Dodgson's Determinant-Evaluation Rule Proved by TWO-TIMING MEN and WOMEN

Doron ZEILBERGER ${ }^{1}$

Submitted: April 15, 1996; Accepted: May 15, 1996

Bijections are where it's at -Herb Wilf

Dedicated to Master Bijectionist Herb Wilf, on finishing 13/24 of his life

I will give a bijective proof of the Reverend Charles Lutwidge Dodgson's Rule [D])

$$
\begin{gather*}
\operatorname{det}\left[\left(a_{i, j}\right)_{\substack{1 \leq i \leq n \\
1 \leq j \leq n}}\right] \cdot \operatorname{det}\left[\left(a_{i, j}\right)_{\substack{2 \leq i \leq n-1 \\
2 \leq j \leq n-1}}\right]= \\
\operatorname{det}\left[\left(a_{i, j}\right)_{\substack{1 \leq i \leq n-1 \\
1 \leq j \leq n-1}}\right] \cdot \operatorname{det}\left[\left(a_{i, j}\right)_{\substack{\begin{subarray}{c}{2 \leq i \leq n \\
2 \leq j \leq n} }}\end{subarray}}\right]-\operatorname{det}\left[\left(a_{i, j}\right)_{\substack{\begin{subarray}{c}{\begin{subarray}{c}{\leq i \leq n-1 \\
2 \leq j \leq n} }} \end{subarray}}\end{subarray}}\right] \cdot \operatorname{det}\left[\left(a_{i, j}\right)_{\substack{2 \leq i \leq n \\
1 \leq j \leq n-1}}\right] \tag{Alice}
\end{gather*}
$$

Consider n men, $1,2, \ldots, n$, and n women $1^{\prime}, 2^{\prime} \ldots, n^{\prime}$, each of whom is married to exactly one member of the opposite sex. For each of the n ! possible (perfect) matchings π, let

$$
\operatorname{weight}(\pi):=\operatorname{sign}(\pi) \prod_{i=1}^{n} a_{i, \pi(i)}
$$

where $\operatorname{sign}(\pi)$ is the sign of the corresponding permutation, and for $i=1, \ldots, n, \mathrm{Mr} . i$ is married to Ms. $\pi(i)^{\prime}$.

Except for Mr. 1, Mr. n, Ms. 1^{\prime} and Ms. n^{\prime} all the persons have affairs. Assume that each of the men in $\{2, \ldots, n-1\}$ has exactly one mistress amongst $\left\{2^{\prime}, \ldots,(n-1)^{\prime}\right\}$ and each of the women in $\left\{2^{\prime}, \ldots,(n-1)^{\prime}\right\}$ has exactly one lover amongst $\{2, \ldots, n-1\}^{2}$. For each of the $(n-2)$! possible (perfect) matchings σ, let

$$
\operatorname{weight}(\sigma):=\operatorname{sign}(\sigma) \prod_{i=2}^{n-1} a_{i, \sigma(i)}
$$

where $\operatorname{sign}(\sigma)$ is the sign of the corresponding permutation, and for $i=2, \ldots, n-1, \mathrm{Mr} . i$ is the lover of Ms. $\sigma(i)^{\prime}$.

[^0]Let $A(n)$ be the set of all pairs $[\pi, \sigma]$ as above, and let weight $([\pi, \sigma]):=$ weight (π) weight (σ). The left side of (Alice) is the sum of all the weights of the elements of $A(n)$.

Let $B(n)$ be the set of pairs $[\pi, \sigma]$, where now n and n^{\prime} are unmarried but have affairs, i.e. π is a matching of $\{1, \ldots, n-1\}$ to $\left\{1^{\prime}, \ldots,(n-1)^{\prime}\right\}$, and σ is a matching of $\{2, \ldots, n\}$ to $\left\{2^{\prime}, \ldots, n^{\prime}\right\}$, and define the weight similarly.

Let $C(n)$ be the set of pairs $[\pi, \sigma]$, where now n and 1^{\prime} are unmarried and 1 and n^{\prime} don't have affairs. i.e. π is a matching of $\{1, \ldots, n-1\}$ to $\left\{2^{\prime}, \ldots, n^{\prime}\right\}$, and σ is a matching of $\{2, \ldots, n\}$ to $\left\{1^{\prime}, \ldots,(n-1)^{\prime}\right\}$, and now define weight $([\pi, \sigma]):=-$ weight (π) weight (σ).

The right side of (Alice) is the sum of all the weights of the elements of $B(n) \cup C(n)$.
Define a mapping

$$
T: A(n) \rightarrow B(n) \cup C(n),
$$

as follows. Given $[\pi, \sigma] \in A(n)$, define an alternating sequence of men and women: $m_{1}:=$ $n, w_{1}, m_{2}, w_{2}, \ldots, m_{r}, w_{r}=1^{\prime}$ or n^{\prime}, such that $w_{i}:=$ wife of $\left(m_{i}\right)$, and $m_{i+1}:=\operatorname{lover}$ of $\left(w_{i}\right)$. This sequence terminates, for some r, at either $w_{r}=1^{\prime}$, or $w_{r}=n^{\prime}$, since then m_{r+1} is undefined, as 1^{\prime} and n^{\prime} are lovers-less women. To perform T, change the relationships $\left(m_{1}, w_{1}\right),\left(m_{2}, w_{2}\right), \ldots,\left(m_{r}, w_{r}\right)$ from marriages to affairs (i.e. Mr. m_{i} and Ms. w_{i} get divorced and become lovers, $i=1, \ldots, r$), and change the relationships $\left(m_{2}, w_{1}\right),\left(m_{3}, w_{2}\right), \ldots,\left(m_{r}, w_{r-1}\right)$ from affairs to marriages. If $w_{r}=1^{\prime}$ then $T([\pi, \sigma]) \in C(n)$, while if $w_{r}=n^{\prime}$ then $T([\pi, \sigma]) \in B(n)$.

The mapping T is weight-preserving. Except for the sign, this is obvious, since all the relationships have been preserved, only the nature of some of them changed. I leave it as a pleasant exercise to verify that also the sign is preserved.

It is obvious that $T: A(n) \rightarrow B(n) \cup C(n)$ is one-to-one. If it were onto, we would be done. Since it is not, we need one more paragraph.

Call a member of $B(n) \cup C(n)$ bad if it is not in $T(A(n))$. I claim that the sum of all the weights of the bad members of $B(n) \cup C(n)$ is zero. This follows from the fact that there is a natural bijection S, easily constructed by the readers, between the bad members of $C(n)$ and those of $B(n)$, such that weight $(S([\pi, \sigma]))=-$ weight $([\pi, \sigma])$. Hence the weights of the bad members of $B(n)$ and $C(n)$ cancel each other in pairs, contributing a total of zero to the right side of (Alice).
A small Maple package, alice, containing programs implementing the mapping T, its inverse, and the mapping S from the bad members of $C(n)$ to those of $B(n)$, is available from my Home Page
http://www.math.temple.edu/~zeilberg.

Reference

[D] C.L. Dodgson, Condensation of Determinants, Proceedings of the Royal Society of London 15(1866), 150-155.

[^0]: 1 Department of Mathematics, Temple University, Philadelphia, PA 19122, USA. zeilberg@math.temple.edu http://www.math.temple.edu/~zeilberg ftp://ftp.math.temple.edu/pub/zeilberg .

 Supported in part by the NSF. Version of Dec 6, 1996. First Version: April 15, 1996.
 Thanks are due to Bill Gosper for several corrections.
 2 Somewhat unrealistically, a man's wife may also be his mistress, and equivalently, a woman's husband may also be her lover.

