034offset Branch on less than or equal
bgt 0 000 011 0Ooo o000 ooo 0030offset Branch on greater than

Unsigned conditional branches

bhi 1 000 001 Ooco o000 ooo 1010offset Branch on higher

blos 1 000 001 1loo ooo ooo 10l4offset Branch on lower or same
blo 1 000 011 1loo o000 ooo 1034offset Branch on lower

bhis 1 000 011 0Ooo o000 ooo 1030offset Branch on higher or same
Subroutine

jsr 0 000 100 rrr ddd ddd 004RDD Jump to subroutine

mark 0 000 110 100 nnn nnn 0064NN Mark

rts 0 000 000 010 000 rrr 00020R Return from subroutine

*CSV 1 000 111 011 000 000 107300 Save registers for subroutine call
*CRET 1 000 111 100 000 000 107400 Restore saved registers and return

Program control

jmp 0 000 000 001 ddd ddd 0001DD Jump
sob 0 111 111 rr 000 000 077Roffset Subtract one and branch

System calls
*SYS 1 000 100 100 000 000 104400 Generate a system call trap

to to
1 000 100 111 111 111 104777

Condition code operators

cle 000 000 010 100 001 000241 Clear C
clv 000 000 010 100 010 000242 Clear V
clz 000 000 010 100 100 000244 Clear Z

cln 000 000 010 101 000 000250 Clear N
000 000 010 110 001 000261 SetC
000 000 010 110 010 000262 SetV
000 000 010 110 100 000264 SetZ
000 000 010 111 000 000270 SetN
000 000 010 111 111 000277 Set all

000 000 010 101 111 000257 Clear all

<
SO0 Oooc oo oC

32

	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif
	pdftemp/0010.tif
	pdftemp/0011.tif
	pdftemp/0012.tif
	pdftemp/0013.tif
	pdftemp/0014.tif
	pdftemp/0015.tif
	pdftemp/0016.tif
	pdftemp/0017.tif
	pdftemp/0018.tif
	pdftemp/0019.tif
	pdftemp/0020.tif
	pdftemp/0021.tif
	pdftemp/0022.tif
	pdftemp/0023.tif
	pdftemp/0024.tif
	pdftemp/0025.tif
	pdftemp/0026.tif
	pdftemp/0027.tif
	pdftemp/0028.tif
	pdftemp/0029.tif
	pdftemp/0030.tif
	pdftemp/0031.tif
	pdftemp/0032.tif
	pdftemp/0033.tif
	pdftemp/0034.tif
	pdftemp/0035.tif

